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Formononetin alleviates acute pancreatitis  wa

by reducing oxidative stress and modulating
intestinal barrier

Jun Yang'?, Xiaowei Sha', DiWu', Bo Wu', Xiaohua Pan?, Li-Long Pan', Yuanlong Gu'?" and Xiaoliang Dong'”

Abstract

Background Acute pancreatitis (AP) is a recurrent inflammatory disease. Studies have shown that intestinal homeo-
stasis is essential for the treatment of AP. Formononetin is a plant-derived isoflavone with antioxidant properties that
can effectively treat a variety of inflammatory diseases. This study aims to investigate the role of formononetin in
protecting against AP and underlying mechanism.

Methods Caerulein was used to induce AP. The inflammatory cytokines were detected using Quantitative real-time
PCR and commercial kits. Histological examination was applied with hematoxylin and eosin staining. Western blot
was conducted to detect expression of intestinal barrier protein and signaling molecular. Molecular docking was
performed to assess protein-ligand interaction.

Results In this study, we found formononetin administration significantly reduced pancreatic edema, the activities
of serum amylase, lipase, myeloperoxidase, and serum endotoxin. The mRNA levels of inflammatory cytokines such as
tumor necrosis factor a, monocyte chemoattractant protein-1, interleukin-6, and interleukin-1 beta (IL-1(3) in pancreas
were also significantly decreased by formononetin. The following data showed formononetin pretreatment up-regu-
lated the expressions of tight junction proteins in the colon, and decreased Escherichia coli translocation in the pan-
creas. In addition, formononetin inhibited the activation of nucleotide-binding oligomerization domain leucine-rich
repeat and pyrin domain-containing 3 in pancreatic and colonic tissues of AP mice. Moreover, formononetin activated
Kelch Like ECH Associated Protein 1 (Keap1) / Nuclear factor erythroid2-related factor 2 (Nrf2) signaling pathway to
reduce reactive oxygen species (ROS) levels. Docking results showed that formononetin interact with Keap1 through
hydrogen bond.

Conclusions These findings demonstrate that formononetin administration significantly mitigate AP through reduc-
ing oxidative stress and restoring intestinal homeostasis, and provide insights into the new treatment for AP.
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Introduction

Acute pancreatitis (AP) is a recurrent inflammatory dis-
ease with a high incidence, characterized by a sudden
onset and rapid disease progression [1, 2]. It has been
reported that approximately 20% of patients develop
moderate or severe AP with pancreatic or peripancreatic
tissue necrosis or organ failure, or both, with a mortality
rate of 20-40% [3, 4]. However, the treatment of pancrea-
titis is still an unsolved problem. It is particularly urgent
to explore a new strategy to suppress the AP inflamma-
tory response.

During AP, the massive release of inflammatory factors
such as tumor necrosis factor a (TNF-a) cause intestinal
mucosa damage, and these factors can further promote
the activation of inflammatory mitogen-activated protein
kinase (MAPK) and nucleotide-binding oligomerization
domain leucine-rich repeat and pyrin domain-contain-
ing 3 (NLRP3) pathways and the release of inflammatory
mediators, leading to more severe intestinal inflamma-
tion [5-7]. In addition, AP induced oxidative stress can
further amplify inflammatory response, and excessive
production of reactive oxygen species (ROS) may also
directly destroy intestinal barrier function [8]. Accom-
panied with intestinal inflammation and oxidative stress,
the intestinal mucosal barrier function is impaired, char-
acterized by downregulating expression of epithelial
tight junction proteins (TJPs), which leads to migration
of bacteria and toxins into blood or pancreas and results
in secondary pancreatic and peripancreatic infection [8,
9]. Therefore, enhancing intestinal barrier function and
inhibiting oxidative stress are promising for the preven-
tion and treatment of AP.

Plenty of edible natural products have the potential to
exert anti-inflammatory and anti-oxidative effects. For-
mononetin is an isoflavone isolated from herbal as well as
edible plants and is considered to have many pharmaco-
logical properties such as anticancer [10], anti-inflamma-
tory [11] and antioxidant properties [12]. Earlier studies
have demonstrated that formononetin had a protective
effect on dextran sulfate-induced acute colitis by inhibit-
ing NLRP3 inflammatory vesicle pathway [13]. Research
shows that formononetin treatment can reshape the gut
microflora, and improve metabolic complications and
systemic inflammation via modulation of the gut bac-
teria in mice. Formononetin can affect certain bacterial
phyla and reshape the gut microbiota, and maintains the
integrity of the intestinal membrane by regulating the
expression of Muc-2 and occluding [14]. All these lead us
to wonder whether formononetin has a protective role in
AP. In this study, we demonstrated the beneficial effects
of formononetin on AP and associated intestinal injury,
and mechanistically formononetin reduces ROS-medi-
ated inflammation response through Kelch Like ECH
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Associated Protein 1 (Keapl)- Nuclear factor erythroid2-
related factor 2 (Nrf2) signaling pathway, ultimately
inhibits intestinal barrier dysfunction and bacterial trans-
location to alleviate AP.

Materials and methods

Animals

Male C57BL/6] mice (seven-week-old) were purchased
from Charles River (Zhejiang, China) in this study.
Mice were bred at the Animal Housing Unit of Jiang-
nan University (Wuxi, Jiangsu, China) under 23-25 C
and 12 h light-dark cycle with unlimited access to food
and water. All mice were allowed to acclimatize to the
laboratory conditions over the course of 1 week prior to
the experiments. Animals were maintained in accord-
ance with the guidelines of the National Institutes of
Health. All experiments and protocols complied with
the ARRIVE guidelines [15], and were approved by the
animal ethics committee of Jiangnan University (JN.
N020200430c0401030[037]).

Induction of AP and pretreatment with formononetin

All mice were adjusted to laboratory conditions over the
course of 1 week prior to the experiments and fasted for
12 h before induction of AP. Mice (20+2 g) were ran-
domly divided into three groups (n>6): control group,
caerulein group and caerulein+formononetin group.
Caerulein was purchased from Jiangsu Ji Tai Peptide
Industry Science and Technology Co., Ltd. Formonon-
etin (Cat. 485-72-3) was purchased from Shanghai Alad-
din Bio-Chem Technology Co., Ltd. The formononetin
is dissolved in 1% dimethyl sulfoxide (DMSO). Remain
heated while the drug is dissolved. To examine the bio-
logical effects of formononetin, mice were treated with
formononetin (25, 50, 100 mg/kg/day) by gavage once a
day for 7 consecutive days before induction of AP. Con-
trol and caerulein groups were given DMSO (1%) by gav-
age every day for 7 consecutive days. The mice received
hourly intraperitoneal injections with normal saline or
saline containing caerulein (50 pg/kg) for 8 h to induce
AP. One hour after the last caerulein injection, mice were
sacrificed by a lethal dose of pentobarbitone. Plasma and
pancreatic tissue samples were harvested for subsequent
assays.

Serum amylase and lipase activity

Harvested blood was centrifuged at 3000 X g for 15 min
after coagulating at room temperature for 25 min. The
serum was then collected and stored at —80 C until anal-
ysis. Serum amylase and lipase activity were determined
by serum amylase assay kit (Jian Cheng Bioengineering
Institute, Nanjing, China) and serum lipase assay kit (Jian
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Cheng Bioengineering Institute, Nanjing, China) accord-
ing to the protocol in the instruction manual.

Determination of pancreatic edema

The edema of the pancreas was quantified by the ratio of
wet weight to dry weight. A portion of freshly harvested
pancreas was defined as wet weight. The weight of the
same sample after desiccation at 60 ‘C for 72 h was served
as dry weight.

Determination of myeloperoxidase (MPO) activity in serum
MPO activity was measured by using MPO assay kit
(A044-1-1, Jian Cheng Bioengineering Institute, Nan-
jing, China) according to the protocol. Briefly, animal tis-
sue samples were prepared into tissue homogenate with
normal saline by weight volume ratio, and supernatant
was taken by centrifugation for determination. Add the
sample and reagents R2 and R3 as per the procedure, and
bathe at 37 °C for 15 min. The above mixture was added
with R4 and color developing agent and bathed at 37°C
for 30 min. Reagent R7 was added into the water bath
at 60 ‘C for 10 min, and colorimetry was carried out at
460 nm wavelength and 1 cm optical diameter.

Determination of lipopolysaccharide (LPS) in serum

An appropriate amount of serum was taken to measure
LPS activity according to the instructions of LPS ELISA
kit (Enzyme-linked Biotechnology, Shanghai, China). The
kit was removed from the refrigerated environment, bal-
anced at room temperature for 20 min, then the sample
and biotin labeled antibody were added and incubated in
a 37 “C water bath for 60 min. Remove the liquid and add
the washing solution for 5 times. Substances were added
and incubated at 37 ‘C for 15 min without light. Finally,
absorbance was measured at 450 nm by a microplate
reader Multiclan GO (Thermos Fisher Scientific Inc,
Vantaa, Finland).

Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from tissues using RNAiso
Plus (TaKaRa, 9109, Japan) following the manufacturer’s
protocol and cDNAs were synthesized by a reverse tran-
scription reagent kit (TaKaRa, RR036A, Japan). Quantita-
tive PCR analysis was performed using the Bio-Rad SYBR
Green Supermix dye and specific primers for the gene in
the Bio-Rad CFX Connect Real-Time System (CA, USA).
The primers used in this study are provided in Additional
file 1: Table S1. B-actin was used as a housekeeping gene.

Histological examination

Freshly harvested pancreatic and colonic samples were
fixed with 4% paraformaldehyde, dehydrated in ethanol,
and then embedded with paraffin. Prepared sections
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were diced 5 pm sections by the Skiving Machine Slicer
(Leica RM2245, Wetzlar, Germany) and then stained with
hematoxylin and eosin (H&E) following the standard
procedure. Morphological changes of pancreas and colon
were examined under a Digital slice scanner (Pannoramic
MIDI, 3DHISTCH, Hungary) at 200 X magnification
(Additional file 2: Fig S1) The pancreatic pathological
scoring analysis was performed according to the severity
and extent of edema, necrosis, hemorrhage and inflam-
mation as described by Schmidt [16].

Co-immunoprecipitation and immunoblot analysis
Pancreatic and colonic tissues were homogenized in RIPA
buffer (Thermo Fisher Scientific, MA, USA) with protease
and phosphatase inhibitor cocktails (Sigma-Aldrich, MO,
USA). Protein concentrations were determined by using
a BCA protein assay kit (Beyotime, Shanghai, China). For
Co-immunoprecipitation, proteins were immunoprecipi-
tated with anti-keap1 antibody (10503-2-AP, Proteintech,
Wuhan, China). The precleared protein A/G magnetic
beads (HY-K0202, MedChemExpress, Shanghai, China)
were incubated with immunocomplexes and washed with
the lysis buffer. Protein samples after sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
were transferred on the nitrocellulose membrane (Milli-
pore, MA, USA). The membranes were blocked with 5%
w/v nonfat dry milk in TBS-T for 1 h at room tempera-
ture. In order to probe proteins with different molecular
weights, the membranes were horizontally cut according
to the markers and further incubated with appropriately
diluted primary antibodies overnight at 4 °C and probed
with secondary peroxidase-labeled antibody for 1 h at
room temperature. Antibodies for Nrf2 (12,721 S), apop-
tosis-associated speck-like protein containing CARD
(ASC) (67,824 S), Occludin (2847T) were purchased from
Cell Signaling Technology (MA, USA). Cleaved-IL-1p
(sc-23,460), Caspase-1-p20 (sc-398,715) were purchased
from Santa Cruz Biotechnology (CA, USA). Antibodies
for Keapl (A1820), Heme oxygenase-1 (HO-1) (A19062)
were purchased from ABclonal Technology Co., Ltd.
Antibodies for Claudin-1 (ab180158), IL-18 (ab71495)
were purchased from Abcam (Cambridge, UK). Antibod-
ies for NLRP3 (ET1610-93), Zonula Occludens-2 (ZO-2)
(40-2200) were purchased from HuaAn Biotechnology
(Hangzhou, China) and Invitrogen (CA, USA) respec-
tively. Blots were developed by enhanced chemilumines-
cence (Universal Hood III, Bio-Rad. USA).

Measurement of pancreatic and colonal ROS generation

Fresh tissues from the pancreas and colon were embed-
ded in optimal cutting temperature (OCT) compound
(#4583; SAKURA, US), and then, the samples were cut
into 7 mm sections. A working reagent of DHE (#S0063;
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Beyotime, Shanghai, CN) was dropped onto each section,
and slides were incubated for 30 min at 37 °C. Slides were
placed in phosphate buffer saline (PBS) (pH=7.4) and
washed 3 times, each time for 5 min. Then, the tissues
were incubated with 4/, 6-diamidino-2-phenylindole,
dihydrochloride (DAPI, Wuhan Servicebio Technology
Co., Ltd., Wuhan, China) solution at room temperature
for 10 min and washed again. Finally, the slides were
observed under a fluorescence microscope.

Superoxide dismutase (SOD) detection

SOD activity was measured by using SOD assay kit
(50101S, Beyotime Biotechnology, Shanghai, China)
according to the protocols provided by the supplier.
Briefly, tissue samples were obtained from animals after
blood removal by perfusion with saline (0.9% NaCl, con-
taining 0.16 mg/ml heparin sodium). Appropriate tissue
samples were homogenized at 4°C or in an ice bath at the
ratio of adding 100 pL of SOD sample preparation solu-
tion per 10 mg of tissue (glass homogenizers or various
common electric homogenizers can be used). After cen-
trifugation at 4 °C at about 12,000 g for 3—5 min, superna-
tant was taken as the sample to be tested. Add the sample
to be tested and various other solutions in turn. Mix
thoroughly after adding the reaction start-up solution.
The calculation formula of SOD enzyme activity is as fol-
lows: SOD activity unit in the sample to be tested=SOD
activity unit in the detection system = percentage of inhi-
bition/(1- percentage of inhibition) units.

Molecular docking study of formononetin

The chemical structure of formononetin was obtained
from the PubChem database (Compound CID:
5,280,378), and converted to 3D structure by the Open
Babel 2.4.1 software. The crystal structure of Keapl (PDB
ID: 5CG]J) was obtained from the RCSB protein database
(www.rcsb.org). The receptor protein was removed ligand
and water by the PyMOL 2.2.0 software. The docking
process was performed with AutoDock Vina 1.1.2 soft-
ware. From the docking results, the best conformation
with the lowest docked energy was selected for further
mapping analysis. Identification of non-covalent interac-
tions between Keapl and formononetin was conducted
using Protein-Ligand Interaction Profiler (https://plip-
tool.biotec.tu-dresden.de/plip-web/plip/index) [17].

Statistical analysis

All data are expressed in terms of the mean +SD. p<0.05
was considered as a statistically significant difference.
Statistical analyses were performed by one-way ANOVA
analysis of variance followed by Dunnett’s test as a post
hoc test using GraphPad Prism 8.0.1 (San Diego, USA).
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Results

Formononetin treatment reduced the severity of AP
Firstly, we detected the effect of formononetin on
caerulein-induced experimental AP. The chemical
structure of formononetin was shown in Fig. 1A and
the schedule of AP model establishment was shown
in Fig. 1B. Microscopic morphological examination
showed that treatment with formononetin (100 mg/
kg) effectively alleviated inflammation, and pancreatic
edema (Fig. 1C-E) in pancreas of AP mice. Meanwhile,
the levels of serum amylase, lipase, and MPO in caer-
ulein group were significantly increased compared to
that of control, while formononetin treatment signifi-
cantly decreased serum amylase, lipase levels, as well
as MPO in mice with AP (Fig. 1F-H). Additionally,
formononetin treatment substantially reduced pan-
creatic cytokine production including TNF-a, MCP-1,
IL-6 and IL-1p (Fig. 1I-L). All the results above dem-
onstrated that formononetin alleviates the severity of
AP.

Formononetin protected the integrity of the intestinal
barrier and reduced bacterial translocation in AP
Considering the critical role of intestinal barrier dys-
function in the development of pancreatitis [18], we next
studied the effects of formononetin on intestinal injury.
As showed in Fig. 2A, B, mice with AP had obvious
inflammatory infiltration in colonic crypt and mucosal
layer, and shortened intestinal villi, while in the group
treated with formononetin, colonic damage was miti-
gated. By further detection of the inflammatory cytokine
expression, we observed lower levels of colonic inflam-
mation in formononetin-treated group compared to
those of AP group, which was reflected by the reduced
mRNA levels of inflammatory factors including tnf-a,
mcp-1, il-6 and il-15 (Fig. 2C-F). These results together
suggest that formononetin has an anti-inflammatory
effect not only in the pancreas, but also in AP-related
intestinal injury. We next investigated intestinal barrier
function in AP. Induction of AP caused decrease in ZO-2,
Occludin and Claudin-1 at mRNA level (Fig. 2G-I) and
Z0-1, ZO-2, Occludin and Claudin-1 protein (Fig. 2J)
level, which was significantly reduced by treatment with
formononetin. With increased intestinal permeability,
intestinal bacteria represented by Escherichia coli (E. coli)
translocated through the intestinal mucosal barrier and
caused pancreatic necrosis and secondary septic infec-
tion [19]. Subsequently, we detected the RNA content
of E. coli in colonic and pancreatic tissues of AP mice,
and the results showed that formononetin treatment
downregulated the expression of E. coli mRNA induced
by caerulein (Fig. 2K, L). Moreover, induction of AP
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FMN (25, 50, 100 mg/kg/day)
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Fig. 1 Formononetin protects against experimental AP in mice. A Structure of Formononetin. B Schedule of experimental AP establishment. C,

D HE staining of the pancreas (C) and histologic score (D); scale bar, 50 um. E Detection of pancreatic edema. F Detection of serum amylase level.
G Detection of serum lipase levels. H Detection of pancreatic MPO level. I-L gRT-PCR for pancreatic mRNA quantitative analysis of tnf-a (1), mcp-1(J),
il-6 (K) and il-183 (L). Octreotide was used as a positive drug. FMN Formononetin. Data were expressed as mean + SD, n=>5-8 in each group. *

p<005,* p<0.01,** p<0.001

caused elevation of serum endotoxin levels in mice of
AP group, which was effectively mitigated by formon-
onetin (Fig. 2M). All these results demonstrated that

formononetin attenuates AP via enhancing intestinal
barrier function and preventing bacterial translocation.
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Fig. 2 Formononetin protected the integrity of the intestinal barrier and reduced bacterial translocation in AP. C57BL/6J mice were pretreated with
formononetin for 1 week and underwent induction of AP. A, B Representative H&E staining of the colon (A) and histopathology score (B); scale bar,
50 um. C-F gRT-PCR for colonic mRNA quantitative analysis of tnf-a (C), mcp-T (D), il-6 (E) and il-1[ (F). G-1 gRT-PCR for colonic mRNA quantitative
analysis of zo0-2 (@), occludin (H) and claudin-1(1). Western blot and quantitative analysis of colonic ZO-2, Occludin and Claudin-1 (J). K, L gRT-PCR for
mMRNA relative content of E. coli in colon and pancreas. M Measurement of serum endotoxin. Data were expressed as mean +SD, n=3-8 in each

group. * p<0.05,** p<0.01, *** p<0.001

Formononetin inhibits the activation of NLRP3
inflammasome in colon and pancreas

NLRP3 inflammasome pathway played an important
role in AP [20]. Hence, we validated whether formonon-
etin is implicated in modulating the activation of NLRP3
inflammasome during AP. As shown in Fig. 3A, the abun-
dance of NLRP3, ASC, caspase-1-p20, cleaved-IL-1 and
cleaved-IL-18 in colonic tissue were increased in AP mice

while formononetin treatment drastically reduced the
activation of NLRP3 signaling pathway. Similar to those
in the colon, formononetin treatment suppressed activa-
tion of NLRP3 inflammasome in pancreas (Fig. 3B). All
these data above suggested that formononetin reduced
AP-induced intestinal inflammation by inhibiting the
activation of NLRP3 inflammatory pathways.
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Fig. 3 Formononetin inhibits the activation of NLRP3 inflammasome in colon and pancreas. C57BL/6J mice were pretreated with formononetin for
1 week and underwent induction of AP. A, B Western blot detection of NLRP3 inflammasome activation in colon (A) and in pancreas (B). Data were
expressed as mean + SD, n=3 in each group. * p<0.05, ** p<0.01, *** p<0.001

Formononetin mitigates colonic oxidative stress damage
by modulating the Nrf2/Keap1 pathway

As a regulator in inflammatory responses, ROS play
an important role in AP [21, 22]. Therefore, we exam-
ined ROS levels in AP. Our data clearly showed that
formononetin at a dose concentration of 100 mg/kg
inhibits ROS levels (Fig. 4A, B). To further explore the
anti-oxidative mechanisms of formononetin in AP, we
detected upstream regulator of ROS. The expression of
ROS-related gene in pancreas of caerulein-induced AP
was obtained from GEO database (Series_geo_acces-
sion: GSE3644). As showed in Fig. 4C, D, Nrf2 showed
the most significant increase after caerulein treatment.
Accordingly, we detected whether there exists a change
of the Keapl/Nrf2 signaling in colon. As showed in
Fig. 4E, Nrf2 translocated into nuclear after caerulein
treatment, interestingly, formononetin treatment signifi-
cantly enhanced the abundance of Nrf2 both in nuclear
and cytoplasm. There showed no significant changes
in Keapl. And the Nrf2 downstream target HO-1 was
elevated in AP group, while formononetin pretreatment

inhibit it (Fig. 4E). SOD, another downstream of Nrf2
and a key enzyme for ROS clearance, was significantly
decreased by caerulein treatment and formononetin
reversed AP-induced downregulation (Fig. 4F). All these
results suggest that formononetin improves oxidative
stress by modulating the Nrf2/Keapl pathway in AP-
induced mice.

Formononetin interacts with Keap1 to regulating Nrf2
signaling pathway

Keapl represses Nrf2 activity under quiescent condi-
tions, whereas Nrf2 is liberated from Keapl-mediated
repression on exposure to stresses [23]. Based on the
result that keapl showed no significant change in Nrf2
activation, we investigated whether formononetin inter-
act with keapl to modulate Nrf2. As showed in the
molecular docking analysis results, the binding energy of
formononetin and Keapl was — 8.0 kcal/mol (Fig. 5A, B),
which was less than the critical value of — 5.0 kcal/mol
for interaction [24]. Meanwhile, identification of non-
covalent interactions between formononetin and Keapl



Yang et al. Chinese Medicine (2023) 18:78

B

Control Caerulein  Caerulein + FMN

DAPI

Control

DAPI

Caerulein

Page 8 of 12

Caerulein + FMN

@
c
8 Ke] 8 g
x o
o =
o
3 2,
() <2
= =
® _ 5 Kkk Kk
E Kk *k g 4
L5 ﬁ
] o3
& 10 &
g 22
s 5 g,
. N :1m
T I T T T
© &~ > B N
QQQ orbé\o é‘<\x<< GOQ\‘ Q’f"& »\on\‘\
& 3¢
[Vis 0"’@
soD2
NOS3 R | 600
GPX1 GPX3 S
o
GPX7 o - E
o
[
\\ A 5 400
GPX5
B /C g
c
SOD1 / ]
@ 200
GPX8 NOST apxo g
x
i
GPX4
& sop3
Control Caerulein
E [ control F
Caerulein [ Caerulein
Control Caerulein + FMN 5 [ Caerulein + FMN 30 .
. 3
B T - 100 kDa 2
Nrf2 (Nuclear)| ——| §4 r § .
Histone H3 | |-17kDa 5] w2 220
. I « [ 2
Nrf2 (cytosolic) - 1 1% 100 kDa & ™ '—l £
02 5
Keap1[*+ == = o oo = o s #n|-65kDa 2 810
<1
HO-1] smemay o e |- 28 kDa Bla] 3
GAPDH [ == |-37kDa 0= - . . O —T—T1 1
0@0 R Q"\ Of\ ({\4'\0\ \)\0\ Q®$
Colon @3(} & {g/‘?* & S
A Cﬂ (¢} )
& {(1,\ N
S &

Fig. 4 Formononetin mitigates colonic oxidative stress damage by modulating the Nrf2/Keap1 pathway. A ROS levels in colon of C57BL/6J mice
were detected by DHE assay. B ROS levels in the pancreas of C57BL/6J mice were detected by DHE assay. C Network analysis and visualization of
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Western blot detection of Keap1/Nrf2 signaling activation in colon. F Detection of SOD activity in colon. Data were expressed as mean +SD, n=3

per group. ** p<0.01, *** p<0.001

showed that there were hydrogen bonds and hydro-
phobic interactions between formononetin and Keapl
(Fig. 5C). Furthermore, the Co-IP results showed that
there were interactions between Keapl and Nrf2 under

caerulein treatment,

while formononetin treatment

block the interaction without decrease Keapl and Nrf2
protein levels (Fig. 5D). All these results suggest that
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Colonic tissues

formononetin interacts with Keapl to regulating Nrf2
signaling pathway.

Discussion

In the pathogenesis of acute pancreatitis, pancreatic
damage and intestinal injury are interrelated and mutu-
ally influenced. The current study demonstrated the pro-
tective effects of formononetin on the development of
experimental AP. Mechanistically, formononetin reduces
ROS production by regulating Keapl / Nrf2 signaling
pathway, which further reduces ROS-mediated inflam-
mation response, and ultimately inhibits intestinal bar-
rier dysfunction and bacterial translocation to alleviate
AP (Fig. 6).

In AP, damaged pancreatic acinar cells release inflam-
matory factors such as TNF-a, IL-6, and IL-1p. These
inflammatory factors recruit numerous immune cells
and infiltrate into the pancreatic tissue, producing more
inflammatory cytokines and exacerbating the develop-
ment of inflammation [25, 26]. Consistent with these,
our data showed that the expression of TNF-a, MCP-1,
IL-6, IL-1p, and MPO activity was significantly increased
in pancreas and colon of the model group, while formon-
onetin treatment downregulated their levels, indicating
formononetin ameliorated AP and associated colonic
inflammation.

ROS is closely related to the activation of the inflam-
matory cascade and tissue damage in acute pancreatitis.
It has been recognized as an indispensable threat in the
gastrointestinal tract when it comes to host defense and

redox signaling [27]. When ROS is over-produced, oxida-
tive stress will occur in cells, leading to damaging conse-
quences, including DNA damage, lipid peroxidation, and
protein modification. [28]. These various biological cas-
cades ultimately cause cell death [29]. It’'s worth noting
that the intestine is more vulnerable to excess ROS than
other organs due to continuous exposure [30]. By detect-
ing ROS production in the pancreas and intestine of AP
mice, we demonstrated that AP stimulation induced
ROS production in pancreas and more ROS production
in intestinal epithelium, and formononetin significantly
inhibits ROS accumulation, thereby improving the oxi-
dant/antioxidant balance. In addition, accumulating evi-
dence confirms that Keapl/ Nrf2-ARE is an important
antioxidant signal for ROS clearance and has a protective
effect on AP [31]. Consistently, our study demonstrated
that the expression of Keapl/ Nrf2-ARE was significantly
down-regulated in AP mice, and their downregulation
can be reversed by formononetin administration, which
further confirms the anti-oxidative function of formon-
onetin in the context of AP. Along with Nrf2 activation,
the downstream antioxidative enzymes HO-1 or SOD
will be activated to degrade ROS [32, 33]. By further anal-
ysis of these two enzymes protein expression or activ-
ity, we deciphered that formononetin exerts antioxidant
effect during AP through up-regulation of SOD but not
HO-1.

NLRP3 is an important receptor for pathogen recog-
nition, such as substances released by cell damage, bac-
teria as well as bacterial toxins. Once recognized by the
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upstream sensor, the apoptosis-associated speckle-like
protein ASC acts as a bridge connecting the sensor to
the downstream effector cysteine protease caspase-1
[34]. Activated caspase-1 cleaves the precursor cytokines
pro-IL-1B and pro-IL-18 to produce their bioactive
forms (IL-1p and IL-18, respectively) [35]. It has been
reported that deletion of caspase-1, ASC or NLRP3 sig-
nificantly reduced edema and inflammation of AP [36];
previous studies also indicated that knockdown of cas-
pase-1 significantly reduced the degree of death and
inflammation of pancreatitis follicle cells [37]. Another
study using NLRP3-deficient mice or the NLRP3 inhibi-
tor INF-39 discovered that maturation and release of
IL-1B were inhibited and further prevented the inflam-
matory cascade in a caerulein+LPS-induced AP model

[38]. We found that in colonic tissue, formononetin pre-
treatment group significantly reduced the high expres-
sion of NLRP3, ASC, caspase-1-p20, cleaved-IL-1f, and
cleaved-IL-18 induced by AP, suggesting that formonon-
etin may reduce inflammation in the colon by inhibiting
the activation of NLRP3 inflammatory vesicles. This is
consistent with the previous finding that formononetin
administration attenuates colitis by inhibiting the NLRP3
inflammasome signaling pathway [13]. Similarly, results
from pancreas also suggested that formononetin allevi-
ated inflammation by inhibiting the activation of NLRP3
inflammasome signaling pathway.

In addition, prior studies have demonstrated that trans-
location of intestinal bacteria exacerbate AP through
TLR4 mediated activation of NF-«xB, and thereby
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up-regulating the mRNA and protein expressions of
NLRP3, Pro-IL-1B and Pro-IL-18 [39]. In our study, we
consistently demonstrated higher E. coli expression in
pancreas of AP mice than the control group, indicating
that intestinal bacterial translocation is likely to trigger
the activation of NLRP3 related pathway proteins. As
leaky gut contributes to the transfer of bacteria and tox-
ins to the pancreas in acute pancreatitis [40], we thereaf-
ter evaluated the intestinal barrier function to decipher
the protective mechanism of formononetin on AP and
associated intestinal injury. Interestingly, we demon-
strated that formononetin treatment enhanced intestinal
barrier integrity by upregulating tight junction proteins.
Thus, formononetin inhibited the reproduction of E. coli
in the intestine and its subsequent transfer to the pan-
creas during AP, thereby preventing secondary infection
and inflammatory cascade in pancreas [36, 41, 42].

Conclusion

In this study, we found that formononetin can reduce the
severity of pancreatic injury, maintain intestinal barrier
homeostasis, and alleviate inflammation and oxidative
damage in AP. The protective mechanism may be related
to the regulation of Nrf2/Keapl cascade and ROS-medi-
ated NLRP3 pathway activation. Our study provides a
new experimental basis for the clinical treatment of AP.
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