Skip to main content

Table 1 Overview of the effects of gallic acid in neurological diseases and disorders

From: Neurobiological effects of gallic acid: current perspectives

Neurological disease

Experimental model

Concentration/Doses

Effects/Mechanisms

References

Alzheimer’s disease

Wistar rats (aluminium-chloride induced AD), in vivo

100 mg/kg b.w

↓CAT, ↓GSH, ↓SOD, ↓serum electrolyte, ↓neurotransmitter levels, ↑MDA, ↑ H2O2 and ↑NO

[115]

Drosophila melanogaster BL#33,798 cultures, in vitro

IC50 = 50—100 µM

↓ Aβ, ↓ ChEs, ↓BACE-1

[116]

APPswe/PS1dE9 transgenic mice (capable of Aβ plaque deposition at the age of 4 months), in vivo

30 mg/kg b.w

↓neurotoxicity, ↓ Aβ1–42

[187]

Rats (AD induced through Aβ hippocampal injection), in vivo

50, 100, and 200 mg/kg b.w

↑cognitive function, ↓neural damage

↓Aβ plaques

[60]

Rats (i.p. injection of trimethyltin, 8 mg/kg b.w.), in vivo

50 and 100 mg/kg b.w

↑ BDNF hippocampal level > TMT group > ↓ TNF-α hippocampal level

[15]

Rats (intracerebroventricular–STZ injection), in vivo

30 mg/kg b.w

↑the passive avoidance, ↑memory

↑SOD, ↑GPx, ↑CAT, ↓TBARS

[104]

Heochromocytoma 12 cells, in vitro

IC50 = 3.7 ± 0.3 µM

↓neurotoxicity

↓κ-CN activity, ↓Aβ peptide fibril

[96]

Microglial, neuronal cells, in vitro

IC50 = 5–50 μM

↓ cytokines, ↓NF-kB, ↓neurotoxicity

[85]

Mice, (Aβ 142 and Aβ 421 were administered by intracerebroventricular (ICV) injection), in vivo

10 and 30 mg/kg b.w

↓cognitive dysfunction, ↓ Aβ, ↓cytokines, ↓neuronal cell death

Parkinson’s disease

Wistar male rats (catatonia induced by PPZ), in vivo

100, 200, 400 and 600 mg/kg b.w. (i.p)

↓catatonic responses

[67]

SH-SY5Y cells, in vitro

IC50 = 0.25–2.5 μg/ml

↓neuronal cells damage, ↓ROS,

↓Keap-1, ↓caspase-3

↓BDNF, ↓Nrf2, ↓p-CREB

[27]

Rats received reserpine, in vivo

Dose = 13.5—40.5 mg/kg/day b.w

↓vacuous chewing movements

[134]

Rats (PD induced through 6-OHDA; 8 μg/2 μL injected into the medial forebrain bundle), in vivo

Dose = 50, 100, and 200 mg/kg b.w

↑ memory

↑GPx, ↓ TBARS

[103]

Rats (PD induced by apomorphine), in vivo

200 mg kg b.w

↓motor dysfunctions,↓ ROS and↓ gamma wave power,

[141]

Rats, (tacrine 2.5 mg/kg b.w, i.p.), in vivo

150 mg/kg b.w

↓vacuous chewing movements

[81]

Mice, (Haloperidol 1 mg/kg b.w, i.p.), in vivo

↓catalepsy

Anxiety

Rats (HE mediated by bile duct ligation (BDL and NOR, open field and Morris water maze test), in vivo

20 and 30 mg/kg b.w

↑memory, ↑ AMPK pathway activity

[71]

STZ-induced diabetic rats, in vivo

10, 20, and 40 mg/kg b.w

↓GSH in hippocampus and prefrontal cortex

[124]

Mice acute and chronic stress in vivo

5, 10, and 20 mg/ kg b.w

↓serum and brain MDA levels

↑brain TCA

[137]

Rats (EPM test), in vivo

30 and 300 mg/kg b.w

↑5-HT1A receptor activity

↑time spent and entries in the open arms of elevated plus maze (EPM)

[105]

Mice (EPM test), in vivo

GA nanoparticles: 10 mg/kg, 10 mg/kg b.w

↓plasma nitrite level

[110]

Mice stress was generated by immobility, in vivo

5, 10, and 20 mg/kg b.w

↓plasma nitrite, ↓corticosterone levels

[42]

Depression

Rats anxiety- depression induced by sodium arsenite, in vivo

50 and 100 mg/kg b.w

↓immobility duration

↑time spent in open arm and light box

[140]

Mice post-stroke depression, in vivo

30 and 60 mg/kg

↓immobility duration

[25]

Mice (TST model), in vivo

25 and 50 mg/kg b.w

↓immobility duration

[108]

Mice unpredictable chronic mild stress, in vivo

10 and 20 mg/kg b.w

↓immobility duration,

↓MDA, ↓MAO-A

↓plasma corticosterone levels

[30]

Mice (DST and TST model), in vivo

10 mg/kg b.w. (GA nanoparticles)

↓immobility duration

↓ MDA, ↓MAO-A, ↓CAT

[111]

Psychosis

Mice (ketamine-induced psychosis), in vivo

50, 100, and 200 mg/kg, b.w. (p.o)

neuroprotective effects in psychosis

↓ LP, ↓DP,↓TNF-α, ↓AChE

↑ GABA, ↑glutathione

[185]

Sedation

Rats, in vivo

500 mg/kg (p.o.)

↓locomotor activity in rats

[105]

Strokes

C57BL/6 J mice, (MCAO method), in vivo

50, 100, and 150 mg/kg b.w. (p.o.)

↓ brain edema, neuroprotective,

↑ the integrity of the BBB, ↓ ischemic brain injury, ↓iNOS, ↓MCP-1, ↓COX-2

↑Arg-1, ↑IL-10, ↑CD206

[128]

Rats (focal cerebral ischemia: MCAO), in vivo

25, 37.5, and 50 mg/kg b.w

(-) unknown effects

[164]

Human SH-SY5Y neuroblastoma cells, in vitro

IC50 = 0.1—1 μM

↓ ROS, ↓apoptosis

↓mitochondrial dysfunction

↓hypoxia,↑reoxygenation

↑protection from cerebral ischemia/reperfusion injury

Rats (permanent cerebral hypo-perfusion), in vivo

100 mg/kg b.w. (p.o.)

↑spatial memory performance

↑MDA

↓cognitive deficits through the elevation of cerebral antioxidant defense

↑activity against 2-vessel occlusion (2VO)

[87]

Rats (permanent cerebral hypo-perfusion), in vivo

100 mg/kg b.w. (p.o.)

↑ flourished passive avoidance of memory, LTP in the HIP, and cell survival in the HIP and cortex of ischemic rats

[142]

Rats (transient cerebral hypo-perfusion), in vivo

50, 100, and 200 mg/kg b.w. (p.o.)

↑antioxidant defense against BCCA occlusion

↑neuroprotection

[49]

Neuropathic pain

Mice (pain developed by paclitaxel: 2 mg/kg, i.p.), in vivo

20 and 40 mg/kg b.w

↓ TNF-α, ↓Ca2+, ↓TBARS, ↓superoxide anion, ↓GSH, ↓MPO,

↓ thermal and mechanical hyperalgesia

[82]

Brain tumor/Cerebral Glioblastoma

DBTRG-05MG human glioblastoma cells, in vitro

IC50 = 20—40 µM

↑Ca2+

↑phospholipase C-dependent release from the ER

↑ROS, ↑apoptosis, ↑cytotoxicity

[68]

T98G human glioblastoma cell lines, in vitro

IC50 = 100 µg/ml

↑miR-421 regulation of the cell cycle S-phase

↑serine/ threonine protein kinase

↑DNA damage

↑cell cycle arrest at the G1-S and S phases

↑apoptosis, ↑cytotoxicity

[119]

U87, U251 human glioma cells, in vitro

IC50 = 20 μg/ml

↓glioma cells viability, ↓proliferation, ↓invasion, ↓angiogenesis, ↑cytotoxicity

[98]

Neuroinflammation

Sprague Dawley rats (neuroinflammation induced by intranigral infusion of LPS), in vivo

50 and 100 mg/kg b.w. (p.o.)

↓ iNOS, ↓IL-1β, ↓heme oxygenase-1 level, ↓α-synuclein aggregation, ↓caspase 3,↓ RIPK-1, ↓RIPK-3 levels, ↓ROS, ↓apoptosis

[95]

LPS-treated BV2 microglial cells, in vitro

IC50 = 25– 100 μM

↓NO levels,↓ iNOS expression

Hippocampal neurons co-cultured with glial cells, (LPC-induced inflammation), in vitro

IC50 = 1.0 µM

↓NF-κB, ↓COX-2, ↓tenascin-C, ↓chondroitin sulfate proteoglycans and ↓glial fibrillary acidic protein

[156]

Wistar rats (traumatic brain injury by Marmarou’s method), in vivo

100 mg/kg b.w. (p.o)

↓IL-1β, ↓IL-6, and ↓TNF-α

[142]

BV-2 cells and Neuro-2A cells (treated by oligomeric Aβ), in vitro

IC50 = 5–50 µM

↓iNOS, ↓IL-1β, ↓COX-2, and ↓NF-kB

[85]

  1. ↑increase, ↓decrease, GA gallic acid, AD Alzheimer disease, Aβ amyloid β protein, HIP hippocampus, ChEs cholinesterase, BACE-1 beta secretase-1, i.p intraperitoneally, STZ streptozotocin, BDNF brain-derived neurotrophic factor, TMT trimethyltin, TNF- α tumour necrosis factor-α, SOD superoxide dismutase, GPx glutathione peroxidase, CAT catalase, TBARS: 2-thiobarbituric acid reactive substances, κ-CN kappa-casein, NF-kB nuclear factor kappa B, ICV intracerebroventricular, Nrf2 nuclear factor erythroid 2–related factor 2, p-CREB phosphorylated cAMP-responsive element binding protein, 6-OHDA: 6-hydroxydopamine, PD Parkinson’s disease, GSH glutathione, MDA malondialdehyde, TCA tricarboxylic acid, EPM elevated plus maze, 5-HT1A 5-hydroxytryptamine (serotonin) receptor 1A, TST tail suspension test, DST despair swim test, MAO-A monoamine oxidase-A, DP dopamine, AChE acetyl cholinesterase, GABA gamma-aminobutyric acid, MCAO middle cerebral artery occlusion, BBB blood brain barrier, MCP-1 monocyte chemoattractant protein-1, COX-2 cyclooxygenase-2, Arg-1 arginase-1, IL-10 interleukin-10, IL-6 interleukin-6, IL-1β interleukin-1β, CD206 cluster of differentiation 206, ROS reactive oxygen species, 2VO: 2-vessle occlusion, BCCA bilateral common carotid arteries, MPO myeloperoxidase, ER endoplasmic reticulum, IC50 half maximal inhibitory concentration, RIPK-1 receptor-interacting protein kinase-1, RIPK-3 receptor-interacting protein kinase-3, LPS: lipopolysaccharides, NO nitric oxide, iNOS inducible nitric oxide synthase, LPC lysolecithin, LP lipid peroxidation, PPZ perphenazine, HE hepatic encephalopathy, BDL bile duct ligation, NOR novel object recognition