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Natural products in osteoarthritis treatment: <=

bridging basic research to clinical applications
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Abstract

Osteoarthritis (OA) is the most prevalent degenerative musculoskeletal disease, severely impacting the function

of patients and potentially leading to disability, especially among the elderly population. Natural products (NPs),
obtained from components or metabolites of plants, animals, microorganisms etc., have gained significant attention
as important conservative treatments for various diseases. Recently, NPs have been well studied in preclinical and clin-
ical researches, showing promising potential in the treatment of OA. In this review, we summed up the main signaling
pathways affected by NPs in OA treatment, including NF-kB, MAPKs, PI3K/AKT, SIRT1, and other pathways, which are
related to inflammation, anabolism and catabolism, and cell death. In addition, we described the therapeutic effects
of NPs in different OA animal models and the current clinical studies in OA patients. At last, we discussed the potential
research directions including in-depth analysis of the mechanisms and new application strategies of NPs for the OA
treatment, so as to promote the basic research and clinical transformation in the future. We hope that this review may
allow us to get a better understanding about the potential bioeffects and mechanisms of NPs in OA therapy, and ulti-
mately improve the effectiveness of NPs-based clinical conservative treatment for OA patients.
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Introduction

Osteoarthritis (OA) is a prevalent degenerative disease
mainly resulting in cartilage damage and synovial inflam-
mation, affecting a large number of individuals world-
wide. The global number of OA patients has exceeded
250 million, while there is an increasing incidence rate
each year, leading to a serious impact on individuals,
healthcare systems, and the socioeconomic aspect of
society. As lifestyles evolve and populations age, OA is
becoming a major healthcare burden globally [1, 2]. It
is the principal cause of motor disability, significantly
impairing the quality of life [3]. Even though effective
conservative methods can postpone OA progression,
alleviate symptoms of joints, and ameliorate patients’
quality of life, the current clinical treatment outcomes
for OA patients remain unsatisfactory. In addition, the
underling mechanisms of OA are yet not completely
revealed, which greatly hinders the application and opti-
mization of relevant therapeutic approaches. Therefore,
novel therapeutic strategies are needed to enhance the
clinical treatment outcomes of OA.

Natural products (NPs), obtained from components
or metabolites of plants, animals, microorganisms etc.,
are widely used as drugs in the present era [4]. Numer-
ous studies have demonstrated that NPs offer potent
therapeutic strategies for various diseases, including
cancer, diabetes, and immune diseases [5-7]. NPs such
as curcumin and Quercetin possess anti-inflammatory
and antioxidant effects while exhibiting fewer toxic and
side effects, thus improving patient compliance [5]. A
multiplying body of studies demonstrate that NPs can
effectively alleviate joint inflammation, restrain articular
cartilage degradation, eventually slow up OA progression.
These beneficial effects are attributed to their ability to
inhibit inflammation, regulate anabolism and catabolism,
and prevent chondrocyte death, among other mecha-
nisms [8]. Thus far, the therapeutic effects of various
types of NPs have been confirmed in OA animal models
and clinical patients. With ongoing studies, the therapeu-
tic potential of different NPs in OA treatment is being
increasingly recognized, suggesting that NPs may play an
important part in conservative treatments for OA in the
future. In this review, we recap the present evidence on
how NPs postpone the progression of OA. This compila-
tion will provide a more thoroughly understanding of the
potential value of NPs in OA therapy and facilitate the
development of treatment options for OA patients.

The underlying mechanisms of NPs in OA
treatments

OA is a disease of the whole joint, whose pathologic
changes include cartilage damage, bone, synovitis, sub-
chondral bone sclerosis, and muscle atrophy [9]. Above
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them, cartilage damage is a key pathological change
to induce pain, stiffness, functional limitation of OA
patients. Recent studies reported that different types of
NPs alleviate the process of OA via regulation inflam-
mation, anabolism and catabolism, and cell death of
cartilage. In this section, we will review the underlying
mechanisms of NPs in OA treatments, including different
signaling pathways affected by specific NPs.

Inflammation signals that are regulated by NPs

in OA

Inflammation closely involves the initiation of OA and
affects chondrocyte metabolism during aging [10] (Fig. 1).
The pro-inflammatory factors, such as IL-1f and IL-6,
increase in joint fluid, synovium, and cartilage of OA [11,
12]. Furthermore, other factors like nitric oxide (NO),
prostaglandin E2 (PGE2), and cyclooxygenase-2 (COX-2),
mediating inflammation are increased in articular carti-
lage of OA [13, 14]. NO is a free radical that can induce
cartilage destruction by increasing mitochondrial mem-
brane potential (MMP) activity and declining production
of aggrecan and collagen [15-17]. PGE2 is a critical lipid
factor that acquires from arachidonic acid through cata-
lyzed by COX enzymes and terminal PGE synthases [18].
PGE2 can promote the progression of OA, inhibit extra-
cellular matrix synthesis and promote cartilage degrada-
tion [19]. COX-2 inhibitor has been wildly used in clinic
for treatment of OA [20]. Therefore, inhibition of cartilage
inflammation is a promising strategy for the OA treat-
ment by NPs. We next review the typical signaling path-
ways about inflammation affected by NPs in OA.

Nuclear factor-kB (NF-kB)

NF-«B is a rapidly inducible transcriptional regulator
involved in inflammation and diverse cellular responses
[21]. NF-kB pathway activation mainly involves three
groups of proteins, which are NF-kB family (p50, p52,
p65, c-Rel, and RelB), IkB family (IkB, IkBp, IkBe, precur-
sor proteins pl100 and p105, Bcl-3, and IkB(), and IKK
complex (IKKo/IKK1, IKKB/IKK2, and NF-kB essential
modulator/IKKy) [22]. IKK activation induces IkB phos-
phorylation and then degradation in the canonical path-
way or turns p100 into p52 in the noncanonical pathway,
causing transportation of phosphorylated NF-kB dimers
into the nucleus [22]. NF-kB pathway is closely related
to immune response. Cheng et al. recently reported that
temporal dynamics of NF-«B activity plays an important
part during the activation of latent enhancers of immune
response genes [23]. NF-kB transcription factor is related
to inflammation, anabolism, and catabolism of chondro-
cytes [24]. The categories of NPs that affect NF-kB in OA
treatment are as follows.
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Fig. 1 The inflammatory microenvironment of articular cartilage induced in OA. Chronic inflammation is an important pathological feature
of OA and is a major factor in the destruction of cartilage; it also leads to persistent inflammation of the chondrocytes. Phagocytic clearance
of chondrocyte degradation products, deceased chondrocytes, and chondrocyte-derived exosomes by synovial macrophages exacerbates

the synovial inflammatory response. Inflammatory synovial cells generate pro-inflammatory factors, further intensifying chondrocyte degradation
and establishing a vicious spiral. The activation of immune cells within the synovial membrane, such as B cells, T cells, and macrophages, increase

the inflammatory level. Additionally, both synovium and cartilage produce a

IkB phosphorylation

Curcumin, a classic natural product of phenols, had dem-
onstrated potent anti-inflammatory effects in chondro-
cytes of OA by suppressing IkB-a phosphorylation [25].
Through reducing phosphorylation of IkB-a, sinapic acid
significantly inhibited the expression of IL-la-induced
IL-6 and TNF-a in human OA chondrocytes [26].
Sinomenine also had the ability to inhibit p-IkB-a at the
protein level in IL-1P-treated chondrocytes [27]. Chry-
sin could inhibit phosphorylation of IkB-a in OA chon-
drocytes [28]. Asiatic acid reduced NF-kB activity via
decreasing IkB-a phosphorylation in IL-1B-treated chon-
drocytes [29]. Panax quinquefolium saponin, an active
ingredient of American ginseng, inhibited endoplasmic
reticulum stress-activated inflammatory changes in OA
cartilage by inhibiting phosphorylation of IkB-a [30].

IkB degradation

By suppressing IkB-a degradation, curcumin had potent
anti-inflammatory effects in OA chondrocytes [25, 31].
Shikonin had anti-inflammatory effects on OA by sup-
pressing IkB-a degradation in IL-1p-treated chondro-
cytes [32]. An extract of phenolic component, piperine,
inhibited NF-«B by suppressing IkB-a degradation in the
cytoplasm [33]. In chondrocytes, sinapic acid inhibited

nti-inflammatory cytokines to help modulate the inflammatory milieu

the expression of IL-la-induced IL-6 and TNF-a via
inhibiting IkB-a degradation [26]. Oleuropein, a phenolic
component primary originated from olive, presented
anti-inflammation function in human chondrocytes
damage model by through degradation of IkB-a [34].
Polydatin, a natural extract belonging to resveratrol
glucoside, had found to inhibit inflammation of OA by
reducing cytoplasmic IkB-a degradation [35]. Eriodic-
tyol, extracted from citrus fruits, rescued chondrocyte
activity by reducing IkB-a degradation [36]. In OA chon-
drocytes, chrysin could inhibit the degradation of IkB-a
[28]. B-Ecdysterone increased p-IkB-a degradation in
inflammatory chondrocytes [37]. Panax quinquefolium
saponin inhibited endoplasmic reticulum stress-acti-
vated inflammatory changes in OA cartilage by inhibit-
ing IxB-a degradation [30]. Achyranthes bidentata blume
(ABS) contains oleanane-type saponins considered as its
main bioactive components. Xu et al. found that ABS had
anti-inflammatory effects by inhibiting IkB-a degrada-
tion in IL-1p-treated chondrocytes [38].

P65 phosphorylation

Curcumin had potent anti-inflammatory effects in
OA chondrocytes. It suppressed p65 phosphorylation
[25]. Sinapic acid significantly inhibited the expres-
sion of IL-la-induced IL-6 and TNF-« via inhibition



Fang et al. Chinese Medicine (2024) 19:25

of phosphorylation of p65 in human OA chondrocytes
[26]. Danshensu, another product of phenols, inhib-
ited the nuclear accumulation of p65 in osteoarthritic
cartilages [39]. Salvianolic acid B dramatically reduced
IL-1B-induced p65 phosphorylation in a mouse OA
model [40]. Oleuropein presented anti-inflammatory
function in human chondrocyte damage model by
inactivating the phosphorylation of p65 [34]. Another
terpenoid, ginsenoside Ro, belonging to the oleanolic
acid-type ginsenosides, reduced apoptosis and inflam-
mation in chondrocytes by in p65 phosphorylation
[41, 42]. Glycyrrhizin inhibited the protein expression
of HMGBI, TLR4 and p-p65 in cartilages of a rat OA
model [43]. B-Ecdysterone also suppressed the phos-
phorylation of p65 in inflammatory chondrocytes [37].

P65 nuclear translocation

Curcumin could relieve OA chondrocyte inflamma-
tion by inhibiting p65 nuclear translocation [25, 31].
Recently, Chen et al. found that curcumin could bound
to p65 by molecular docking and dynamic simulation
studies [44]. Shikonin had anti-inflammatory effects
in OA through the reduction of p65 in IL-1p-treated
chondrocytes [32]. Moreover, moracin inhibited p65
nuclear translocation in chondrocytes of OA [45].
a-Mangostin, purified from mangosteen, protected
articular chondrocytes from inflammation via inhibi-
tion of p65 in nuclear [46]. Liquiritigenin improved
inflammation in IL-1B-treated chondrocytes by alle-
viating nuclear translocation and phosphorylation
of p65 [47]. Myricetin down-regulated expression of
generation of inflammatory mediators and cytokines
by suppressing the expression and nuclear translo-
cation of p65 in chondrocytes of OA [48]. Myricitrin
had anti-inflammatory effects on mouse chondrocytes
via reducing p65 nuclear translocation [49]. Piceatan-
nol, a natural product from the family of stilbenes,
had indicated to suppress the expression of nuclear
p65 in IL-1B-stimulated chondrocytes [50]. Crypto-
tanshinone, another natural product, ameliorated the
progression of OA by inhibiting nuclear transloca-
tion of p65 in chondrocytes [51]. Peiminine, belong-
ing to alkaloids, had found to suppress IL-1B-induced
expression of nuclear p65 in mouse chondrocytes [52].
Ligustilide, is an active component of Danggui, had an
inhibitory effect on p65 nuclear dislocation in chon-
drocytes [53]. In summary, NF-kB signaling pathway
is the most common pathway affected by NPs, includ-
ing suppressing the expression and phosphorylation
of cytoplasmic IkB and nuclear p65, increasing p-IkB
degradation, and promoting p65 nuclear translocation.
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The mitogen activated protein kinases (MAPKs)

MAPKs are silk/threonine protein kinases that are
widely distributed in eukaryotic cells. The MAPK sign-
aling pathway may be activated by external signals or
stimuli, including inflammatory cytokines, growth fac-
tors, bacterial complexes, and more. Following activa-
tion, the extracellular signals can be gradually amplified
and transmitted to the nucleus. This is accompanied
by the regulation of transcription factor activity and
the corresponding gene regulation expression [54].
The MAPKs family includes extra-cellular signal-reg-
ulated kinase (ERK), p38, ERK3, and Jun N-terminal
kinase (JNK), BMK1/ERK5, ERK27, ERK8 and NLK
[55, 56]. And p38 can be classified into p38a, p38p,
p388 and p38y isoforms. Among these, p38a and
p38p are expressed in nearly all tissues and cells [57].
ERK includes ERK1-5 and ERK7/8 [58]. Three genes,
jnk1, jnk2 and jnk3, encode the JNK proteins [59].
The p38MAPK signaling pathway can be activated by
inflammatory factors and growth factors in the patho-
logical process of OA, while inhibition of p-38 could
ameliorate chondrocyte inflammation and OA pro-
gress [60, 61]. Inhibiting p-JNK and p-ERK can miti-
gate chondrocyte damage that is stimulated by IL-1,
decrease the production of inflammatory cytokines,
and decelerate OA progression [62]. MAPKs display
close associations with chondrocyte inflammation,
anabolism, and catabolism. Different types of NPs
could inhibit inflammation of OA chondrocytes via
MAPKs. (1) Flavonoids. Wogonin inhibited inflam-
matory changes in OA cartilage by activating Nrf2
through phosphorylation of ERK1/2 in OA chondro-
cytes [63]. Liquiritigenin had demonstrated potent
anti-inflammatory effects in OA chondrocytes by
inhibiting IL-1B-induced activation of MAPKs, includ-
ing down-regulation of p-ERK, p-p38, and p-JNK [47].
In chondrocytes affected by OA, Astragalin was found
to inhibit the phosphorylation of ERK, JNK, and p38
[64]. (2) Quinones. Cryptotanshinone suppressed the
phosphorylation of ERK, JNK, and p38 in chondrocytes
in OA [51]. (3) Phenols. Isorhapontigenin (ISO) down-
regulated p-ERK and p-p38 protein levels in cartilage,
thereby influencing the progression of OA [65]. By sup-
pressing IL-1B-induced activation of MAPKSs, including
downregulation of JNK, caffeic acid had shown potent
anti-inflammatory effects in OA chondrocytes [66]. (4)
Phenylpropanoids. Schisantherin A reduced the lev-
els of p-ERK, p-p38, and p-JNK proteins in cartilage,
thereby affecting the progression of osteoarthritis [67].
(5) Terpenoids. Echinocystic Acid had shown to have
potent anti-inflammatory effects in OA chondrocytes
by suppressing p-ERK, p-JNK, and p-p38 [68]. The cur-
rent studies mainly tested the expression of MAPKs
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affected by NPs, but more detailed mechanisms like
the how NPs influence MAPKs are badly needed to be
explored in the future study.

Phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)
PI3K is a catalytic signaling protein that is widely pre-
sent in various cells of the body and is involved in cell
processes such as proliferation, migration, and apop-
tosis [69]. AKT is divided into three isoforms, PKB-a,
and vy, and is the major downstream effector molecule
of PI3K. Activation of the PI3K/Akt pathway can gradu-
ally phosphorylate the Akt protein, and Akt can act on a
variety of protein substrates and change their state after
activation. It promotes the regulation of cell activity,
inhibits cell apoptosis, regulates energy metabolism and
other biological effects [70]. PI3K/AKT have a crucial
function in the proliferation and growth of skeletal sys-
tem cells [71]. Xue et al. found that inhibition of PI3K/
AKT/MTR signaling reduced inflammatory responses
and promoted autophagy in chondrocytes [72]. There
are still many different types of NPs that have significant
effects on this pathway. (1) Flavonoids. For instance, Far-
rerol demonstrated anti-inflammatory properties in OA
by suppressing the production of p-PI3K and p-AKT in
OA chondrocytes [73]. Myricetin could protect carti-
lage and alleviate the progression of OA via inhibition
of PIBK/AKT-mediated Nrf2/HO-1 signaling pathway
in chondrocytes [48]. (2) Phenols. Astilbin could inhibit
inflammation in IL-1pB-treated chondrocytes by down-
regulating the signaling pathway of PI3K/AKT [74].
Oroxin B reduced PI3K and AKT phosphorylation and
reduces inflammation in chondrocytes [75]. Urolithin A
inhibited inflammation in IL-1p-treated chondrocytes by
downregulating p-PI3K and p-AKT [76]. Leonurine was
found to suppress the phosphorylation of PI3K and AKT
in chondrocytes affected by OA [77]. (3) Terpenoids. By
inhibiting IL-1B-induced activation of p-PI3K, p-AKT
and p-mTOR, artemisinin had demonstrated potent anti-
inflammatory effects in OA chondrocytes [78]. PI3K/
AKT pathway not only significant in OA chondrocytes,
but also synovial macrophages. Zheng et al. found that
mechanical loading mitigated synovial inflammation and
changed the ratio of M1 and M2 macrophages by PI3K/
AKT pathway [79]. However, whether NPs could regulate
the inflammation of OA by PI3K/AKT pathway in mac-
rophages is not clear.

Silent information regulator factor 2-related enzyme 1
(SIRT1)

The sirtuins belong to deacetylase, SIRT1-7, with the abil-
ity to prevent metabolic diseases and aging [80]. SIRT1
can target several transcriptional proteins related to DNA
repair, metabolism, inflammation, cancer, etc., such as p53,
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NF-kB and Forkhead [81, 82]. In OA, SIRT1 exerts anti-
inflammation and anti-catabolic ability in OA. Batshon
et al. found that the increased levels of serum N-terminal
polypeptide/C-terminal fragment SIRT1 ratio correlated
with moderate OA patients, which may induce prolonged
inflammatory insult [83]. Disruption of Sirtl in chondro-
cytes aggravated progression of OA [84]. The activation of
SIRT1 attenuated OA development though inhibiting syn-
ovitis [85]. There are limited literatures about different NPs’
treatment of OA via SIRT1 signaling pathway. (1) Ketones.
In addition, safranal could potentially prevent OA develop-
ment via up-regulating expression of SIRT1 [86]. (2) Phe-
nols. Resveratrol, a natural activator of SIRT1, could inhibit
OA disease progression, which has been well reviewed by
Deng and his colleagues [87]. (3) Flavonoids. Fisetin sup-
pressed the production of pro-inflammatory factors like
NO, PGE2, IL-6 and TNF-a through increasing expres-
sion and activity of SIRT1 in on human OA chondrocytes
[88]. Since SIRT1 pathway is important in the OA progress,
more studies are needed to explore this pathway affected
by NPs during the treatment of OA in the future.

Other signaling pathways

Beside the above typical signaling pathway related to
inflammation, there are limited studies reported that other
pathways were affected by NPs in the treatment of OA. (1)
Terpenoids. For example, triptolide exerted its anti-inflam-
matory effect on OA by downregulating hsa-miR-20b,
whose target gene is NLRP3 [89]. (2) Flavonoids. Besides,
quercetin reduced IL-1B-stimulated inflammation of rat
chondrocytes via inhibition of IRAK1/NLRP3 pathway
[90]. Thus, NPs could regulate the inflammation of OA
via epigenetics. Recently, Tan et al. reviewed that NPs can
regulate the glycolytic pathway in the treatment of OA [91].
During the treatment of OA, we speculate that more sign-
aling pathways regulated by virous NPs will be found and
studied in the future.

In brief, several signaling pathways that regulate inflam-
mation can be modulated by NPs (Fig. 2). So far, most
studies have focused on exploring the anti-inflammatory
mechanism of NPs in chondrocytes. Since osteoarthritis
is a disease of the whole joint, further studies may need to
concentrate on other types of cells within the joint, includ-
ing but not limited to synovial fibroblasts, macrophages,
osteoblasts, and adipocytes in the infrapatellar fat pad, to
gain a comprehensive understanding of the potential and
mechanism of NPs in OA treatment.

Anabolism and catabolism that are regulated

by NPs in OA

Anabolism and catabolism are crucial for maintain-
ing chondrocyte homeostasis and exert a key influence
on the pathogenesis of OA [92]. Imbalances between
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Fig. 2 The main inflammatory signaling pathways affected by NPs during OA treatment. NPs inhibit NF-kB pathway by inhibiting IkB degradation
and p65 translocation into the nucleus, as well as phosphorylation of p65. NPs inhibit the phosphorylation of PI3K, mTOR and AKT in PI3K/AKT
pathway. NPs also prevent the phosphorylation of p38, INK and ERK, thereby blocking the activation of MAPKs-related pathways. In addition,

NPs can inhibit the SIRT1-mediated activation of NF-kB pathway, thereby reducing the IL-1B3-induced expression of inflammatory mediators

in chondrocytes. The inhibition of above signaling pathways by NPs decrease the production of several inflammatory factors, including PGE2, NO,

IL-1B, IL-6, INOS, COX2, etc.

catabolic and anabolic activities can result in chon-
drocyte degeneration [93]. Various factors, including
mechanical loading, aging and inflammation, have been
shown to influence the catabolic and anabolic processes
of chondrocytes, thereby impacting the progression of
OA [94, 95]. The expression of anabolic genes such as
SOX9, collagen II, and aggrecan decrease in senescent
chondrocytes, whereas the expression of catabolic genes
such as matrix metalloproteinase-1 (MMP-1), MMP-
9, MMP-13, thrombospondin motifs 5 (ADAMTS-5),
matrix metalloproteinase 1 (TIMP-1), TIMP-2 and
C-telopeptide of type II collagen (CTX-II) increase [93,
96]. Additionally, the expression of collagen II, SOXO9,
and aggrecan exhibit a notable decrease in chondrocytes
stimulated by IL-1p [97]. Age-related changes in path-
ways such as NF-kB, MAPK, AKT, and SIRT1 can affect
chondrocyte metabolism in OA [98]. Targeting the sign-
aling pathways involved in catabolism and anabolism
represents a viable strategy for the therapeutic manage-
ment of OA (Fig. 3). NPs have demonstrated the capac-
ity to modulate chondrocyte anabolism and catabolism,

offering a promising strategy to preserve cartilage quality
and delay OA progression.

NF-kB

NF-«B signaling pathway is closely related to anabolism
and catabolism, especially in cartilage tissue of OA. In
the process of OA, excessive mechanical loading pro-
motes cartilage degeneration by activating NF-«kB path-
way [94], while inhibiting NF-«B protects cartilage from
degeneration and degradation [99]. Many NPs, belonging
to phenols, flavonoids, terpenoids, stilbenes, and others,
can affect NF-«B pathway in several ways.

IkB phosphorylation

Curcumin inhibited MMP-13 and increased the pro-
duction of SOX9 by reducing IkB-a phosphorylation
[25]. Asiatic acid down-regulated IkB-a phosphoryla-
tion, which suppressed the expression of MMP-13 and
collagen type X [29]. Morroniside could improve car-
tilage matrix synthesis by increasing collagen type II
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Fig. 3 The main signaling pathways in catabolism and anabolism of cartilage affected by different types of NPs. The regulation of anabolic
and catabolic genes in IL-13-treated chondrocytes by NPs involved multiple signaling pathways, including MAPK, PI3K/AKT, SIRT1, and NF-kB.
By affecting the above signaling pathways, NPs promote the up-regulation of anabolic substances such as aggrecan, Col Il, ACAN and SOX9,
and inhibit the production of catabolic substances such as ADAMTS and MMPs

expression, related to inhibition of the IkB-a phospho-
rylation [100].

IkB degradation

Shikonin had chondro-protective effects, including
reduction of MMP-1, MMP-3 and MMP-13 in IL-1p
stimulated chondrocytes, by inhibiting IkB-a degrada-
tion [32]. Curcumin inhibited MMP-13 and increased
the production of type II collagen through the degrada-
tion of IkB-a [101]. Chlorogenic acid inhibited the IL-1p-
induced degradation of IkB-a in chondrocytes, which
inhibited the expression MMPs while increases TIMP-1
expression [102]. The expression of MMP-13 and
ADAMTS-5 could be reversed by salvianolic acid B in a
mouse OA model via inhibiting degradation of IkB [40].
Another production of phenols, emodin, ameliorated
cartilage degradation in OA by inhibiting IxB-a degrada-
tion [103]. Besides, aqueous extract of Anthriscus sylves-
tris, major antioxidant components of ethanol extracts,
suppressed expression of nitrite, iNOS, PGE2, COX-2,
MMP-3, MMP-13, and ADAMTS-4 in IL-1p-treated
chondrocytes, which related to suppression of IxB-a deg-
radation [104].

P65 phosphorylation

Chemically modified curcumin promoted collagen 2al
and suppressed MMP-3, runt-related transcription fac-
tor 2 and cleaved caspase-3 by inhibiting phosphoryla-
tion of p65 in chondrocytes [105]. Sinapic acid reversed
the degradation of type II collage and aggrecan, as well
as MMP-9, MMP-13, and ADAMTS-5 by suppressing
p65 phosphorylation in OA chondrocytes [26]. Dan-
shensu reduced the expression and activity of MMP-3
and MMP-13 by inhibited p65 phosphorylation in oste-
oarthritic cartilages [39]. Liquiritigenin inhibited carti-
lage matrix degradation, including suppressing MMP-3,
MMP-13, ADAMTS-4 and ADAMTS-5, by alleviating
phosphorylation of p65 [47]. Luteolin reversed the deg-
radation of collagen type II by suppressing the phos-
phorylation of p65 in IL-1B-induced chondrocytes
[106]. Aucubin inhibited gene and protein expression
of MMP-3, MMP-9, and MMP-13 of chondrocytes via
repressing phosphorylation of p65 [107]. The expres-
sion of MMP-3, MMP-9, and MMP-13, and the degrada-
tion of type II collagen and aggrecan could be reversed
by a-Mangostin through inhibiting p65 phosphorylation
[46]. B-Ecdysterone prevented matrix degradation via
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reducing MMP-3 and MMP-9, which was related to p65
phosphorylation of chondrocytes [37].

P65 nuclear translocation

Danshen reduced the expression and activity of MMP-9
and MMP-13, while it promoted the expression of
TIMP-1 and TIMP-2 via inhibiting the nuclear translo-
cation of p65 [108]. Salidroside upregulated the levels of
type II collagen and aggrecan, and downregulated MMP-
13 via suppressing the expression of nuclear p65 in chon-
drocytes of OA rats [109]. Hyperoside ameliorated the
Extracellular matrix (ECM) degradation during the pro-
gression of OA via reducing nuclear translocation of p65
in chondrocytes [110]. Myricetin down-regulated expres-
sion of MMP-13 and ADAMTS-5, which caused carti-
laginous degradation, via inhibiting the expression and
nuclear translocation of p65 in chondrocytes of OA [48].
The expression of MMP-13, MMP-3 and ADAMTS-5
and degradation of collagen-II could be reversed by
myricitrin via reducing nuclear translocation of p65 [49].
Using mice model of destabilization of the medial menis-
cus, Hu et al. found that loganin increased collagen type
IT and decreased MMP-3, MMP-13, and collagen type 10
in cartilage by reducing nuclear translocation of p65 in
chondrocytes during OA development [111]. In addition,
sauchinone (SAU), a compound extracted from saururus
chinensis, was able to protect chondrocytes from hyper-
trophy via down-regulating expression of nuclear p65
[112]. Piceatannol inhibited ECM degradation by inhibit-
ing nuclear p65 in human OA chondrocytes [50]. Ligusti-
lide inhibited the IL-1pB-stimulated expression of MMP-3,
ADAMTS-5 by inhibition of p65 nuclear dislocation in
chondrocytes [53]. In summary, NPs influence anabolism
and catabolism of cartilage, including inhibiting catabolic
genes and increasing anabolic genes mainly via affecting
IxB phosphorylation, IkB degradation, p65 nuclear trans-
location and p65 phosphorylation.

MAPKs

MAPKSs are important upstream signaling pathways in
the cartilage metabolism [113]. The activation of ERK1/2
can induce the synthesis of MMP-3 [114]. Besides, inhi-
bition of p38, p44/42 and Src family alleviated cartilage
degradation by blocking MMP synthesis and activity,
while only p44/42 was essential for aggrecan degrada-
tion [113]. 1. Flavonoids. Wogonin inhibited MMP secre-
tion through activation of Nrf2 via phosphorylation of
ERK1/2 in OA chondrocytes [63]. 2. Quinones. Cryp-
totanshinone inhibited the IL-1B-induced expression
of MMP-3, ADAMTS-5, and MMP-13 in OA chondro-
cytes by suppressing p-ERK, p-JNK, and p-p38 [51]. 3.
Phenols. ISO increased the expression of collagen type II
and decreased the expression of MMP-3, MMP-13 and
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collagen type I in cartilage [65]. This was accomplished
by reducing the expression of p-ERK and p-p38 in chon-
drocytes during the development of OA [65]. Caffeic
acid could prevent IL-1B-induced degradation of colla-
gen II and aggrecan in chondrocytes through suppres-
sion of JNK [66]. 4. Phenylpropanoids. Schisantherin A
suppressed the IL-1B-stimulated expression of MMP-1,
MMP-3, and MMP-13 in chondrocytes affected by osteo-
arthritis by inhibiting p-ERK, p-JNK, and p-p38 [67]. 5.
Terpenoids. During the development of OA, Echino-
cystic Acid reduced the expression of MMP-3 by down-
regulating the expression of p-ERK, p-JNK, and p-p38 in
chondrocytes [68]. In a word, MAPKs pathways not only
regulates inflammation during OA treatment of differ-
ent NPs, but anabolism and catabolism in chondrocyte.
The distinct mechanisms underlying inflammation and
metabolism warrant further examination.

PI3K/AKT

PI3K/AKT pathway is essential for both normal metab-
olism of joint tissues and development of OA [71]. The
activation of AKT promoted synthesis of collagen II in
cartilage anabolism, inhibiting cartilage degradation of
OA [115]. However, in the IL-1B-induced OA model,
selective inhibitor blockade of Akt pathway reduced
expression of MMPs in chondrocytes cartilage collagen
release [116]. Many NPs regulate cartilage anabolism
through inhibiting PISK/AKT pathway. 1. Flavonoids.
Myricetin increased the expression of collagen II and
aggrecan while suppressed the expression of MMP-13
and ADAMTS-5 in chondrocytes stimulated by IL-1(,
via inhibiting the Nrf2/HO-1 signaling pathway stimu-
lated by PISK/AKT [48]. 2. Phenols. Oroxin B reduced
the expression of MMP-3 and MMP-13 by downregulat-
ing the production of p-PI3K and p-AKT in chondrocytes
[75]. Daurisoline, an isoquinoline alkaloid, alleviated the
HO-induced high expression of MMP-3 and MMP-13
and degradation of type II collagen [117]. Urolithin A
downregulated the production of p-PI3K and p-AKT in
chondrocytes and reduced the expression of ADAMTS-5
and MMP-13 [76]. Mulberroside A, a natural bioactive
with anolide, affected anabolic and catabolic-related pro-
teins like aggrecan and MMP-13 by inhibition of PI3K-
AKT-mTOR pathway in OA mice model [118]. Leonurine
suppressed IL-1B-stimulated expression of ADAMTS-5
and MMP-13 in OA chondrocytes through inhibiting
of p-PI3K and p-AKT [77]. 3. Terpenoids. Artemisinin
inhibited the expression of MMP-3, MMP-13, and
ADAMTS-5 in cartilage by suppressing the PI3K/AKT/
mTOR signaling pathway to reduce cartilage degradation
[78]. Since simply activation or inhibition of PI3K/AKT/
mTOR signaling maybe a double-edged sword during the
treatment of OA [71], more studies are needed to explore
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the detailed bioeffects and mechanisms of NPs on PI3K-
AKT pathway to protect against OA.

SIRT1

SIRT1 activity is beneficial to extracellular matrix expres-
sion during and cartilage development by using human
embryonic stem cells, which was related to ARID5B-
SIRT1 interaction [119]. In addition, overexpression of
SIRT1 in IL-1B-stimulated chondrocytes has been indi-
cated to inhibit the upregulation of MMP-1, MMP-2,
MMP-9, MMP-13, and ADAMTS-5 through the NF-xB
pathway [120]. SIRT1 is also a major deacetylase respon-
sible for SOX9 deacetylation in human chondrocytes
[121]. SIRT1 activator SRT1720 increased collagen type
IT alpha 1 and aggrecan in cartilage, attenuating develop-
ment of OA [85]. Limited studies reported that SIRT1
can be regulated by NPs during treatment of OA. 1.
Terpenoids. Bilobalide, extracted from Gingko biloba,
promoted extracellular matrix synthesis and inhibited
proteolytic enzyme activities through activation of the

Fas
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AMPK-SIRT1 pathway [122]. 2. Phenols. Procyanidins,
a grape seed extract belonging to phenols, attenuated
apoptosis and senescence of chondrocytes by inhibition
of dipeptidase-4, which depended on activation of SIRT1
[123]. 3. Flavonoids. Quercetin attenuated pro-catabolic
responses in rats’ knee chondrocyte, including down-reg-
ulation of MMP-3 and MMP-13 expression [124]. Fisetin
inhibited degradation of SOX9, aggrecan and collagen-II
in IL-1B-stimulated chondrocytes by increasing protein
and activation of SIRT1 [88]. More relevant studies are
needed to explore the underlying mechanisms.

NPs regulate cell death in OA

Cell death is a pivotal physiological phenomenon in living
organisms [125], whose types include apoptosis, pyrop-
tosis, and ferroptosis [126—128]. During the progress
of OA, chondrocyte degeneration is closely linked with
pyroptosis and apoptosis [129, 130]. Apoptosis is the most
common type of chondrocyte death in studies of NPs for
OA treatment (Fig. 4). Apoptosis involves external and
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Fig. 4 Apoptosis-related signaling pathways in chondrocyte influenced by NPs. NPs mainly affect apoptosis through intrinsic rather than extrinsic
pathway, including up-regulation of anti-apoptotic proteins and down-regulation of pro-apoptotic proteins. NPs can reduce the production
pro-apoptosis-related genes such as cleaved-caspase via inhibiting IL-1B3-induced phosphorylation of kB and nuclear translocation of p65

in chondrocyte. In addition, NPs enhance autophagy and further protect chondrocytes from IL-1B3-induced apoptosis in IL-1(3-treated chondrocytes
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internal pathways, including the TNF and fas ligand medi-
ated external pathway, the Bcl-2 and Bax mediated inter-
nal mitochondrial pathway, and the Bcl-2 and caspase-8
mediated endoplasmic reticulum stress pathway [131].
Reducing chondrocyte apoptosis could prevent articular
cartilage from destruction [132]. Inhibition of the NLRP3/
caspase-1 pathway has been shown to suppress apop-
tosis of chondrocyte in knee OA [133], while activation
of the NF-«B signaling pathway can suppress chondro-
cyte apoptosis in OA [134]. Previous studies showed the
anti-apoptotic properties of several NPs on chondrocytes
in OA. (1) Phenols. Paeonol attenuated apoptosis in OA
chondrocytes [135]. Wogonin protected against apoptosis
in IL-1B-induced human OA chondrocytes by suppress-
ing ROS production [63]. Curcumin promoted chondro-
cyte autophagy by upregulating Beclin-1 and ATG5 gene
expression and inhibited chondrocyte apoptosis via inhi-
bition of p65 activation [44]. (2) Terpenoids. Ginsenoside
Ro could inhibit chondrocyte apoptosis by promoting the
expression of Bcl-XL and PCNA, inhibiting the expres-
sion of Bad and Bax, and reducing caspase-3 activity [42].
Tanshinone I inhibited apoptosis in CHON-001 cells
within an IL-1B-induced cellular model [136]. Genistein
alleviated apoptosis stimulated by IL-1p by inhibiting the
production of caspase 3 in IL-1p-treated OA chondro-
cytes [137]. Morroniside inhibited pyroptosis and apopto-
sis of chondrocyte by inhibiting NF-«B signaling pathway
[100]. (3) Steroids. p-Ecdysterone inhibited apoptosis in
IL-1B-treated chondrocytes by modulating the expression
of apoptotic markers, including anti-apoptotic protein
Bcl-XL and pro-apoptotic protein Bax [37]. (4) Mixture.
Danshen, a member of the Lamiaceae family, alleviated
cartilage degeneration via increasing the expression of
Bcl-2 and reducing the expression of Bax [108]. Achyran-
thes bidentata saponins suppressed chondrocyte apop-
tosis through promoting anti-apoptotic protein Bcl-xL
and suppressing caspase-3 activation, as well as inhibit-
ing the Bad and Bax expression [38]. These compounds
exert their effects by modulating the production of apop-
totic and anti-apoptotic proteins, inhibiting activity of
caspases, and suppressing ROS production. Considering
that other types of cell death like ferroptosis and copper
death have been well studied recently, it is imperative to
concentrate on the role of NPs in those cell death during
the treatment of OA.

The therapeutic effect of NPs in OA animal models

The therapeutic effect of NPs on OA has been investi-
gated in lots of animal models, such as rats, mice, and
rabbits, using surgical or drug-induced approaches. Sur-
gically induced animal models include destabilization of
the medial meniscus (DMM), anterior cruciate ligament
transection combined with medial menisci resection
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(ACLT + MMx), and ACLT. Additionally, a drug-induced
animal model is achieved through intra-articular injec-
tion of mono-iodoacetate (MIA). These models could
uncover the pathological changes and underlying mecha-
nisms of NPs’ effect on OA treatment (Table 1), including
but not limited to cartilage matrix degradation, osteo-
phyte formation, and cartilage calcification.

Rat OA models

DMM:-induced rat OA model

DMM, a commonly utilized model for OA, simulates key
aspects of the disease including cartilage loss, osteophyte
formation, subchondral hardening, and synovial inflam-
mation. These NPs were administered to OA animals by
oral administration, gavage, intraperitoneal injection, and
intra-articular injection. (1) Intraperitoneal injection.
In a rat DMM model, injection of a-Mangostin (10 mg/
kg, once every 2 days), extracted from mangosteen,
increased articular cartilage thickness and prevented the
chondrocytes reduction and cartilage matrix degradation
[46]. Quercetin, a widely found flavones in vegetables
and fruits, had demonstrated protective effects cartilage
degeneration in rat OA models [138]. (2) Oral adminis-
tration. Oral administration of Anthriscus sylvestris leaf
extract inhibited not only cartilage superficial destruction
and cartilage erosion, but also proteoglycan depletion
in a rat DMM model [104]. (3) Intra-articular injection.
Baicalein (1 mg/week), another flavonoid derived from
Scutellaria baicalensis Georgi, demonstrated beneficial
effects in a rat OA model via inhibiting pre-osteoblast
differentiation, proliferation, synovial cell proliferation,
and the expression of osteogenic and increasing apop-
totic markers of pre-osteoblasts [139]. In DMM rats,
injection of curcumin monoglucuronide alleviated syn-
ovial inflammation and protected cartilage integrity
[140]. (4) Gavage. Morusin (40 mg/kg, once every two
days), a prenylated flavonoid from Morus australis root
bark, inhibited cartilage erosion and destruction in a rat
OA model [141]. Overall, using DMM-induced rat OA
models, these findings from different studies confirmed
the potential of NPs such as a-Mangostin, Anthriscus
sylvestris extract, curcumin monoglucuronide, querce-
tin, morusin, and baicalein in attenuating OA-associated
pathological changes.

ACLT-induced rat OA model

ACLT is another common method used in the studies
of OA progression. (1) Intraperitoneal injection. Injec-
tion of quercetin alleviated OA progress by decreasing
the production of inflammatory markers, such as IL-1f,
IL-18, and TNF-q, as well as reduction of IRAK1, NLRP3,
and caspase-3 expression [90]. (2) Oral administration.
In a rat OA model, oral administration of salidroside
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(12.5 mg/kg or 25 mg/kg once a day), a bioactive com-
ponent isolated from Rhodiola rosea, also exhibited ben-
eficial effects by modulating immune response, including
upregulating CD4+ IL-10+ cells and inhibiting NF-xB
activation [109]. (3) Intra-articular injection. In an
ACLT-stimulated rat OA model, the injection of Ginse-
noside Rb1, Chinese herb Panax ginseng extract, exhib-
ited chondroprotective properties by inhibiting MMP-13
expression through inhibiting of the Notch signaling
pathway [142]. Emodin is a natural anthraquinone that
shown to inhibit cartilage erosion and chondrocyte loss
in an ACLT-stimulated OA model [103]. In an ACLT and
MMx induced, rat OA model, the injection of chemi-
cally modified curcumin (20 uM or 40 puM, once a week)
alleviated synovial inflammation, increased articular
cartilage thickness, and inhibited chondrocyte apopto-
sis by suppressing the expressions of MMP-3, cleaved
caspase-3, VEGF, RUNX2, and HIF-2a, promoted col-
lagen generation, and inhibiting NF-KB pathway [105].
Asiatic acid, a pentacyclic triterpene existed in Centella
asiatica, reduced chondrocyte hypertrophy and fibrosis
through promoting AMPK phosphorylation and inhib-
iting PI3K and AKT phosphorylation in a rat OA model
[143]. Glycyrrhizin, a major constituent of licoriceduced
joint edema and regulated the gene expression of carti-
lage degradation-related biomarkers which were related
to TLR4/NF-kB and HMGBI signaling pathway [43]. (4)
Gavage. Ginseng, a widely used herbal medicine, con-
tains ginsenoside Rgl as one of its main active compo-
nents. Ginsenoside Rgl could alleviate cartilage erosion,
joint surface wear, and reduced expression of MMP-13
in a rat OA model [144]. It inhibited the expression of
related inflammatory mediators, such as PGE2 and COX-
2, while promoting the production of type II collagen and
aggrecan [144]. Panax quinquefolium saponin, the major
active compound of Radix panacis quinquefolii, demon-
strated protective effects in a rat OA model by reducing
the levels of CHOP and caspase-3, markers associated
with chondrocyte apoptosis, and inhibiting the process
of articular cartilage morphology and structure destruc-
tion [30]. Moracin, a kind of flavonoid compound which
extracted from Cortex Mori, was found to have benefi-
cial effects in an ACLT rat OA model. Administration
of moracin promoted the expression of collagen II and
Nrf2, alleviated superficial cartilage damage, extracellu-
lar matrix loss, and cartilage erosion [45]. In summary,
using ACTL-induced rat OA models, these findings have
confirmed the potential of various NPs in alleviation of
OA progression. Ginsenosides, including GRb1 and Rgl,
showed protective effects by modulating protein expres-
sions, promoting collagen expression, and inhibiting
inflammatory mediators. Emodin, Panax quinquefolium
saponin, curcumin, and chemically modified curcumin
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exhibited cartilage-protective properties through apop-
tosis inhibition, collagen promotion, and inflammation
regulation. Asiatic acid, salidroside, moracin, glycyr-
rhizin, and quercetin demonstrated beneficial effects by
modulating chondrocyte activities, reducing cartilage
damage, and regulating inflammatory responses. These
findings provide valuable insights into potential thera-
peutic strategies for OA management.

Mouse OA models

DMM model is commonly employed in mice to establish
OA model by disrupting joint stability. NPs were admin-
istered to DMM-induced OA mice by intraperitoneal
injection, oral administration, intra-articular injection,
and gavage. (1) Intraperitoneal injection. Xu et al. dis-
covered that injection of danshensu inhibited cartilage
surface destruction, erosion, and chondrocyte loss in
DMM-induced OA mice [39]. Salvianolic acid B (25 mg/
kg, once every 2 days), a kind of water-soluble polyphe-
nolic acid, exhibited a slowing effect on cartilage matrix
and articular cartilage destruction in DMM-induced mice
[40]. Polydatin (100 mg/kg, once a day), a kind of natural
resveratrol glucoside which derived from Polygonum cus-
pidatum, alleviated synovitis and protected cartilage in a
DMM-induced mice OA model [35]. Sinomenine, a mon-
omeric component purified from Sinomenium acutum,
could inhibit articular cartilage thinning and cartilage
matrix degradation in a DMM mice model [27]. Peimi-
nine, a native compound derived from Fritillaria thun-
bergii, alleviated synovitis and delayed OA progression
by activating Nrf2 nuclear translocation [52]. Hypero-
side, a bioactive flavonoid glycoside found in epimedium,
hypericum, and perforatum, decreased proteoglycan loss
and inhibited superficial cartilage destruction and ero-
sion in DMM mice [110]. (2) Oral administration. Cur-
cumin demonstrated its ability to alleviate synovitis and
cartilage damage in a mouse OA model via inhibiting the
production of MMP-13, ADAMTS-5, adiponectin, adi-
pokines adipsin, and leptin in the infrapatellar fat pad
[145]. Wang et al. confirmed that oral curcumin could
promote chondrocyte proliferation and suppressing the
activation of the NF-kB/HIF-2a pathway in a mice OA
model [146]. (3) Intra-articular injection. In a DMM mice
model, Loganin injection inhibited hypocellularity, carti-
lage superficial destruction, proteoglycan loss, decreased
calcified cartilage partially through reducing p-IkB pro-
tein level of cartilage [111]. (4) Gavage. Piceatannol, a
hydroxystilbene found in various foods, displayed pro-
tective effects on articular cartilage by inhibiting carti-
lage calcification, cartilage surface destruction, synovial
inflammation, and osteophyte generation a mouse OA
model [50]. Aucubin, a naturally occurring product
found in lots of plants, exhibited protective effects in a
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mouse OA model by reducing proteoglycan loss, carti-
lage fibrillation, erosion, and chondrocyte disordering
and hypertrophy [147]. Myricetin, a naturally occurring
flavanol derived from vegetables and fruits, protected
cartilage ECM and prevented cartilage damage by the
PI3K/Akt-mediated Nrf2/HO-1 signaling pathway
DMM-induced mice [48]. Using DMM-induced mice OA
model, Sinapic acid exhibited protective effects through
suppressing proteoglycan loss, erosion, hypocellularity
and cartilage destruction [26]. Morroniside, an iridoid
glycoside, exhibited effects of anti-inflammatory and car-
tilage protection by reducing the COX-2, MMP-3, and
MMP-13 expression in a mouse OA model [148]. In sum-
mary, several NPs exhibited promising anti-OA effects in
DMM-induced mice, including the reduction of synovitis
and improvement of cartilage mass by regulating several
signaling pathways.

Other OA models

DMM and ACLT-induced rats and mice OA models are
common animal methods in the studies of NPs for OA
treatment. In addition, there were other OA animal mod-
els that have been used in these fields. Oral administra-
tion of astilbin (3 mg/kg, once a day) in a papain-induced
OA rat model inhibited cartilage destruction and pro-
teoglycan loss, promoted cell number and cartilage layer
thickness by PI3K/AKT pathway [74]. In a MIA induced
rat OA model, oral administration of Fuzi demonstrated
positive effects on prevention of joint injury, and inhi-
bition of bone density decline [149]. In a rat OA model
induced by modified hulth technique, Ping et al. had
confirmed that oral administration of Eucommia ulmo-
ides Oliv. Bark (EU) aqueous extract inhibited joint
degeneration and mitigated articular cartilage destruc-
tion via suppressing MMP-3 secretion and downregulat-
ing expression of p-AKT in chondrocytes [150]. Besides
rats and mice, rabbits are another alternative to mimic
OA progression. Chen et al. found that injection of chlo-
rogenic acid (20 pM, once a week) could protect rabbit
articular cartilage from degradation by down-regulating
of MMP-1, MMP-3, and MMP-13 and up-regulating
TIMP-1 expression in an ACLT-induced rabbit OA
model [102]. In a rabbit OA model induced by ACLT,
oral administration of pomegranate fruit extract effec-
tively reduced cartilage destruction [151]. In addition, it
promoted the gene expression of COL2A1 and ACAN
partially through inhibiting apoptosis-related markers,
such as PARP P85 and caspase-3 [151]. Using rabbits OA
model, the authors found that pomegranate extract are
helpful in preserving cartilage health of OA by distinct
signaling pathways. More large animal models, such as
goat, pig, and monkey, are needed to explore the bioef-
fects and mechanisms of NPs in the treatment of OA. It is

Page 17 of 28

known from the above studies that there are many types
of NPs with different ways of administration, so finding
a way to assess the optimal dosage of the specific NPs is
necessity for safety and tolerability of NPs in OA patients.

Clinical trials of NPs for OA patients

Numerous clinical trials have been conducted to inves-
tigate the clinical effects of various natural drugs in the
treatment of OA (Table 2). These trials have primarily
focused on patients with knee OA, but also encompassed
individuals with hip and hand OA.

Curcumin in OA clinical trials

Notably, curcumin has been the subject of numerous
clinical trials exploring its potential in OA treatment.
Curcumin is a component of the traditional medicine
Curcuma longa [152]. Curcumin had protective effects on
various diseases, including cancer, diabetes and inflam-
matory diseases [153, 154]. Notably, several studies have
reported the positive efficacy of curcumin in the treat-
ment of knee OA. Srivastava et al. found that oral cur-
cumin improved knee pain, stiffness, and function, while
reduced levels of inflammatory markers and biomark-
ers of oxidative stress in blood, such as IL-1p and ROS
and malondialdehyde [155]. Panahi et al. demonstrated
that oral curcuminoid significantly alleviated visual ana-
logue scale (VAS) score and improved function of knee,
but did not improve joint stiffness of OA patients [156].
Similarly, Onakpoya et al. conducted experiments on
797 patients with knee OA and found that curcuminoids
significantly reduced VAS score and improved quality of
life in OA patients [157]. In a prospective, randomized,
double-blind, multicenter trial, Henrotin et al. found that
curcuma longa extract reduced knee OA pain and down-
regulated the biomarker of cartilage degradation, serum
sColl2-1 [158]. Madhu et al. conducted a clinical trial in
120 patients with knee OA and found that oral admin-
istration of curcuma longa extract relieved pain and
improved knee function for patients with primary painful
knee OA [159]. Wang et al. conducted a clinical trial and
found that curcuma longa extract reduced pain in knee
OA patients and but did not affect cartilage composi-
tion and effusion—synovitis in knee [160]. Furthermore,
a meta-analysis confirmed that the oral administration
of curcuma longa extract significantly reduced knee pain
and improves joint function of OA patients [161]. Collec-
tively, these studies suggest the potential of curcumin and
its derivatives in alleviating symptoms and function of
knee OA patients, especially for pain relief. More multi-
center trials are needed to confirm those clinical benefits
of curcumin for OA patients.
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Other NPs in OA clinical trials

In addition to curcumin, the potential therapeutic effects
of other NPs have been investigated in clinical trials
for OA patients. For instance, in a placebo-controlled,
double blind, dose-escalating trial, chicory, a peren-
nial herb in the Asteraceae family, reduced at least 20%
improvement in stiffness and pain of OA patients [162].
In an open-label study for knee OA, green-lipped mus-
sel (GLM) extract (3,000 mg/day) significant reduced
Western Ontario and McMaster Universities Osteoar-
thritis Index (WOMAC) score and the Lequesne algo-
functional index, showing improvement in knee pain,
stiffness and mobility [163]. In this clinical trial, adverse
reactions were mainly gastrointestinal symptoms, includ-
ing reflux in 1 case, abdominal pain, and diarrhea in 1
case, and gout in 2 cases [163]. In addition, Sphaeralcea
angustifolia reduced pain, inflammation, and stiffness
of hand joints of 130 patients with OA, and none of the
patients experienced adverse reactions [164]. Short-
term or long-term oral administration of cucumis sati-
vus extract effectively reduced the WOMAC and VAS
scores in a randomized controlled trial and no adverse
reactions were reported [165]. Hydroxytyrosol, which
is mainly found in olive leaves, was evaluated by Takeda
et al. in a double-blind clinical trial for the treatment of
knee OA and the results showed that oral administration
of hydroxytyrosol relieved Japanese Orthopedic Associa-
tion score (pain measurement index) [166]. In a 12-week
randomized, double-blind, placebo-controlled clinical
study, GCWB106 (600 mg/day), a formulated extract
from Chrysanthemum zawadskii var. latilobum, signifi-
cant alleviated WOMAC and VAS scores of OA patients
and no adverse reactions were reported [167]. Shin et al.
found that oral administration of deer bone extract at a
daily dose of 550 mg for 12 weeks reduced knee pain and
stiffness and improved joint function in mild to moder-
ate OA [168]. A 12 weeks’ study was conducted on OA
patients, which revealed that the oral consumption of
Artemisia annua extract notably relieved WOMAC pain
[169]. In this study, the most common adverse event was
gastrointestinal reflux [169]. However, there are some
negative results in the effects of specific NPs on OA
symptoms. Oral BioLex®-GLM extract, derived from
Perna canaliculus, did not provide relief for hip and knee
pain but reduced paracetamol intake compared to the
placebo group [170]. Adverse events occurred in 1 patient
with abdominal pain in the treatment group in this trail
[170]. Besides, in a randomized controlled trial, oral col-
chicine reduced inflammation and high bone-turnover
biomarkers but did not relieve knee OA symptoms like
WOMAC score [171]. However, mild diarrhea adverse
events occurred in both the treatment group and the
placebo group [171]. Green tea extract was investigated
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in a clinical trial, indicating its clinical effects of improv-
ing knee pain and joint function, but did not significantly
improve stiffness symptoms [172]. No adverse events
were observed in the green tea group [172]. Preliminary
clinical studies have indicated the efficacy of these NPs
in relieving OA symptoms with limited side effects, sug-
gesting NPs’ potential as important for OA treatment in
the future. Further optimization and exploration of NPs
in clinical trials are warranted to enhance their clinical
applications for early intervention and management of
OA.

Conclusion and outlook

Overall, specific NPs ameliorate the progression of OA
via inhibiting inflammation, modulating anabolic and
catabolic processes, and preventing cell death. Mechanis-
tically, NPs inhibited inflammation mainly by suppress-
ing the expression and phosphorylation of IkB and p65,
increasing p-IkB degradation, promoting p65 nuclear
translocation, phosphorylation of MAPKs, PI3K, AKT
and mTOR, and increasing SIRT1 activation during the
treatment of OA. In addition, NPs could promote the
anabolism and suppress the catabolism of chondrocyte in
OA treatment mainly by inhibiting NF-kB, MAPKs and
PI3K-AKT pathways, and activation of SIRT1. Moreo-
ver, NPs reduced chondrocyte apoptosis by inhibiting
the expression of apoptotic proteins like Bax and Bad,
and increasing anti-apoptotic proteins like Bcl-XL and
Bcl2. Using several routes of NPs’ administration in dif-
ferent OA animal models, such as intraperitoneal injec-
tion, oral administration, intra-articular injection and
gavage, many studies have uncovered the bioeffects and
mechanisms of NPs on the OA. In the clinical trials of
OA patients, NPs have been exhibited the ability to alle-
viate clinical symptoms, such as pain and joint stiffness,
and improve joint function in OA progression.

Currently, several first-line drugs are recommended in
the treatment of OA, such as nonsteroidal anti-inflam-
matory drugs (NSAIDs), steroids, central analgesics, and
chondroitin [173]. Compared with those pharmacologic
approaches, NPs have several advantages. Long-term use
of NSAIDs or steroids increases the risk of gastrointes-
tinal disorders and cardiovascular complications other
diseases [174], while there were limited side effects of
NPs reported in the clinical trials of OA treatment. NPs
have less drug tolerance and dependence, which has the
possibility of replacing central analgesics. Yu et al. found
that huperzine A alleviated neuropathic pain via inhibi-
tion on acetylcholinesterase and NMDA receptors [175].
Compared with glucosamine-chondroitin, lower doses
of the NPs had better effects in the treatment of osteoar-
thritis, including relief of knee pain, stiffness, and physi-
cal functions related to OA [165]. In addition, NPs have
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more abundant sources and multiple components with
multiple targets. Nonetheless, there are some disadvan-
tages of NPs for OA treatment. For example, most NPs
have complex chemical composition and low bioavaila-
bility. Besides, the application of NPs is controversial due
to their unclear mechanisms of bioeffects on different tis-
sue or cells. Thus, more clinical and fundamental studies
are needed to verify therapeutic effect and mechanisms
of NPs on OA treatment.

More advanced biomedical technology and methods
are powerful tools in studies of NPs for OA patients.
For example, artificial intelligence or machine learning
could be used to efficiently screening of potential NP
drugs with optimal therapeutic effects and dose—effect
relationship of these drugs [176, 177]. Single-cell genom-
ics could be a powerful tool to explore the pathological
changes of OA after NPs’ treatment [178]. Besides, ani-
mals with genetically engineered change also can be used
to explore the potential NPs’ targets and detailed mecha-
nisms of NPs’ treatment. Wan et al. found that HHQ16,
a novel small molecule derived from astragaloside IV,
could improve cardiac function and Inc9456 was bona
fide target of HHQI16 via transgenic mice [179]. Using

A
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cryo-electron microscopy (cryo-EM), Liao et al. recently
uncovered high-resolution cryo-EM structure the can-
nabinoid receptor 1-arrestin complex, facilitating poten-
tial drug design targeting cannabinoid receptor 1 [180].
The utilization of NPs exhibits significant promise in the
clinical management of OA. More underlying bioeffects
and mechanisms of NPs on OA are needed to be explored
via advanced technology and methods.

Furthermore, there are various strategies that can be
applied to improve and optimize bioavailability of NPs
in OA treatment (Fig. 5). Extracellular vesicles consist
of membrane-bound structures, including three cat-
egories: exosomes, microvesicles, and apoptotic bod-
ies [181]. Recently, it has been found that extracellular
vesicles, especially exosomes, are good choices as drug
carriers. Exosomes, which are extracellular vesicles
enclosed by a membrane and released through various
cells, play crucial roles in intercellular communication,
both in physiological and pathological contexts. Due to
their low immunogenicity and high stability, exosomes
hold significant potential as oral drug delivery vec-
tors [182]. Similarly, exosomes derived from curcumin-
treated MSCs have demonstrated the ability to suppress

B
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Fig. 5 Potential new application strategies of NPs for the OA treatment. A Exosomes derived from MSCs treated with NPs hold significant potential
for the treatment of OA. B Exosomes, membrane-bound vesicles secreted by various cells, serve as extracellular vehicles. Utilizing exosomes

as delivery vectors for NPs or exosome-loading method harnesses the potential of exosomes to transport NPs and presents a potentially viable
therapeutic model for the management of OA. C Structural modification of NPs enables the development of novel drugs with enhanced efficacy.
During the treatment of OA, the therapeutic potential of NPs can be improved through structural modifications. D Hybrid nanospheres possess
outstanding pH/thermal sensitivity, superior drug release profiles, and excellent biocompatibility. NPs based on nanomaterials hold great promise

for enhancing efficacy for OA treatment
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chondrocyte apoptosis and ameliorate the severity of OA
[183]. Exosomes derived from mesenchymal stem cells of
the infrapatellar fat pad have shown the ability to protect
chondrocytes in mice with OA and mitigate the progres-
sion of OA [184]. Further exploration of the therapeu-
tic efficacy of exosomes derived from specific stem cells
treated with NPs is warranted. In addition, the synergistic
bioeffects and mechanisms between extracellular vesicles
and NPs on OA are needed. What’s more, the loading of
NPs by exosomes can promote the efficient enrichment
of NPs in local tissues, and it is also expected to achieve
cell-specific targeted delivery, which needs further atten-
tion in future study.

Structural modification of NPs is another impor-
tant strategy to improve their therapeutic properties,
especially for novel drug discovery [185]. Chemically
modified curcumin has the potential to improve drug
bioavailability and exhibit enhanced therapeutic effi-
cacy for OA [105]. Arctigenin (ARG), a lignan-class
compound derived from Arctium lappa L., has limited
solubility and bioavailability [186]. Cai et al. synthesized
ARG amino acid derivatives with improved solubility and
nitrite clearance, exhibiting higher tumor inhibition rates
than original ARG [187]. Structural modification of NPs
holds promise not only for OA but also for other diseases
such as tumors and immune system disorders. Modified
NPs have the potential to reduce side effects and improve
therapeutic efficacy.

Biomaterials also have potential advantages in improv-
ing the therapeutic effectiveness of NPs. Biomimetic
injectable hydrogel microspheres have emerged as a
highly promising drug delivery system for the effective
treatment of OA. These microspheres can effectively
encapsulate diclofenac sodium, enhancing lubrication
and enabling sustained drug release [188]. Ji et al. devel-
oped an innovative drug delivery system by employing
porous chitosan microspheres and hydroxypropyl chi-
tine hydrogels, which can not only regulate macrophage
polarization but also promote chondrocyte regeneration
[189]. By achieving sustained drug release, this system
has the potential to reduce the frequency of drug admin-
istration, resulting in a better treatment experience for
patients. In addition to synthetic carriers, human cells
such as red blood cells (RBCs), neutrophils, and lym-
phocytes have shown potential as drug carriers. These
cells offer advantages such as enhanced therapeutic
efficacy and targeted delivery, making them a promis-
ing approach for drug delivery [190]. RBCs, with their
biconcave shape and non-nuclear structure, have the
capacity to carry a larger payload of drugs while reduc-
ing toxic side effects [191]. Bonnie Huang et al. utilized
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autologous lymphocytes as carriers to target nanopar-
ticles to lymphatic tissue sites in the treatment of lym-
phoma, thereby enhancing therapeutic efficacy without
increasing adverse side effects [192]. Theoretically, NPs
can serve as carriers for human cells, allowing for pre-
cise delivery to specific tissues such as articular cartilage
and synovial membrane. Moreover, hybrid nanospheres
exhibit favorable pH and thermal sensitivity, exceptional
drug release profiles, and biocompatibility, making them
highly promising for applications in anticancer therapy
[193]. Their ability to sense temperature and pH opens
up new possibilities for the management of OA and other
ailments, representing a valuable research direction. By
incorporating temperature and pH-sensitive compo-
nents, drug delivery systems can respond to variations in
inflammatory markers including IL-6, PGE2, and IL-1,
leading to improved therapeutic outcomes for OA. NPs
combine with these new biomaterials and carriers hold
promise for achieving improved therapeutic effects with
fewer side effects, higher stability and faster responsive-
ness, not only in the treatment of OA but also other
diseases.

Physical therapy, including exercise, ultrasound, and
electrotherapy, is a first-line clinical treatment for OA.
Lubrano et al. reviewed the synergistic effect of rehabili-
tation therapy combined with TNFa inhibitor therapy
on ankylosing spondylitis, showing that the combination
was more effective than TNFa inhibitors alone [194]. In
a blinded, prospective, randomized, controlled study by
Saccomanno et al., the effectiveness of intra-articular
hyaluronic acid injections and individualized rehabili-
tation programs for knee OA, the combined treatment
showed the greatest pain relief [195]. Combining NPs
with physical therapy holds the potential for unexpected
therapeutic benefits and fewer side effects, and further
investigation is required to understand and evaluate their
synergistic effects.

In brief, NPs is a potentially effective conservative
strategy for OA patients. The therapeutic efficacy of
different types of NPs has been confirmed in OA treat-
ment. More advanced technology and methods, includ-
ing but not limited to artificial intelligence, single-cell
genomics, transgenic animals, cryo-EM, etc. could be
used in the study of this field. In addition, structural
modification of NPs, loading of NPs by exosomes, and
combination of NPs with new biomaterials are potential
strategies for the future study. Moreover, further studies
should focus on the precise bioeffects, underlying mech-
anisms, dose—effect relationship, safety and tolerability
of clinical usage for NPs to maximize NPs’ benefits for
OA patients.
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