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Abstract 

Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-
proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug 
resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical 
path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with 
anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, 
ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic 
acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, 
Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated 
pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in 
combined therapy and immunomodulation. In addition, the present review has extended to describe other promis-
ing compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and 
cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodula-
tory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and 
further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as 
modulators of immune checkpoints.

Keywords: Cancer, Chinese herbal medicine, Natural products, Bioactive compounds, Traditional Chinese medicine

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Cancer is a leading public health problem worldwide with 
an estimated 18.1 million new cases and 9.6 million can-
cer deaths in 2018 [1]. Chinese herbal medicine has been 
used as anti-cancer agents for a long time, they exhibit 
anti-inflammatory activities and contain abundant anti-
cancer compounds that exert direct cytotoxicity effects 
and indirect regulation in tumor microenvironment 
and cancer immunity, as well as improve chemotherapy 
[2–5]. For examples, PNAS reported that epigallocat-
echin gallate (EGCG) targeting Laminin receptor (Lam 
67R) shows promising efficacy in treating prostate cancer 

[6]. British Journal of Pharmacology described that gin-
senoside Rh2 inhibits P-glycoprotein (P-gp) activity to 
reverse multidrug resistance [7]. The American Journal of 
Chinese Medicine demonstrated that curcumin induces 
autophagy to enhance apoptotic cell death [8]. Journal of 
Ethnopharmacology reviewed that berberine potentially 
represses tumor progression and is expected to be safe, 
effective and affordable agent for cancer patients [9]. Chi-
nese Medicine presented that shikonin exerts synergistic 
effects with chemotherapeutic agent [10]. However, the 
anti-cancer targets of these pharmacodynamic com-
pounds are still not clear, and this is the major obstacle 
for the application and development of Chinese herbal 
medicine.

This review in Chinese herbal medicine and cancer 
focuses on summarizing experimental results and con-
clusions from English literatures reported since 2011. 
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Literature search was conducted in peer-reviewed 
and clinical databases, which include PubMed (https 
://www.ncbi.nlm.nih.gov/pubme d), Web of Science 
(http://www.webof knowl edge.com), Medline (https ://
www.medli ne.com), Scopus (https ://www.scopu s.com), 
and Clinical Trials (https ://clini caltr ials.gov) using the 
following keywords: Cancer, Tumor, Neoplasm, Chi-
nese herbs, Chinese medicine, Herbal medicine. To 
provide new insights into the critical path ahead, the 
pharmacological effects, novel mechanism of action, 
relevant clinical studies, innovative applications in 
combined therapy, and immunomodulation of the pop-
ular compounds originated from Chinese herbal medi-
cine were reviewed systemically.

Different natural products derived from Chinese 
herbal medicine, including curcumin, EGCG, ber-
berine, artemisinins, ginsenosides, ursolic acid (UA), 
silibinin, emodin, triptolide, cucurbitacins, tanshi-
nones, ordonin, shikonin, gambogic acid (GA), artesu-
nate, wogonin, β-elemene, and cepharanthine, were 
identified with emerging anti-cancer activities, such 
as anti-proliferative, pro-apoptotic, anti-metastatic, 
anti-angiogenic effects, as well as autophagy regula-
tion, multidrug resistance reversal, immunity balance, 
and chemotherapy improvement in  vitro and in  vivo. 
These compounds are considered popular with over 
100 supported publications and are selected to be dis-
cussed in more details. Figure 1 shows the word cloud 
of these compounds. In this review, the advantages and 
drawbacks of representative Chinese herbal medicine-
derived compounds in different types of cancers were 
also highlighted and summarized.

Curcumin
Curcumin (Fig.  2) is a polyphenol compound extracted 
mainly from the rhizomes of Curcuma longa, Curcuma 
zedoaria and Acorus calamus L. with many biological 
activities, but it has poor water solubility and stability 
[11]. Clinical evidence and extensive studies showed that 
curcumin has various pharmacology effects, including 
anti-cancer, anti-inflammatory, and anti-oxidative activi-
ties [12–14]. Curcumin and its analogues are shown to 
be emerging as effective agents for the treatment of sev-
eral malignant diseases such as cancer. Numerous stud-
ies have shown that curcumin and its preparations can 
inhibit tumors in almost all parts of the body, including 
head and neck, ovarian, skin and gastric cancers [15–20]. 
Curcumin is shown to exhibit many anti-cancer effects 
through the inhibition of cell proliferation, promotion 
of cell apoptosis, prevention of tumor angiogenesis and 
metastasis, and the induction of autophagy [21–25].

Curcumin inhibits cell growth, induces cell cycle arrest 
and apoptosis in esophageal squamous cell carcinoma 
EC1, EC9706, KYSE450, TE13 cells through STAT3 acti-
vation [12]. It also induces oxidative stress, which dis-
rupts the mitochondrial membrane potential and causes 
the release of cytochrome c, thus inducing apoptosis [26]. 
Besides, curcumin is shown to induce autophagy [8, 21, 
27–30]. It induces autophagy through 5′AMP-activated 
protein kinase (AMPK) activation, leading to Akt deg-
radation, thus inhibiting cell proliferation and migra-
tion in human breast cancer MDA-MB-231 cells [21], 
while it inhibits cell growth partially through autophagy 
induction in human hepatocellular carcinoma HepG2 
cells [29]. Moreover, curcumin can ameliorate Warburg 
effect in human non-small cell lung cancer (NSCLC) 
H1299, breast cancer MCF-7, cervical cancer HeLa and 
prostate cancer PC-3 cells through pyruvate kinase M2 
down-regulation, a key regulator of Warburg effect [18]. 
In addition, tumor metastasis has always been a frustrat-
ing problem for anti-cancer therapy, and curcumin also 
exhibits anti-metastasis effects [31–35]. Curcumin inhib-
its cell invasion via AMPK activation in human colorectal 
cancer SW-480 and LoVo cells [31], whilst low-toxic level 
of curcumin efficiently inhibits cell migration and inva-
sion through the inhibition of Ras-related C3 botulinum 
toxin substrate 1/p21 (Rac1) activated kinase 1 (Rac1/
PAK1) pathway in human NSCLC 801D cells, and this 
effect is also confirmed in 801D xenograft mice [32]. By 
pulmonary administration of curcumin in mice, it over-
comes the problem of its low bioavailability, and inhibits 
lung metastasis of melanoma [35].

The main target molecules and signaling involved in the 
pharmacological processes include reactive oxygen spe-
cies (ROS), matrix metalloproteinases (MMPs), nuclear 
factor kappa-light-chain-enhancer of activated B cells 

Fig. 1 The anti-cancer compounds from Chinese herbal medicine 
(CHM). The popular anti-cancer compounds in CHM presented as a 
“word cloud”, in which the size of each name is proportional to the 
number of publications of the compounds
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(NF-κB), signal transducer and activator of transcrip-
tion and cell cycle-related proteins [36–46]. Curcumin is 
shown to induce anti-cancer activities through the dis-
ruption of mitochondrial membrane potential and block-
ade at G2/M phase of the cell cycle in human epidermoid 
carcinoma A-431 cells [47]. In addition, mammalian tar-
get of rapamycin (mTOR) plays a vital role in curcumin-
induced autophagy and apoptosis [30, 48–50]. Curcumin 
induces apoptosis and autophagy through the inhibition 
of phosphoinositide 3-kinase (PI3K)/Akt/mTOR path-
way in human NSCLC A549 cells [30], while it induces 
autophagy by reducing Akt phosphorylation and mTOR 
in human melanoma A375 and C8161 cells [49].

Curcumin can also exert immunomodulatory effects 
against cancer cells. Theracurmin, a highly bioavailable 
form of curcumin, decreases pro-inflammatory cytokine 

secretion from activated T cells, and enhances T cell-
induced cytotoxicity in human esophageal adenocarci-
noma OE33 and OE19 cells, so it increases the sensitivity 
of the cells to T cell-induced cytotoxicity [51]. The natu-
ral killing (NK) cells can directly kill cancer cells, and 
curcumin can enhance the cytotoxicity effect of NK cells 
when NK cells are co-cultured with human breast cancer 
MDA-MB-231 cells, which is highly associated with sig-
nal transducer and activator of transcription 4 (STAT4) 
and signal transducer and activator of transcription 5 
(STAT5) activation [52]. Besides, myeloid-derived sup-
pressor cells (MDSCs) are immune-suppressive cells 
which are found in most cancer patients. Curcumin 
decreases interleukin (IL)-6 levels in the tumor tissues 
and serum of Lewis lung carcinoma (LLC)-bearing mice 
to impair the growth of MDSCs, so targeting MDSCs is 

Fig. 2 Chemical structures of anti-cancer compounds from Chinese herbal medicine



Page 4 of 58Luo et al. Chin Med           (2019) 14:48 

important for the treatment of lung cancer [13]. More-
over, the anti-tumor immune response of curcumin is 
mediated through increased cluster of differentiation 
(CD)8+ T cell population and decreased regulatory T 
cell  (Treg) population in tongue squamous cell carcinoma 
[53–55].

In order to overcome the solubility issues of curcumin 
and facilitate its intracellular delivery, a curcumin-loaded 
nanoparticle, curcumin-PLGA-NP, is synthesized. It has 
a tenfold increase in water solubility compared to cur-
cumin, and shows threefold increased anti-cancer activi-
ties in human breast cancer MDA-MB-231 and NSCLC 
A549 cells [56]. Another curcumin-capped nanoparti-
cle exhibits promising anti-oxidative and selective anti-
cancer activities in human colorectal cancer HT-29 and 
SW-948 cells [57]. Moreover, a curcumin analog, WZ35, 
has high chemical stability, and higher efficacy in anti-
cancer effects compared to curcumin in human gastric 
cancer SGC-7901 cells and SGC-7901 xenograft mice 
[20]. Another analog, B63, induces cell death and reduces 
tumor growth through ROS and caspase-independent 
paraptosis in human gastric cancer SGC-7901, BGC-823 
and SNU-216 cells, 5-fluorouracil-resistant gastric cancer 
cells, and SGC-7901 xenograft mice [58].

Curcumin can be used with other chemotherapeu-
tic agents to achieve synergistic effects, reduce adverse 
effects and enhance sensitivity. Tamoxifen and curcumin 
are packed into a diblocknanopolymer, and this nanopo-
lymer reduces the toxicity of tamoxifen in normal cells 
and exhibits better anti-proliferative and pro-apoptotic 
effects in human breast cancer tamoxifen-sensitive and 
-resistant MCF-7 cells [59]. Triptolide has strong liver 
and kidney toxicities, and when combined with cur-
cumin, they exert synergistic anti-cancer effects in ovar-
ian cancer, as well as reduce the side effects of triptolide 
[60]. In addition, adriamycin, sildenafil, 5-fluorouracil, 
irinotecan, doxorubicin, paclitaxel, sorafenib, Kruppel-
like factor 4, emodin, docosahexaene acid and apigenin 
are shown to exhibit synergistic effects with curcumin 
[61–71]. Similarly, copper supplementation significantly 
enhances the anti-tumor effects of curcumin in several 
oral cancer cells [72], while epigallocatechin-3-gallic acid 
ester (EGCG) increases the ability of curcumin to inhibit 
cell growth and induce apoptosis in human uterine leio-
myosarcoma SKN cells [73].

Clinical trials can confirm or reveal the effects, adverse 
reactions and pharmacokinetics of the drugs. As the bio-
availability of curcumin is very poor, many curcumin 
preparations are synthesized and tested in clinical tri-
als [74–76]. A phase I study was conducted to investi-
gate the safety and pharmacokinetics of theracurmin in 
pancreatic and biliary tract cancer patients who failed 
with standard chemotherapy [76]. They administered 

theracurmin every day with standard gemcitabine-
based chemotherapy. No new adverse effects and no 
increase in the incidence of adverse effects were observed 
among these patients. A pilot phase II study demon-
strated encouraging results for the combination of 
docetaxel/prednisone and curcumin in patients with cas-
tration-resistant prostate cancer. It was found that 59% of 
patients had prostate-specific antigen response and 40% 
of patients achieved partial response. This study has pro-
vided additional evidence for a high response rate and 
better tolerability with the use of curcumin during cancer 
therapy [77].

Epigallocatechin gallate (EGCG)
EGCG, also known as epigallocatechin-3-gallate (Fig. 2), 
is the main polyphenol in green tea (Camellia sinensis). 
Epidemiological studies have indicated that consumption 
of green tea has potential impact of reducing the risk of 
many chronic diseases, such as cardiovascular diseases 
and cancer [78, 79]. EGCG possesses various biological 
effects including anti-obesity and anti-hyperuricemia, 
anti-oxidative, anti-viral, anti-bacterial, anti-infective, 
anti-angiogenic, anti-inflammatory and anti-cancer activ-
ities [80–84]. It is reported to present anti-cancer effects 
in variety of cancer cells, including lung, colorectal, pros-
tate, stomach, liver, cervical, breast, leukemia, gastric, 
bladder cancers [85–90]. Among its anti-cancer activi-
ties, EGCG exhibits multiple pharmacological actions, 
including the suppression of cell growth, proliferation, 
metastasis and angiogenesis, induction of apoptosis, and 
enhancement of anti-cancer immunity [85, 86, 91–94].

EGCG can inhibit cell proliferation through multiple 
ways in many types of cancer cells. It inhibits cell pro-
liferation in human bladder cancer SW-780, breast can-
cer MDA-MB-231 and NSCLC A549 cells, and inhibits 
tumor growth in gastric cancer SGC-7901 xenograft 
mice [89, 94, 95]. It also induces apoptosis in human oral 
cancer KB, head and neck cancer FaDu, NSCLC A549, 
and breast cancer MCF-7 cells [96, 97]. Besides, EGCG 
induces autophagy, and inhibition of autophagy can 
enhance EGCG-induced cell death in human mesothe-
limoa ACC-meso, Y-meso, EHMES-10, EHMES-1 and 
MSTO-211H, and primary effusion lymphoma BCBL-1 
and BC-1 cells [98, 99]. In contrast, it induces cell death 
via apoptosis and autophagy in oral squamous cell carci-
noma SCC-4 cells [84], so autophagy plays a dual role in 
EGCG-induced cell death. It can also suppress metastasis 
in human melanoma SK-MEL-5, SK-MEL-28, A375 and 
G361, NSCLC CL1-5, A549 and H1299 cells, and lung 
metastasis mice [85, 93, 100]. In addition, EGCG sup-
presses tumor angiogenesis in human NSCLC A549 cells 
and A549 xenograft mice [101].
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EGCG mediates apoptosis which involves pro- and 
anti-apoptotic proteins in various cancer cells. It up-reg-
ulates pro-apoptotic proteins such as Bcl-2-associated X 
protein (Bax), and down-regulates anti-apoptotic pro-
teins including B-cell lymphoma 2 (Bcl-2), B-cell lym-
phoma-extra large (Bcl-xL) and survivin [97, 102–104]. 
ER stress also plays an important role in EGCG-induced 
cell death. EGCG inhibits endoplasmic reticulum (ER) 
stress-induced protein kinase R-like endoplasmic reticu-
lum kinase (PERK) and eukaryotic translation-initiation 
factor 2α (eIF2α) phosphorylation [105]. Besides, poly 
(ADP-ribose) polymerase (PARP) 16 is shown to activate 
ER stress markers, PERK and inositol-requiring enzyme 
1α (IRE1α) [106]. ER stress-induced apoptosis, PERK 
and eIF2α phosphorylation by EGCG are suppressed in 
PARP16-deficient hepatocellular carcinoma QGY-7703 
cells, so EGCG mediates apoptosis through ER stress, 
which is dependent on PARP16 [105]. Similarly, EGCG 
causes 78-kDa glucose-regulated protein (GRP78) accu-
mulation in the ER, which up-regulates ER stress markers 
such as activating transcription factor 4 (ATF-4), X-box 
binding protein 1 (XBP-1) and C/EBP homologous pro-
tein (CHOP), and shifts into pro-apoptotic ER stress, 
leading to increased caspase-3 and -8 activities [107]. 
Furthermore, it suppresses cell migration and invasion 
by blocking tumor necrosis factor (TNF) receptor-associ-
ated factor 6 (TRAF6), MMP-2/c-Jun N-terminal kinase 
(JNK) and transforming growth factor-β (TGF-β) path-
ways [85, 93, 100].

In addition to anti-cancer effects, EGCG shows a sig-
nificant inhibitory effect on interferon-γ (IFN-γ)-induced 
indoleamine 2,3-dioxygenase (IDO) expression, an 
enzyme that guides cancer to regulate immune response, 
in human colorectal cancer SW-837 cells [108], so this 
suggests that EGCG might be useful for chemopreven-
tion and colorectal cancer treatment, and could be a 
potential agent for anti-tumor immunotherapy. EGCG is 
also found to be a potential immune checkpoint inhibitor, 
which down-regulates IFN-γ-induced B7 homolog 1 (B7-
H1) levels, an immunoglobulin-like immune suppressive 
molecule, in human NSCLC A549 cells [109].

Although EGCG has numerous biological activities 
through different pathways, its efficacy demonstrated in 
in  vivo studies is not always consistent with the results 
of in vitro studies. This can be due to its low oil solubil-
ity, metabolic instability and poor bioavailability [110]. 
Therefore, EGCG analogs and EGCG-loaded nanopar-
ticles by modifying EGCG are developed, and they have 
been reported to enhance anti-cancer effects [111–113]. 
The peracetate-protected (−)-EGCG, a prodrug of EGCG 
obtained by modifying the reactive hydroxyl groups with 
peracetate groups, is shown to increase the bioavailability 
of EGCG and inhibit angiogenesis in endometrial cancer 

xenograft mice [111]. Besides, EGCG-DHA (docosahex-
aenoic) ester, a lipophilic derivative of EGCG, shows 
improved anti-oxidative effects compared to EGCG, 
and suppresses colon carcinogenesis in mice [112, 113]. 
In the last decade, many studies were carried out using 
EGCG-loaded nanoparticles including FA-NPS-PEG and 
FA-PEG-NPS (epigallocatechin gallate-β-lactoglobulin 
nanoparticles), EGCG-SLN (solid lipid nanoparticle), 
DT-EGCG-nanoethosomes, FCS-EGCG-NPs (chi-
tosan coated nanoparticles), EGCG-dispersed selenium 
nanoparticles, 198AuNP-EGCg (gold nanoparticles), 
EGCG-loaded microspheres (EGCG/MS), and FCMPs 
(ferritin-chitosan Maillard reaction products) [6, 110, 
114–121]. These EGCG nanoparticles can improve the 
targeting ability and efficacy of EGCG, which greatly pro-
mote the clinical application and development of EGCG 
analogs.

EGCG antagonizes toxicity induced by anti-cancer 
chemotherapeutic agents, and sensitizes chemo-resist-
ant cancer cells. It also exerts synergistic effects with 
anti-cancer agents in various cancer cells, such as cis-
platin, oxaliplatin, temozolomide, resveratrol, doxoru-
bicin, vardenafil, curcumin, erlotinib [122–129]. EGCG 
can enhance the sensitivity of cisplatin through copper 
transporter 1 (CTR1) up-regulation, which results in the 
accumulation of cellular cisplatin and cisplatin–DNA 
adducts in human ovarian cancer SKOV3 and OVCAR3 
cells, and the combination of EGCG and cisplatin sup-
presses tumor growth in OVCAR3 xenograft mice [122]. 
The combined low concentration of EGCG and curcumin 
remarkably inhibits cell and tumor growth in human 
NSCLC A549 and NCI-H460 cells, and A549 xenograft 
mice through cell cycle arrest [123].

To evaluate the tolerance, safety, pharmacokinetics and 
efficacy of EGCG in humans, clinical trials have been or 
are currently being conducted for cancer treatment. Dur-
ing a phase I clinical trial for the treatment of radiation 
dermatitis, patients with breast cancer received adjuvant 
radiotherapy and EGCG solution. It was found that the 
maximum dose (660 μM) of EGCG was well tolerated and 
the maximum tolerated dose was undetermined [130]. 
It was concluded that EGCG was effective for treating 
radiation dermatitis. Moreover, a phase II clinical trial 
was conducted to investigate the benefits of EGCG as a 
treatment for acute radiation-induced esophagitis (ARIE) 
for patients with stage III lung cancer. The oral admin-
istration of EGCG was shown to be effective and phase 
III clinical trial to study the potential effects of EGCG to 
ARIE treatment was anticipated [131].

Berberine
Berberine (Fig.  2) is an isoquinoline alkaloid mainly 
extracted from medicinal plants such as Coptidis 
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chinensis Franch., Mahonia bealei (Fort.) Carr., and Phel-
lodendron chinense Schneid. [132]. Berberine has diverse 
pharmacological effects and is normally used for the 
treatment of gastroenteritis [133, 134]. It exhibits sig-
nificant anti-cancer effects in a wide spectrum of cancers 
including ovarian, breast, esophageal, and thyroid can-
cers, leukemia, multiple myeloma, nasopharyngeal car-
cinoma, and neuroblastoma, through inducing cell cycle 
arrest and apoptosis, inhibiting metastasis and angiogen-
esis [135–143].

Berberine can induce cell cycle arrest in various can-
cer cells [137, 144, 145]. Berberine induces G1 and G2/M 
phase arrest in murine prostate cancer RM-1 cells, and 
G1 cell arrest by regulating cyclins D1 and E expressions 
in human HER2-overexpressed breast cancer cells [144, 
145]. However, berberine induces G1 phase arrest in 
human estrogen receptor positive breast cancer MCF-7 
cells but not in estrogen receptor negative MDA-MB-231 
cells [137]. Besides, it inhibits cell proliferation by induc-
ing apoptosis in human colorectal cancer HCT-8 cells 
[146]. In p53-null leukemia EU-4 cells, berberine induces 
p53-independent and X-linked inhibitor of apoptosis 
protein (XIAP)-mediated apoptosis, which is associated 
with mouse double minute 2 homolog (MDM2) and pro-
teasomal degradation [135]. Mitochondrial-mediated 
apoptosis with Bcl-2-like protein 11 (Bim) up-regulation 
and Forkhead box O (FoxO) nuclear retention is vital 
in berberine-induced apoptosis [147]. In addition, ber-
berine can induce autophagic cancer cell death through 
increased GRP78 levels and enhancing the binding ability 
of GRP78 to VPS34 in human colorectal cancer HCT-116 
cells [148], whilst it induces autophagy through inhibiting 
AMPK/mTOR/UNC-51-like kinase 1 (ULK-1) pathway 
in human glioma U251 and U87 cells [149]. In contrast, 
berberine induces protective autophagy in human 
malignant pleural mesothelioma NCI-H2452 cells, and 
inhibition of autophagy promotes berberine-induced 
apoptosis [150]. Therefore, autophagy plays a dual role 
in berberine-induced apoptosis. Furthermore, berberine 
also inhibits tumor migration and invasion [143, 151]. It 
up-regulates plasminogen activator inhibitor-1 (PAI-1), 
a tumor suppressor that down-regulates urokinase-type 
plasminogen activator (uPA) and antagonizes uPA recep-
tor to suppress metastasis in human hepatocellular car-
cinoma Bel-7402 and SMMC-7721 cells [143]. Berberine 
also inhibits epithelial mesenchymal transition through 
PI3K/Akt pathway in murine melanoma B16 cells, [151], 
and suppresses angiogenesis in glioblastoma U87 xeno-
graft mice and HUVECs [152, 153].

Berberine interacts with diverse molecular targets 
as it binds to nucleic acids via specific deoxyribonu-
cleic acid (DNA) sequences [154]. Several mechanisms 
have been identified for the anti-proliferative effects of 

berberine, including down-regulation of cyclins A, D, 
cyclin-dependent kinase (CDK) 1, CDK4, MMP-2 and 
janus kinase 2 (Jak2)/vascular endothelial growth factor 
(VEGF)/NF-κB/activator protein 1 (AP-1) pathway, and 
induction of autophagic cell death via mTOR signaling 
pathway [149, 155, 156]. Berberine also induces mito-
chondrial-mediated apoptosis through the loss of mito-
chondrial membrane potential, cytochrome c release, 
caspase and PARP activation, up-regulation of pro-apop-
totic Bcl-2 family proteins, and down-regulation of anti-
apoptotic Bcl-2 family proteins [150, 157–159]. It can 
also activate apoptosis-inducing factor to induce ROS-
mediated cell death in pancreatic, breast, and colon can-
cers [158, 160, 161].

Immunotherapy has made great progress to cancer 
treatment over the past few years. Toll-like receptors 
(TLRs) can activate innate immune responses for host 
defense [162]. Berberine inhibits proto-oncogene tyros-
ine kinase Src activation and TLR4-mediated chemotaxis 
in lipopolysaccharide (LPS)-induced macrophages [163]. 
Besides, IDO1 inhibitors are promising candidates for 
cancer immunotherapy [164]. Berberine and its deriva-
tives are shown to exhibit anti-cancer activity through 
cell killing by NK cells via IDO1 [165]. IL-8 is associated 
with metastasis, and berberine decreases IL-8 levels to 
inhibit cell growth and invasion in triple-negative breast 
cancer cells [166].

Berberine has low oral bioavailability as well as poor 
intestinal absorption [167]. As it has pronounced anti-
microbial activity against gut microbiota, high dosage can 
translates into adverse events [168]. This limits the clini-
cal use of berberine, and different approaches have been 
applied to improve the bioavailability of berberine. d-α-
Tocopheryl polyethylene glycol 1000 succinate enhances 
the intestinal absorption of berberine by inhibiting P-gp 
activity in rats [167]. A self-microemulsifying drug deliv-
ery system is developed to improve the bioavailability 
of berberine, the bioavailability is increased by 2.42-fold 
[169]. Ber8, a 9-alkylated derivative of berberine, has bet-
ter cytotoxicity and cellular uptake than berberine, and 
further inhibits cell proliferation and induces cell cycle 
arrest in different cell lines, including SiHa, HL-60, and 
A549 cells [170].

The combination of berberine and chemo- or radio-
therapies provides synergistic anti-cancer effects [171, 
172]. Taxol combined with berberine significantly slows 
down cell growth in human epidermal growth factor 
receptor 2 (HER2)-overexpressed breast cancer cells 
[145], while the combined administration of berberine 
and caffeine enhances cell death through apoptosis and 
necroptosis in human ovarian cancer OVCAR3 cells 
[173]. The combination therapy of berberine and nira-
parib, a PARP inhibitor, markedly enhances apoptosis 
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and inhibits tumor growth in ovarian cancer A2780 
xenograft mice [174]. Therefore, combination of berber-
ine with other therapies is a promising treatment for the 
alternative cancer therapy.

Previous pre-clinical research and animal studies 
have demonstrated the anti-tumor action of berberine 
hydrochloride. The people with a history of colorectal 
cancer might be at higher risk for adenomas, thus they 
are particularly suitable for the study of the chemopre-
ventive effects of berberine hydrochloride in adenomas. 
A randomized, double-blind, placebo-controlled trial 
was designed to determine whether the daily intake of 
300  mg of berberine hydrochloride could decrease the 
occurrence of new colorectal adenomas in patients with 
a history of colorectal cancer, and it is currently ongoing. 
Another phase II clinical trial of berberine and gefitinib is 
also ongoing in patients with advanced NSCLC and acti-
vating EGFR mutations.

Artemisinins
Artemisinin (Fig.  2) is a sesquiterpene peroxide derived 
from annual wormwood (Artemisia annua L.), which 
was originally used as Traditional Chinese Medicine for 
treating malaria and related symptoms such as fever and 
chills [175]. Since the 2015 Nobel Prize in Physiology 
or Medicine conferred to Chinese scientist, Youyou Tu, 
artemisinin drew attention to worldwide [176]. Beside 
from their well-established anti-malarial effects, arte-
misinin and its derivatives (ARTs), including dihydroar-
temisinin (DHA), artesunate, artemether and arteether, 
are also found to exhibit potent anti-cancer activities in 
many studies [177–182]. DHA and artesunate are the 
most studied ART derivatives for cancer treatment, and 
artesunate will be discussed in a separate section. The 
anti-cancer effects of ARTs are demonstrated in a broad 
spectrum of cancer cells including lung, liver, pancreatic, 
colorectal, esophageal, breast, ovarian, cervical, head and 
neck, and prostate cancers [183–191]. The anti-cancer 
activities of ARTs include induction of apoptosis and cell 
cycle arrest, inhibition of cell proliferation and growth, 
metastasis and angiogenesis [189, 192–195].

ART inhibits cell proliferation, migration and invasion, 
and induces apoptosis in human breast cancer MCF-7 
cells [193, 196], while DHA suppresses cell growth 
through cell cycle arrest and apoptosis in human hepa-
tocellular carcinoma HepG2 cells and HepG2 xenograft 
mice [178]. Similarly, ART induces apoptosis in murine 
mastocytome P815 cells and hamster kidney adenocarci-
noma BSR cells, and inhibits tumor growth in P815 xeno-
graft mice [177]. Moreover, autophagy plays a vital role 
in ART-mediated anti-cancer activities [190, 197–201]. 
DHA can induce autophagy-dependent cell death in 
human cervical cancer HeLa cells, cholangiocarcinoma 

KKU-452, KKU-023 and KKU-100, and tongue squa-
mous cell carcinoma Cal-27 cells [190, 198, 199], while 
ART induces autophagy-mediated cell cycle arrest in 
human ovarian cancer SKOV3 cells [200]. DHA is also 
shown to induce autophagy by suppressing NF-κB acti-
vation in several cancer cells including RPMI 8226, NB4, 
HCT-116, and HeLa cells [202]. Furthermore, ART and 
DHA can also inhibit metastasis in various cancer cells 
such as non-small-cell lung carcinoma (NSCLC), ovar-
ian and lung cancer cells [184, 189, 203]. Apart from 
apoptosis and metastasis, the inhibition of angiogen-
esis is also a crucial approach in cancer treatment. ART 
inhibits angiogenesis through mitogen-activated protein 
kinase (MAPK) activation in osteosarcoma [204], whilst 
DHA exerts strong anti-angiogenic effect by repressing 
extracellular signal–regulated kinase (ERK) and NF-κB 
pathways in human umbilical vein endothelial cells 
(HUVECs) and pancreatic cancer, respectively [194, 195].

In the past decades, studies have been focused on stud-
ying the anti-cancer mechanisms of ARTs, but there are 
contentions. ARTs inhibit cancer cell proliferation mainly 
by the induction of apoptosis through mitochondrial-
dependent pathways [196, 205, 206]. ART mediates the 
release of cytochrome c and caspase-9 cleavage, leading 
to increased apoptosis in human breast cancer MCF-7 
cells [196]. DHA induces apoptosis through Bcl-2 down-
regulation in human cervical cancer HeLa and Caski 
cells [205], and via Bim-dependent intrinsic pathway in 
human hepatocellular carcinoma HepG2 and Huh7 cells 
[206]. Interestingly, ART is demonstrated to be an inhibi-
tor of anti-cancer target, histone deacetylases (HDAC) 
[196]. In addition, another mechanism of killing tumor 
cells by ARTs is iron-dependent cell death called ferrop-
tosis, a new form of cell death, so ferroptosis becomes an 
attractive strategy for cancer treatment [183, 207].

DHA can enhance the anti-tumor cytolytic activity 
of γδ T cells against human pancreatic cancer SW1990, 
BxPC-3 and Panc-1 cells [208], and ART also potenti-
ates the cytotoxicity of NK cells to mediate anti-tumor 
activity [209]. Similarly, ART inhibits tumor growth 
through T cell activation and  Treg suppression in breast 
cancer 4T1 xenograft mice [188]. Therefore, this pro-
vides a novel strategy for treating pancreatic cancer with 
immunotherapy.

ART has poor water solubility and bioavailability. 
In order to solve this issue, ART is encapsulated into 
micelles by nanoprecipitation to form ART-loaded 
micelles [210]. The ART-loaded micelles enhance the 
drug exposure time and accumulation in breast can-
cer 4T1 xenograft mice, and shows specific toxicity in 
human and murine breast cancer MCF-7 and 4T1 cells. 
A mitochondrial-targeting analog of ART is also synthe-
sized to specifically target mitochondria for enhancing 
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the inhibition of cell proliferation in various cancer cells 
including HCT-116, MDA-MB-231, HeLa and SKBR3 
cells [211]. Moreover, dimmers of ART are also synthe-
sized by polyamine linkers, and they further inhibit cell 
proliferation in human breast cancer MCF-7 cells and 
angiogenesis in HUVECs [212].

Many studies show the synergistic effects of ARTs 
with other compounds or therapeutic approaches. The 
combined treatment of ART and resveratrol markedly 
inhibits cell proliferation and migration, and enhances 
apoptosis and ROS production in human cervical can-
cer HeLa and hepatocellular carcinoma HepG2 cells 
[213]. Similarly, the use of combined DHA and gemcit-
abine exhibits strong synergistic effects on the loss of 
mitochondrial membrane potential and induction of 
apoptosis in human NSCLC A549 cells [214]. DHA also 
reinforces the anti-cancer activity of chemotherapeu-
tic agent, cisplatin, in cisplatin-resistant ovarian cancer 
cells [215]. Studies also demonstrate the enhancement of 
sensitivity by DHA in photodynamic therapy in esopha-
geal cancer [182, 216]. Therefore, this suggests that ARTs 
could be potential anti-cancer agents.

The population pharmacokinetic properties of DHA 
were investigated using the plasma and saliva of breast 
cancer patients for long-term treatment (> 3  weeks) 
[217]. The salivary DHA concentration was proportion-
ally correlated with the plasma DHA concentration, so 
saliva is a good use for monitoring DHA levels in the 
body. An artemisinin analog, Artenimol-R, was shown 
to improve clinical symptoms and tolerability in patients 
with advanced cervical cancer [218].

Ginsenosides
Ginsenosides (Fig. 2) are the main bioactive dammarane 
triterpenoids derived from the rhizomes of many plants 
including Panax notoginseng (Burk.) F. H. Chen, Panax 
ginseng and Cinnamomum cassia Presl., with various 
biological effects including anti-oxidative, anti-inflamma-
tory, and anti-cancer activities [219–222]. Ginsenosides 
mainly exert anti-cancer effects in colorectal, breast, liver 
and lung cancers, through inhibiting cell proliferation 
and migration, angiogenesis, and reversing drug resist-
ance [7, 223–230]. Ginsenoside Rg3, ginsenoside Rh2, 
and compound K are the primary bioactive compounds 
among ginsenosides for cancer prevention.

Ginsenoside Rg3 inhibits cell viability and induces cell 
apoptosis in human ovarian cancer HO8910 cells [231], 
hepatocellular carcinoma Hep1-6, HepG2 and SMMC-
7721, breast cancer MCF-7, MDA-MB-231, MDA-
MB-453 and BT-549, and NSCLC A549, H23 and Lewis 
lung carcinoma cells [232–238]. It induces cell cycle 
arrest at G1 phase in human melanoma A375, and mul-
tiple myeloma U266, RPMI 8226 and SKO-007 cells [239, 

240], and inhibits cell migration in human colorectal can-
cer LoVo, SW-620 and HCT-116 cells [240]. Ginsenoside 
Rg3 can also modulate the tumor environment through 
inhibiting angiogenesis and enhancing anti-tumor 
immune responses [241]. Moreover, ginsenoside Rh2 
exhibits anti-tumor activity in human NSCLC H1299 
cells and H1299 xenograft mice, through the induction 
of ROS-mediated ER-stress-dependent apoptosis [242]. 
It also suppresses cell proliferation and migration, and 
induces cell cycle arrest in human hepatocellular car-
cinoma HepG2 and Hep3B cells, and inhibits tumor 
growth in HepG2 xenograft mice [243]. Compound K, 
an intestinal bacterial metabolite of ginsenosides, also 
induces cell cycle arrest and apoptosis in human colorec-
tal cancer HCT-116 cells, and suppresses tumor growth 
in HCT-116 xenograft mice [244]. It also efficiently 
inhibits cell proliferation and induces apoptosis through 
mitochondrial-related pathways in human hepatocel-
lular carcinoma MHCC97-H cells [245]. Furthermore, 
20(S)-ginsenoside Rg3 induces autophagy to mediate cell 
migration and invasion in human ovarian cancer SKOV3 
cells [246]. In contrast, it sensitizes NSCLC cells to ico-
tinib and hepatocellular carcinoma cells to doxorubicin 
through the inhibition of autophagy [247, 248]. Besides, 
ginsenoside Rh2 inhibits cell growth partially through the 
coordination of autophagy and β-cateninin signaling in 
human heptocellular carcinoma HepG2 and Huh7 cells 
[249]. Compound K induces autophagy-mediated apop-
tosis through AMPK/mTOR and JNK pathways in human 
NSCLC A549 and H1975 cells [250], while it also induces 
autophagy and apoptosis through ROS and JNK path-
ways in human colorectal cancer HCT-116 cells [251]. 
Therefore, autophagy plays a dual role in cancer via dif-
ferent signaling routes.

In recent years, the potential anti-cancer mechanisms 
of ginsenoside Rg3 have been demonstrated in various 
cancer models, which include the inhibition of cell pro-
liferation and induction of apoptosis via down-regulating 
PI3K/Akt, and activation of caspase-3 and -9 and Bcl-2 
family proteins [234, 252], induction of cell cycle arrest 
by regulating CDK pathway [240], inhibition of metas-
tasis through reducing the expressions of aquaporin 
1, C–X–C chemokine receptor type 4 (CXCR4) and 
hypoxia-inducible factor 1α (HIF-1α) [253–255]. More-
over, 20(S)-ginsenoside Rh2 is shown to bind to recom-
binant and intracellular annexin A2 directly, and this 
inhibits the interaction between annexin A2 and NF-κB 
p50 subunit, which decreases NF-κB activation [256]. 
NF-κB is important in cell survival, and 20(S)-ginseno-
side Rh2 can inhibit cell survival through NF-κB pathway. 
Furthermore, p53 also plays a vital role in ginsenoside-
induced anti-cancer activities [244, 257, 258]. Ginse-
noside Rh2 induces cell death through p53 activation 
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in human colorectal cancer HCT-116 and SW-480 cells 
[257], while ginsenoside Rg3 and compound K induces 
apoptosis and cell cycle arrest through p53/p21 up-regu-
lation in human colorectal cancer HCT-116, SW-480 and 
HT-29, and gallbladder cancer NOZ and GBC-SD cells, 
respectively [244, 258].

For the promotion of immunity, ginsenoside Rg3 can 
enhance lymphocyte proliferation and T helper type 1 
cell (Th1)-related cytokine secretion including IL-2 and 
IFN-γ in hepatacellular carcinoma H22-bearing mice, 
and inhibit tumor growth partly through the induc-
tion this cellular immunity [259]. Ginsenoside Rg3 can 
also down-regulate the levels of B7-H1 and B7 homolog 
3 (B7-H3), immunoglobulin-like immune suppressive 
molecules, to modulate tumor microenvironment and 
enhance anti-tumor immunity, and these molecules are 
negatively associated with overall survival in colorectal 
cancer patients [241]. It also ameliorates cisplatin resist-
ance by down-regulating B7-H1 levels and resuming T 
cell cytotoxicity in human NSCLC A549 and A549/DDP 
cells [260]. In addition, ginsenoside Rh2 can also enhance 
anti-tumor immunity in melanoma mice by promoting 
T cell infiltration in the tumor and cytotoxicity in spleen 
lymphocytes [261].

The combination of ginsenosides with other chemo-
therapeutic agents provides significant advantages for 
cancer treatment. Ginsenoside Rg3 alone demonstrates 
modest anti-angiogenic effects, and displays additive 
anti-angiogenic effects in B6 glioblastoma rats when 
combined with temozolomide [262]. When it is com-
bined with paclitaxel, it enhances cytotoxicity and apop-
tosis through NF-κB inhibition in human triple-negative 
breast cancer MDA-MB-231, MDA-MB-453 and BT-549 
cells [233].

Ginsenosides have a long history of use as traditional 
medicine to treat many diseases in China. Relatively few 
clinical studies have been performed in humans even-
though ginseng products are widely recognized to have 
therapeutic effects when used alone or in combination 
with other chemotherapeutic agents. Therefore, clinical 
studies are needed to confirm the safety of such uses. A 
phase II clinical trial is conducting to assess the safety 
and efficacy of ginsenoside Rg3 in combination with first-
line chemotherapy in advanced gastric cancer. Patients 
with advanced NSCLC and epidermal growth factor 
receptor-tyrosine kinase inhibitor (EGFR-TKI) muta-
tion were recruited in a study that investigated the safety 
and efficacy of the combined therapy, ginsenoside Rg3 
and EGFR-TKI. It was shown that this therapy increased 
progression-free survival, overall survival and objective 
response rate compared to EGFR-TKI alone [263]. In 
another study, the safety and efficacy of combined ginse-
noside Rg3 and transcatheter arterial chemoembolization 

(TACE) were studied in patients with advanced hepa-
tocellular carcinoma. The results showed that this ther-
apy ameliorated TACE-induced adverse effects and 
prolonged the overall survival compared to the use of 
TACE alone [264].

Ursolic acid (UA)
As an ursane-type pentacyclic triterpenic acid, UA 
(Fig. 2) can be found in the berries and leaves of a series 
of natural medicinal plants, including Vaccinium mac-
rocarpon Ait. (cranberry), Arctostaphylos uva-ursi (L.) 
Spreng (bearberry), Rhododendron hymenanthes Makino, 
Eriobotrya japonica, Rosemarinus officinalis, Calluna 
vulgaris, Eugenia jambolana and Ocimum sanctum, as 
well as in the wax-like protective coatings of fruits such 
as pears, apples and prunes [265]. UA has numerous 
biochemical and pharmacological effects including anti-
inflammatory, anti-oxidative, anti-proliferative, anti-ath-
erosclerotic, anti-leukemic, anti-viral, and anti-diabetic 
effects [266–272]. It also exerts anti-cancer activities in 
ovarian, breast, gastric, prostate, lung, liver, bladder, pan-
creatic, and colorectal cancers [273–281].

UA can be used as a potential therapeutic agent for 
the treatment of various cancers [281–289]. It induces 
apoptosis through both extrinsic death receptor and 
mitochondrial death pathways in human breast cancer 
MDA-MB-231 cells [289], and inhibits cell prolifera-
tion and induces pro-apoptosis in human breast cancer 
MCF-7 cells by FoxM1 inhibition [282]. UA also inhib-
its cell and tumor growth through suppressing NF-κB 
and STAT3 pathways in human prostate cancer DU-145 
and LNCaP cells, and DU-145 xenograft mice [283], and 
induces apoptosis in human prostate cancer PC-3 cells 
[284]. Similarly, UA induces apoptosis and inhibits cell 
proliferation in human colorectal cancer HCT-15, HCT-
116, HT-29 and Caco-2 cells [286, 287]. UA is also shown 
to induce autophagy to mediate cell death in murine 
cervical cancer TC-1 cells [290], and promote cytotoxic 
autophagy and apoptosis in human breast cancer MCF-7, 
MD-MB-231 and SKBR3 cells [291]. It also inhibits cell 
growth by inducing autophagy and apoptosis in human 
breast cancer cells T47D, MCF-7 and MD-MB-231 cells 
[279]. In contrast, UA induces autophagy, but the inhi-
bition of autophagy enhances UA-induced apoptosis in 
human oral cancer Ca922 and SCC2095, and prostate 
cancer PC-3 cells [265, 292]. Therefore, autophagy plays a 
dual role in UA-induced apoptosis via different signaling 
pathways. In addition, UA inhibits tumor angiogenesis 
through mitochondrial-dependent pathway in Ehrlich 
ascites carcinoma xenograft mice [293].

Increasing evidence has linked the anti-cancer activi-
ties of UA to the activation of mitochondrial-dependent 
signaling pathways, including mitochondrial energy 
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metabolism, oxidative stress and p53-mediated mito-
chondrial pathways [289, 291, 293]. UA is demonstrated 
to have apoptosis-promoting and anti-proliferative 
capacities via modulating the expressions of mitochon-
drial-related proteins such as Bax, Bcl-2, cytochrome 
c and caspase-9 [289, 293]. It can also induce oxidative 
stress and disruption of mitochondrial membrane per-
meability to mediate apoptosis in human osteosarcoma 
MG63 and cervical cancer HeLa cells [294, 295]. In 
addition, p53 pathway also contributes to the anti-can-
cer effects of UA. UA induces apoptosis and cell arrest 
through p21-mediated p53 activation in human colorec-
tal cancer SW-480 and breast cancer MCF-7 cells [296, 
297], and this p53 activation is through inhibiting nega-
tive regulators of p53, MDM2 and T-LAK cell-originated 
protein kinase (TOPK) [297].

Studies have reported the cancer immunomodulatory 
activities of UA [279, 293]. UA down-regulates NF-κB to 
inhibit cell growth and suppress inflammatory cytokine 
levels including TNF-α, IL-6, IL-1β, IL-18 and IFN-γ in 
human breast cancer T47D, MCF-7 and MDA-MB-231 
cells [279]. It also modulates the tumor environment 
by modulating cytokine production such as TNF-α and 
IL-12 in ascites Ehrlich tumor [293].

UA is insoluble in water, with poor pharmacokinetic 
properties including poor oral bioavailability, low dis-
solution and weak membrane permeability [298]. Some 
new drug delivery technologies have been developed to 
overcome these problems including the uses of liposomes 
[280, 299–302], solid dispersions [303], niossomal gels 
[304], and nanoliposomes [278]. Liposome is the most 
commonly used drug delivery system. A chitosan-coated 
UA liposome is synthesized with tumor targeting and 
drug controlled release properties, and has fewer side 
effects [302]. It enhances the inhibition of cell prolifera-
tion and tumor growth in human cervical cancer HeLa 
cells and U14 xenograft mice. Besides, a pH-sensitive 
pro-drug delivery system is also synthesized, and this 
pro-drug enhances cellular uptake and bioavailability of 
UA [305]. It further inhibits cell proliferation, cell cycle 
arrest and induces apoptosis in human hepatocellular 
carcinoma HepG2 cells.

UA can also be used in combination with other drugs. 
The combined treatment of zoledronic acid and UA 
enhances the induction of apoptosis and inhibition of cell 
proliferation through oxidative stress and autophagy in 
human osteosarcoma U2OS and MG63 cells [306], whilst 
the combination of UA and curcumin inhibits tumor 
growth compared to UA alone in skin cancer mice [307]. 
Moreover, UA combined with doxorubicin enhances the 
cellular uptake of doxorubicin, and reverses multi-drug 
resistance (MDR) in human breast cancer MCF-7/ADR 
cells [308].

A human clinical study was conducted to investigate 
the toxicity and pharmacokinetics of UA-liposomes 
(UAL) including dose-limiting toxicity and maximum 
tolerated dose in healthy adult volunteers and patients 
with advanced solid tumors [309]. UAL had manageable 
toxicities under the dose of 98  mg/m2, as well as a lin-
ear pharmacokinetic profile, so it was suggested that UA 
could be developed as a potential and safe drug [309].

Silibinin
Silibinin (Fig. 2), one of the flavonoids isolated from Sily-
bum marianum L. Gaertn, is commonly exploited for the 
treatment hepatic diseases in China, Germany and Japan. 
In addition, silibinin is also found to display various 
biological activities including anti-oxidative, anti-pro-
liferative, anti-bacterial, anti-fungal, neuro-protective, 
anti-leishmanial, anti-osteoclastic and anti-metastatic 
activities [310–317]. Previous studies have reported that 
silibinin exerts remarkable effects in numerous cancers 
such as renal, hepatocellular and pancreatic carcinoma, 
bladder, breast, colorectal, ovarian, lung, salivary gland, 
prostate and gastric cancers, through the induction of 
apoptosis, inhibition of tumor growth, metastasis and 
angiogenesis [318–328].

Silibinin suppresses epidermal growth factor-induced 
cell adhesion, migration and oncogenic transformation 
through blocking STAT3 phosphorylation in triple nega-
tive breast cancer cells [329]. It strongly suppresses cell 
proliferation and induces apoptosis in human pancreatic 
cancer AsPC-1, BxPC-3 and Panc-1 cells, and induces 
cell cycle arrest at G1 phase in AsPC-1 cells [330]. It can 
also induce apoptosis via non-steroidal anti-inflamma-
tory drug-activated gene-1 (NAG-1) up-regulation in 
human colorectal cancer HT-29 cells [331], and induces 
mitochondrial dysfunction to mediate apoptosis in 
human breast cancer MCF-7 and MDA-MB-123 cells 
[332]. Moreover, silibinin induces autophagic cell death 
via ROS-dependent mitochondrial dysfunction in human 
breast cancer MCF-7 cells [333]. In contrast, it induces 
autophagy to exert protective effect against apoptosis in 
human epidermoid carcinoma A-431, glioblastoma A172 
and SR, and breast cancer MCF-7 cells [334–336], and 
autophagy inhibition enhances silibinin-induced apop-
tosis in human prostate cancer PC-3 cells [337]. Silibinin 
also induces autophagy to inhibit metastasis in human 
renal carcinoma ACHN and 786-O cells, and salivary 
gland adenoid cystic carcinoma cells [317]. Therefore, 
autophagy plays a dual role in silibinin-induced anti-
cancer effects. In addition, silibinin inhibits angiogenesis 
in human prostate cancer PCa, LNCaP and 22Rv1 cells 
[327].

Silibinin exhibits anti-cancer activities mainly due to 
the cell cycle arrest [330, 338–341]. It induces G1 phase 
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arrest in human pancreatic cancer SW1990 and AsPC-
1, and breast cancer MCF-7 and MCF-10A cells [330, 
339, 340], whilst it causes G2 phase arrest in human 
cervical cancer HeLa, and gastric cancer MGC-803 and 
SGC-7901 cells [338, 341]. It also decreases the expres-
sions of CDKs such as CDK1, CDK2, CDK4 and CDK6 
that are involved in G1 and G2 progression [338, 339]. 
Besides, silibinin suppresses metastasis through ERK1/2 
and MMP-9 down-regulation in human thyroid cancer 
TPC-1, breast cancer MCF-7, renal carcinoma ACHN, 
OS-RC-2 and SW-839, and epidermoid carcinoma A-431 
cells [342–344]. In addition, silibinin induces apopto-
sis and inhibits proliferation through the suppression 
of NF-κB activation [345–348]. On the other hand, sili-
binin is shown to induce apoptosis through the promo-
tion of mitochondrial dysfunction, including increased 
cytochrome c and Bcl-2 levels, the loss of mitochondrial 
membrane potential, and decreased adenosine triphos-
phate (ATP) levels [332, 333, 349, 350].

Silibinin has immunomodulatory effects in cancer and 
immunity. The MDSCs are associated with immunosup-
pression in cancer, and silibinin increases the survival 
rate in breast cancer 4T1 xenograft mice, and reduces 
the population of MDSCs in their blood and tumor [351]. 
There was also a reduction in macrophage infiltration 
and neutrophil population in silibinin-treated prostate 
cancer TRAMPC1 xenograft mice [352]. These studies 
suggest a role of immunity in its anti-tumor effects.

Silibinin has poor water solubility and bioavailabil-
ity, so it limits its efficacy in anti-cancer activities [353]. 
Advanced technologies such as nanoprecipitation tech-
nique are used to solve this issue [325, 353–356]. Sil-
binin is encapsulated in  Eudragit® E nanoparticles in the 
presence of polyvinyl alcohol, and these nanoparticles 
enhance apoptosis and cytotoxicity in human oral cancer 
KB cells [353]. The silibinin-loaded magnetic nanopar-
ticles further inhibit cell proliferation in human NSCLC 
A549 cells [325], while silibinin-loaded chitosan nano-
particles enhances cytotoxicity compared to silibinin 
alone in human prostate cancer DU-145 cells [356].

The combination of silibinin and other drugs are used 
in cancer treatment to enhance the efficacy of anti-can-
cer effects [324, 357–359]. The combination of curcumin 
and silibinin enhances the inhibition of cell growth and 
reduction in telomerase gene expression compared to 
silibinin alone in human breast cancer T47D cells [357]. 
The mixture of luteolin and silibinin also shows syner-
gistic effects on the attenuation of cell migration and 
invasion, and induction of apoptosis in human glioblas-
toma LN18 and SNB19 cells [358]. Silibinin and pacli-
taxel combination enhances apoptosis and up-regulates 
tumour suppressor genes, p53 and p21, in human ovarian 
cancer SKOV3 cells [324].

Silibinin has been widely used as anti-cancer drug 
in vitro and in vivo, and its combination with other thera-
pies is a promising treatment for cancer, so clinical trials 
are needed to confirm its safety and efficacy in humans, 
and to develop as an anti-cancer drug.

Emodin
Emodin (Fig.  2) is an anthraquinone derivative isolated 
from many plants including Rheum palmatum, Polygo-
num cuspidatum, Polygonum multiflorum, and Cassia 
obtusifolia. It exhibits remarkable biological effects such 
as anti-inflammation, anti-oxidant, prevention of intra-
hepatic fat accumulation and DNA damage [360–366]. 
Many studies have shown that emodin can attenuate 
numerous cancers including nasopharyngeal, gall blad-
der, lung, liver, colorectal, oral, ovarian, bladder, pros-
tate, breast, stomach and pancreatic cancers, through the 
inhibition of cell proliferation and growth, metastasis, 
angiogenesis, and induction of apoptosis [367–379].

Emodin suppresses ATP-induced cell proliferation and 
migration through inhibiting NF-κB activation in human 
NSCLC A549 cells [380], and induces apoptosis through 
cell cycle arrest and ROS production in human hepato-
cellular carcinoma HepaRG cells [381]. It also induces 
autophagy to mediate apoptosis through ROS production 
in human colorectal cancer HCT-116 cells [382]. Moreo-
ver, emodin can inhibit tumor growth and metastasis in 
triple negative breast cancer cells, and human colorectal 
cancer HCT-116 cells [383, 384], whilst it suppresses cell 
migration and invasion through microRNA-1271 up-reg-
ulation in human pancreatic cancer SW1990 cells [385]. 
In addition, emodin can also inhibit angiogenesis in thy-
roid and pancreatic cancers [386–388].

Emodin exerts anti-cancer effects through various 
mechanisms. It effectively suppresses cell proliferation 
through inhibiting estrogen receptor α (ERα) genomic 
and PI3K/Akt non-genomic pathways in human breast 
cancer MCF-7 and MDA-MB-231 cells [389]. Besides, 
mitochondria and ER stress also play an important role 
in mediating emodin-induced anti-cancer effects [381, 
390–392]. Emodin induces apoptosis through the loss of 
mitochondrial membrane potential, modulation of Bcl-2 
family proteins, and caspase activation in human colo-
rectal cancer CoCa cells and hepatocellular carcinoma 
HepaRG cells [381, 390]. ER stress is activated in emodin-
treated human osteosarcoma U2OS cells, and emodin-
induced apoptosis is suppressed by ER stress inhibition 
with 4-phenylbutyrate (4-PBA) in human NSCLC A549 
and H1299 cells [391, 393].

Emodin has immunomodulatory effects in cancer 
and immunity. It inhibits cell growth and metastasis 
through blocking the tumor-promoting feed forward 
loop between macrophages and breast cancer cells [394]. 
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It also down-regulates CXCR4 to suppress C–X–C motif 
chemokine 12 (CXCL-12)-induced cell migration and 
invasion in hepatocellular carcinoma HepG2 and HepG3 
cells [395]. In addition, emodin inhibits the differentia-
tion of maturation of DCs [396], and can modulate mac-
rophage polarization to restore macrophage homeostasis 
[397].

Aloe-emodin is a derivate of emodin, which exhib-
its superior bioactivities in some cancers. It can inhibit 
cell proliferation through caspase-3 and caspase-9 acti-
vation in human oral squamous cell carcinoma SCC-15 
cells [398], and induce apoptosis in human cervical can-
cer HeLa and SiHa cells, which is associated with glucose 
metabolism [399]. Another derivative of emodin, rhein, 
can also induce apoptosis in human pancreatic cancer 
Panc-1 cells, and inhibit tumor growth in pancreatic can-
cer xenograft mice [400]. It also inhibits cell migration 
and invasion through regulating Rac1/ROS/MAPK/AP-1 
signaling pathway in human ovarian cancer SKOV3-PM4 
cells [401].

The combination of emodin and other chemotherapies 
is widely used for cancer treatment. Emodin can pro-
mote the anti-tumor effects of gemcitabine in pancreatic 
cancer [402–404]. It enhances apoptosis in human pan-
creatic cancer SW1990 cells, and further inhibits tumor 
growth in SW1990 xenograft mice, through suppressing 
NF-κB pathway [402, 403]. The combination of emodin 
and curcumin can also enhance the inhibition of cell pro-
liferation, survival, and invasion in human breast can-
cer MDA-MB-231, MDA-MB-435 and 184A1 cells [64]. 
Moreover, emodin enhances cisplatin-induced cytotoxic-
ity through ROS production and multi-drug resistance-
associated protein 1 (MRP1) down-regulation in human 
bladder cancer T24 and J82 cells [405].

Emodin has been shown to have remarkable anti-can-
cer effects in vitro and in vivo, and its combination with 
other therapies is very effective in treating cancer, there-
fore it is important to evaluate the safety and efficacy of 
emodin as an anti-cancer drug as the next step.

Triptolide
Triptolide (Fig.  2) is a natural constituent derived from 
the root of a traditional Chinese medicine, Tripterygium 
wilfordii Hook. F., which possesses diverse effects includ-
ing anti-inflammatory, anti-oxidative, and anti-cancer 
activities [60, 406, 407]. For cancer therapy, it has been 
used to treat breast, lung, bladder, liver, colorectal, pan-
creatic, ovarian, stomach, prostate, cervical, and oral 
cancers, melanoma, myeloma, leukemia, neuroblastoma, 
osteosarcoma, lymphoma, renal, nasopharyngeal, and 
endometrial carcinoma, through apoptosis, cell cycle 
arrest, inhibition of cell proliferation, metastasis and 
angiogenesis [406, 408–426].

Various effects have been disclosed as key contribu-
tions to the anti-cancer effects of triptolide. Triptolide 
is shown to exhibit pro-apoptosis effects in various 
cancers [427–431]. It induces mitochondrial apoptotic 
pathway to mediate apoptosis in Burkitt’s lumphoma 
Raji, NAMALWA and Daudi cells, and inhibits tumor 
growth in Daudi xenograft mice [432], and inhibits cell 
proliferation through microRNA-181a up-regulation 
in human neuroblastoma SH-SY5Y cells [433]. Moreo-
ver, triptolide induces autophagy to induce apoptosis 
and inhibit angiogenesis in human osteosarcoma MG63 
cells, and breast cancer MCF-7 cells [431, 434]. In con-
trast, triptolide induces protective autophagy through 
calcium  (Ca2+)/calmodulin-dependent protein kinase 
kinase β (CaMKKβ)-AMPK pathway in human prostate 
cancer PC-3, LNCaP and C4-2 cells, and through Akt/
mTOR down-regulation in human cervical SiHa cells 
[420, 435]. Therefore, autophagy plays a dual role in 
triptolide-induced anti-cancer effects. In addition, trip-
tolide is able to inhibit cell migration and invasion in 
human prostate cancer PC-3 and DU-145 cells, and in 
tongue squamous cell carcinoma SAS cells co-inoculated 
with human monocytes U937 cells [417, 419]. Further-
more, triptolide also possesses anti-angiogenic effect by 
inhibiting VEGFA expression in human breast cancer 
MDA-MB-231 and Hs578T cells, and through COX-2 
and VEGF down-regulation in human pancreatic cancer 
Panc-1 cells [436, 437].

Triptolide is a natural substance, which exerts its anti-
cancer effects through multiple targets. Triptolide is 
shown to induce mitochondrial-mediated apoptosis in 
various cancer cells, through decreased mitochondrial 
membrane potential, Bax and cytochrome c accumula-
tion, PARP and caspase-3 activation, decreased ATP lev-
els, and Bcl-2 down-regulation [432, 438–441]. Moreover, 
ERK is also shown to be important in mediating trip-
tolide-induced anti-cancer activities. Triptolide induces 
apoptosis through ERK activation in human breast can-
cer MDA-MB-231 and MCF-7 cells [434, 442], and ERK 
activation leads to caspase activation, Bax up-regulation 
and Bcl-xL down-regulation [442]. On the other hand, 
it can also inhibit metastasis through ERK down-reg-
ulation in esophageal squamous cell cancer KYSE180 
and KYSE150 cells, and murine melanoma B16F10 cells 
[443, 444]. Interestingly, ERα is shown to be a potential 
binding protein of triptolide and its analogues [445]. In 
addition, triptolide-induced metastasis is shown to be 
through MMP-2 and MMP-9 down-regulation in human 
neuroblastoma SH-SY5Y cells, via decreased MMP-3 and 
MMP-9 expressions in T-cell lymphoblastic lymphoma 
cells, and through MMP-2, MMP-7 and MMP-9 down-
regulation in human prostate cancer PC-3 and DU-145 
cells [417, 423, 433].
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Indeed, immunology has been frequently validated 
to be associated with cancer. The combined use of trip-
tolide and cisplatin enhances the plasma levels of IL-2 
and TNF-α in ovarian cancer SKOV3/DDP xenograft 
mice, which can promote the differentiation of T cells 
and inhibit tumorigenesis respectively, thus resulting in 
an inflammatory microenvironment and leading to can-
cer cell death [446].

The derivatives of triptolide are always needed to 
improve its ant-cancer therapy. Triptolide derivative, 
MRx102, shows positive effects on anti-proliferation 
and anti-metastasis through Wnt inhibition in human 
NSCLC H460 and A549 cells, and H460 xenograft mice 
[447]. Minnelide, a water-soluble pro-drug of triptolide, 
can inhibit tumor growth in pancreatic cancer MIA 
PaCa-2 xenograft mice. Meanwhile, the combination of 
minnelide and oxaliplatin further inhibits tumor growth 
[448]. Moreover, triptolide is poorly soluble in water 
and exhibits hepatotoxicity and nephrotoxicity, selective 
delivery is an effective strategy for further application in 
cancer treatment. Triptolide loaded onto a peptide frag-
ment (TPS-PF-A299–585) is specifically targeted to the 
kidney and with less toxicity [449]. Some modified trip-
tolide-loaded liposomes are reported to contribute a tar-
geted delivery with lower toxicity and better efficacy in 
lung cancer treatment [450]. Similarly, triptolide-loaded 
exosomes enhances apoptosis in human ovarian cancer 
SKOV3 cells [451].

Triptolide has some side effects in various organs 
because of excessive dosage, so researchers have been 
looking for alternative triptolide therapies, and combina-
tion therapy has become a hot spot. Triptolide combined 
with gemcitabine markedly enhances pro-apoptosis 
through Akt/glycogen synthase kinase 3β (GSK3β) path-
way in human bladder cancer EJ and UMUC3 cells 
[452]. Triptolide plus ionizing radiation synergistically 
enhances apoptosis and anti-angiogenic effects through 
NF-κB p65 down-regulation in human nasopharyngeal 
carcinoma cells and xenograft mice, which provides a 
new chemotherapy to advanced nasopharyngeal malig-
nancy [425]. The combined therapy of triptolide and 
5-fluorouracil further promotes apoptosis and inhib-
its tumor growth through down-regulating vimentin 
in human pancreatic cancer AsPC-1 cells and AsPC-1 
xenograft mice [453]. Besides, low concentration of trip-
tolide potentiates cisplatin-induced apoptosis in human 
lung cancer HTB-182, A549 and CRL-5810 and CRL-
5922 cells [454], and triptolide with cisplatin synergisti-
cally enhances apoptosis and induces cell cycle arrest in 
human bladder cancer cisplatin-resistant cells [409].

Triptolide has wide-spectrum activities in pre-clinical 
studies, but it has strong side effects and water insolu-
bility, so it is not used in clinical studies. However, some 

of its derivatives and analogs have been used in clini-
cal studies to test the safety and efficacy on anti-cancer 
effects [432, 455–457]. Omtriptolide, a derivative of trip-
tolide, is highly water soluble, and a phase I clinical trial 
was conducted in Europe with patients who had refrac-
tory and relapsed acute leukemia [432]. Another phase 
I clinical trial was completed in patients with refractory 
gastrointestinal malignancies to study the dose escalation 
and pharmacokinectics of minnelide, a pro-drug of trip-
tolide [457]. The doses used were 0.16 to 0.8 mg/m2 and 
they were well tolerated except from the common hema-
tologic toxicity. LLDT-8, another triptolide derivative, 
has anti-cancer and immunosuppressive effects, and is 
going to proceed into phase II clinical trial to test its anti-
cancer effects in China [455, 456]. Moreover, minnelide is 
currently under phase II clinical trial to test anti-cancer 
effects in patients with advanced pancreatic cancer [458].

Cucurbitacins
Cucurbitacins (Fig.  2) is a cluster of tetracyclic triter-
penoids originated from various plants like Bryonia, 
Cucumis, Cucurbita and Lepidium sativum. Cucurbi-
tacins A–T are twelve main curcurbitacins belonging 
to this family. Cucurbitacins have multiple therapeutic 
effects such as anti-inflammation, anti-proliferation, anti-
angiogenesis, and anti-cancer [452, 459–462]. Besides, 
cucurbitacins have also been elucidated as a potential 
candidate for various cancer therapies, including oral cell 
carcinoma, breast, ovarian, prostate, lung, gastric, blad-
der, and thyroid cancers, neuroastoma, hepatoma, and 
osteosarcoma [463–475]. Most of cucurbitacins have 
been reported with various anti-cancer activities, such as 
pro-apoptosis, anti-angiogenesis, autophagy induction, 
and inhibition of metastasis [452, 460–462, 476].

Cucurbitacin B is the most abundant source of cucur-
bitacins which can explain why it receives more atten-
tion from researchers than other cucurbitacins do. It 
suppresses cell proliferation and enhances apoptosis in 
human NSCLC A549 cells, colorectal cancer SW-480 and 
Caco-2 cells [462, 477], and induces G1 phase cell cycle 
arrest in human colorectal cancer SW-480 and Caco-
2, and gastric cancer MKN45 cells [477, 478]. Cucurbi-
tacin D inhibits cell survival in human gastric cancer 
AGS, SNU1 and Hs746T cells [479], while cucurbitacin E 
induces cell cycle arrest at G2/M phase in triple negative 
breast cancer cells [480]. Moreover, cucurbitacins B, E 
and I are shown to induce autophagy, however inhibition 
of autophagy can enhance cucurbitacin-induced apopto-
sis [481–483]. They also inhibit cell migration and inva-
sion in human breast cancer MDA-MB-231 and SKBR3, 
NSCLC H2030-BrM3 and PC9-BrM3, and colorectal 
cancer COLO-205 cells [484–487], as well as angiogen-
esis in HUVECs [461, 488].
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Various targets have been demonstrated to be respon-
sible for the anti-cancer effects of cucurbitacins. STAT3 
signaling is a very common target for cancer treatment. 
Cucurbitacins B and D are reported to inhibit prolifera-
tion and induce apoptosis through STAT3 suppression 
in human NSCLC A549 cells and doxorubicin-resistant 
breast cancer MCF-7/ADR cells, respectively [462, 489]. 
On the other hand, cucurbitacin E induces cell arrest and 
apoptosis via STAT3 inhibition in human breast cancer 
Bcap-37 and MDA-MB-231 cells [468], and cucurbi-
tacin I can inhibit STAT3 pathway to suppress cancer 
stem cell properties in anaplastic thyroid cancer ATC–
CD133+ cells [463]. Besides, cucurbitacin E induces cell 
cycle arrest through cyclins B1 and D1 down-regulation 
[480, 490], while cucurbitacin D inhibits cyclin B expres-
sion [491]. Moreover, mitochondria and ER stress also 
play an important role in cucurbitacin-induced anti-
cancer effects. Cucurbitacins mediate apoptosis through 
mitochondrial-related pathway, which is characterized 
by the loss of the mitochondrial membrane potential, 
Bcl-2 down-regulation, Bax up-regulation, cytochrome c 
release, that eventually leads to caspase activation [470, 
492]. Cucurbitacin I induces cell death through ER stress, 
by up-regulating ER stress markers such as IRE1α and 
PERK in human ovarian cancer SKOV3 cells and pancre-
atic cancer Panc-1 cells [493].

Cancer immunotherapy also plays a vital role in cucur-
bitacin treatment. Cucurbitacins may influence the 
production of cytokines and transcription factors that 
suppress the immune system, and these mechanisms 
may help to prevent the development of cancer. Cucur-
bitacin B is able to promote DC differentiation and anti-
tumor immunity in patients with lung cancer [494]. The 
combined therapy of cucurbitacin I and recombinant 
IL-15 is also reported to exhibit immunologic anti-cancer 
activities in lymphoma with increased  CD4+ and  CD8+ 
T cell differentiation, and promote DC function through 
TNF-α up-regulation [495].

Although cucurbitacin B has very effective anti-tumor 
effects, it is shown to exhibit high toxicity, which restricts 
its clinical application on cancer therapy. Therefore, 
studies have been focused on tackling this side effect, 
and some cucurbitacin B derivatives have been synthe-
sized to screen for effective cancer therapy with safety 
and tolerability. Compound 10b, one of the derivatives 
of cucurbitacin B, shows more potent anti-cancer activ-
ity than cucurbitacin B [496]. The in  vivo acute toxicity 
study also shows that compound 10b has better toler-
ability and safety than cucurbitacin B. In addition, some 
other strategies have been applied to accelerate the clini-
cal use of cucurbitacin B. The collagen peptide-modified 
nanomicelles with cucurbitacin B were synthesized to 
enhance the oral availability of cucurbitacin B, and these 

nanomicelles show a higher bioavailability and better 
tumor inhibition [497].

For a better cancer therapy, some combinations 
between cucurbitacins and other drugs have been 
employed. Low doses of cucurbitacin B or methotrexate 
cannot inhibit tumor growth in osteosarcoma xenograft 
mice, however when combined together, they synergisti-
cally inhibit tumor growth [498]. The combination ther-
apy of cucurbitacin B and curcumin enhances apoptosis 
and reverses MDR in human hepatocellular carcinoma 
Bel-7402/5-Fu cells [499]. Recently, cucurbitacin B is sug-
gested to be a potential candidate when it is applied with 
withanone, this combination can enhance cytotoxicity in 
human NSCLC A549 cells, and inhibit tumor growth and 
metastasis in A549 xenograft mice [500]. Cucurbitacin 
I is also shown to be a STAT3 inhibitor to mediate cell 
survival and proliferation, and when it is combined with 
irinotecan, and they further inhibit cell proliferation in 
human colorectal cancer SW-620 and LS174T cells [501].

The derivatives of cucurbitacins, cucurbitacin 
B-nanomicelles, and the combination therapies show 
promising treatment for cancer in  vitro and in  vivo, so 
clinical trials are needed to confirm their safety and effi-
cacy in cancer treatment.

Tanshinones
Tanshinone (Fig.  2) is a derivative of phenanthrenequi-
none isolated from the dried root or rhizomes of Salvia 
miltiorrhiza Bunge. Tanshinone IIA is the primary bioac-
tive constituent of tanshinones [502], which has various 
pharmacological effects, including anti-inflammatory, 
anti-cancer and anti-atherosclerotic activities, and car-
diovascular protection [503–506]. Tanshinone exhibits 
anti-cancer activities in stomach, prostate, lung, breast, 
and colon cancers, through inducing cell cycle arrest, 
apoptosis, autophagy, and inhibiting cell migration 
[507–515].

Tanshinone IIA suppresses cell proliferation and apop-
tosis in numerous cancer cells, including human breast 
cancer BT-20, MDA-MB-453, SKBR3, BT-474, MCF-7 
and MD-MB-231 [508, 516, 517], and gastric cancer 
MKN45 and SGC-7901 cells [518]. It also induces cell 
cycle arrest at G1 phase in human breast cancer BT-20 
cells [517], and inhibits cell migration in human gas-
tric cancer SGC-7901 cells [514], and cell migration 
and invasion in cervix carcinoma stemness-likes cells 
[519]. Tanshinone I and cryptotanshinone are two other 
major bioactive compounds, which also induce cytotox-
icity against cancer cells. Tanshinone I induces apopto-
sis and pro-survival autophagy in human gastric cancer 
BGC-823 and SGC-7901 cells [510], while cryptotanshi-
none suppresses cell proliferation and induces cell cycle 
arrest at G1 phase in murine melanoma B16 cells, and 
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G2/M phase in melanoma B16BL6 cells [520]. In addi-
tion, tanshinones I and IIA and cryptotanshinone also 
inhibit tumor angiogenesis in endothelial and cancer 
cells [521–525]. Furthermore, tanshinone IIA induces 
autophagy to inhibit cell growth in human osteosarcoma 
143B and MG63 cells and tumor growth in NOD/SCID 
mice [526], while it induces autophagy to mediate anti-
cancer activities through activating beclin-1 pathway and 
inhibiting PI3K/Akt/mTOR pathway in human oral squa-
mous cell carcinoma SCC-9, melanoma A375, and gli-
oma U251 cells [527–529]. Moreover, tanshinone IIA is 
shown to exhibit anti-cancer activities through the inter-
play between autophagy and apoptosis in human prostate 
cancer PC-3 cells, mesothelioma H28 and H2452 cells 
[502, 530].

Tanshinone IIA induces apoptosis through mitochon-
drial- and caspase-dependent pathways, which includes 
caspase-3, -9 and PARP activation, cytochrome c release, 
and increased ratio of Bax/Bcl-2 in human gastric cancer 
MKN45 and SGC-7901 cells, and tumor-bearing mice 
[518]. It inhibits epithelial–mesenchymal transition by 
modulating STAT3-chemokine (C–C motif ) ligand 2 
(CCL2) pathway in human bladder cancer 5637, BFTC 
and T24 cells [531], and suppresses cell proliferation and 
migration via forkhead box protein M1 (FoxM1) down-
regulation in human gastric cancer SGC-7901 cells [514]. 
On the other hand, tanshinone I induces apoptosis via 
Bcl-2 down-regulation in human gastric cancer BGC-
823 and SGC-7901 cells [510], while cryptotanshinone 
induces apoptosis through mitochondrial-, cyclin- and 
caspase-dependent pathways in human NSCLC A549 
and NCI-H460 cells [532], as well as via ER stress in 
human hepatocellular carcinoma HepG2 and breast can-
cer MCF-7 cells [533].

Tanshinone IIA is also shown to exhibit immunomdu-
latory effects in cancer [534]. The combination of tanshi-
none IIA with cyclophosphamide increases  CD4+ T cell, 
 CD4+/CD8+ T cell and NK cell populations compared 
to single treatment in NSCLC Lewis-bearing mice, so it 
can improve the immunological function in lung cancer 
[534]. Furthermore, cryptotanshinone  becomes a new 
promising anti-tumor immunotherapeutic agent [535]. 
It induces mouse DC maturation and stimulates IL-1β, 
TNF-α, IL-12p70 secretion in DCs, and enhances T cell 
infiltration and Th1 polarization in Lewis-bearing tumor 
tissues [535].

Tanshinone IIA has poor bioavailability, so a mixed 
micelle system is developed to form a tanshinone-
encapsulated micelle [536]. This micelle has higher 
cytotoxicity and pro-apoptotic effects in human hepa-
tocellular carcinoma HepG2 cells compared to tanshi-
none IIA alone. The tanshinone IIA-loaded nanoparticles 
improve the bioavailability tanshinone IIA and enhance 

its leukemic activity in human leukemia NB4 cells [537], 
while the nanoparticles containing tanshinone IIA and 
α-mangostin show increased cytotoxicity in human pros-
tate cancer PC-3 and DU-145 cells [538].

Tanshinone IIA is shown to enhance chemosensitiv-
ity and its efficacy when combined with other therapeu-
tic agents. Tanshinone IIA can be an effective adjunctive 
agent in cancer, and it enhances the chemosensitivity to 
5-fluorouracil therapy in human colorectal cancer HCT-
1116 and COLO-205 cells through NF-κB inhibition 
[539]. The combination of tanshinone IIA with doxo-
rubicin does not only enhance the chemosensitivity of 
doxorubicin, but also reduces the toxic side effects of 
doxorubicin in human breast cancer MCF-7 cells [540]. 
In addition, tanshinone IIA and cryptotanshinone syn-
ergistically enhance apoptosis in human leukemia K562 
cells [541].

The anti-cancer effects of Tanshinone IIA have been 
demonstrated in various cancers in vitro and in vivo, and 
it can enhance chemosensitivity and its efficacy is very 
effective when combined with other therapeutic agents. 
Up to now, the clinical trials of Tanshinone IIA are com-
pleted only for the treatment of other diseases [542], so 
well-designed clinical trials should be done to further 
confirm its safety and efficacy in cancer treatment.

Oridonin
Oridonin (Fig.  2) is an ent-kaurane diterpenoid iso-
lated from Rabdosia rubescens (Hemsl.) Hara, which is 
also the main active constituent of Rabdosia rubescens 
(Hemsl.) Hara [543]. As an orally available drug, oridonin 
is demonstrated to have anti-cancer activities in multi-
ple cancers over the past decades, including leukemia, 
lymphoma, osteosarcoma, myeloma, uveal melanoma, 
neuroblastoma, hepatocellular, laryngeal, esophageal, 
and oral squamous cell carcinoma, lung, colorectal, 
breast, gastric, pancreatic, and prostatic cancers [543–
558]. The anti-cancer effects of oridonin are shown in 
many aspects, including the induction of cell apopto-
sis, autophagy, cell cycle arrest, and the suppression of 
angiogenesis, cell migration, invasion and adhesion [554, 
559–564].

Oridonin induces apoptosis in human hepatocellular 
carcinoma HepG2 and Huh6, oral squamous cell carci-
noma WSU-HN4, WSU-HN6 and CAL27, and laryngeal 
cancer HEp-2 cells [550, 559, 561, 565]. It also induces 
G2/M cell cycle arrest in human oral squamous cell car-
cinoma WSU-HN4, WSU-HN6 and CAL27, gastric can-
cer SGC-7901, prostate cancer PC-3 and DU-145, and 
breast cancer MCF-7 cells [555, 561, 566, 567]. Oridonin 
is also shown to induce autophagy in many cancer cells, 
which is associated positively or negatively with apopto-
sis. It induces autophagy to mediate apoptosis in human 
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NSCLC A549 and neuroblastoma SHSY-5Y cells [558, 
568]. On the other hand, autophagy provides a protective 
role against oridonin-induced apoptosis, as autophagy 
inhibitor enhances oridonin-induced apoptosis in human 
cervical carcinoma HeLa, multiple myeloma RPMI 8266, 
laryngeal cancer HEp-2 and Tu212, and epidermoid car-
cinoma A-431 cells [569–572]. The anti-cancer effects of 
oridonin are also shown to be through suppressing angi-
ogenesis and metastasis, which are the primary causes of 
tumor growth and metastasis. It can inhibit cell migra-
tion and invasion, and tube formation in human breast 
cancer 4T1 and MDA-MB-231, human and murine mela-
noma A375 and B16F10, osteosarcoma MG63 and 143B, 
and HUVECs, as well as tumor metastasis in HepG2 xen-
ograft zebrafish and mice, 4T1 xenograft mice, and 143B 
xenograft mice [554, 562–564, 573].

Proteomic and functional analyses reveal that ER 
stress and poly(rC)-binding protein 1 (α-CP1) are poten-
tial pathways involved in the anti-proliferative and pro-
apoptotic activities of oridonin [546]. Oridonin inhibits 
cell growth and induces apoptosis through ER stress and 
ASK1/JNK signaling pathways in human hepatocellular 
carcinoma Huh6 cells [559]. Besides, the mitochondrial 
redox change is proved to be a potential mediator for the 
pro-apoptosis effect of oridonin [565]. The anti-prolif-
erative effect of oridonin is also shown to be associated 
with mitochondrial-mediated apoptosis, which is charac-
terized by mitochondrial membrane potential reduction, 
subsequent cytochrome c release, PARP, caspase-3 and -9 
activation, and decreased Bcl-2/Bax ratio [551, 565, 574, 
575]. Oridonin also inhibits cell proliferation through 
bone morphogenetic protein 7 (BMP7)/p38 MAPK/
p53 pathway in human colorectal cancer HCT-116 and 
SW-620 cells [553, 576, 577], and induces apoptosis via 
hydrogen peroxide  (H2O2) production and glutathione 
depletion in human colorectal cancer SW-1116 cells 
[578]. Furthermore, the down-regulation of AP-1 is 
reported to be the initial response to oridonin treatment, 
which decreases the expressions of NF-κB and MAPK to 
inhibit cell proliferation [579].

Oridonin possesses an immunosuppressive effect 
which modulates microglia activation, enhances T cell 
proliferation, alters the balance of Th1-T helper type 2 
cells (Th2), reduces inflammatory cytokine secretion 
such as IL-2, IL-4, IL-6, IL-10 and TNF-α, and modulates 
an anti-inflammatory target, B lymphocyte stimulator 
[580]. It also decreases inflammatory cytokine secre-
tion in human pancreatic cancer BxPC-3 cells, including 
IL-1β, IL-6 and IL-33 [581].

The derivatives and analogs of oridonin usually exhibit 
more potent anti-cancer activities than oridonin. Geri-
donin, a novel derivative of oridonin, inhibits cell growth 
and induces G2/M phase arrest through ROS production 

in human gastric cancer MGC-803 cells and MGC-
803 xenograft mice [582]. Oridonin phosphate, another 
derivative, is reported to induce autophagy, which 
can enhance apoptosis in human breast cancer MDA-
MB-436 cells [583]. A novel analog of oridonin, CYD 
6-17, inhibits tumor growth in bladder cancer UMUC3 
xenograft mice and renal carcinoma 786-O xenograft 
mice [584, 585]. In addition, drug delivery system is also 
developed to improve the bioavailability of oridonin. 
The inhalable oridonin-loaded microparticles exhibit 
strong pro-apoptotic and anti-angiogenic effects through 
mitochondrial-related pathways in NSCLC rats [586], 
whilst the oridonin-loaded nanoparticles enhance cellu-
lar uptake and exert better anti-cancer effects in human 
hepatocellular carcinoma HepG2 cells [587].

The combination of oridonin with other agents plays a 
potential role in cancer therapy. AG1478, a specific epi-
dermal growth factor receptor (EGFR) inhibitor, aug-
ments oridonin-induced apoptosis through oxidative 
stress and mitochondrial pathways in human epider-
moid carcinoma A-431 cells [588]. The combination of 
γ-tocotrienol and oridonin exerts synergistic anti-can-
cer effects in murine + SA mammary adenocarcinoma 
epithelial cells, which are mainly through the induction 
of autophagy [589]. Moreover, oridonin can enhance 
the pro-apoptotic activity of NVP-BEZ235 in human 
neuroblastoma SHSY-5Y and SK-N-MC cells through 
autophagy [558], whilst the combination of oridonin and 
cetuximab exhibits potent pro-apoptotic effect in human 
laryngeal cancer HEp-2 and Tu212 cells [572].

Clinical trials are essential to test the safety and effi-
cacy of oridonin before drug approval. A derivative of 
oridonin, HAO472, is currently under a phase I clinical 
trial for the treatment of acute myelogenous leukemia in 
China [590].

Shikonin
Shikonin (Fig.  2) is an active naphthoquinone, which is 
derived from the dried root of Lithospermum erythrorhi-
zon, Arnebia euchroma and Arnebia guttata, and it pos-
sesses anti-oxidative, anti-inflammatory, and anti-cancer 
activities [591–594]. It is effective in treating different 
kinds of cancers, including breast, prostate, ovarian and 
thyroid cancers, Ewing sarcoma, and myelomonocytic 
lymphoma [595–600]. Shikonin exerts anti-cancer effects 
mainly by inducing apoptosis, necroptosis, autophagy, 
cell cycle arrest, and by inhibiting cell proliferation, 
growth and metastasis [593, 601, 602].

Shikonin is reported to inhibit cell growth by induc-
ing cell cycle arrest and promoting apoptosis in human 
NSCLC A549, gallbladder cancer NOZ and EHGB-1, 
esophageal cancer EC109, and epidermoid carcinoma 
A-431 cells [601, 603–605]. It can also induce necroptosis 
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via autophagy inhibition in human NSCLC A549 cells 
[593], and through ROS overproduction in human naso-
pharyngeal carcinoma 5-8F, and glioma SHG-44, U87 
and U251 cells [606, 607]. Moreover, shikonin induces 
autophagy in human melanoma A375, pancreatic can-
cer BxPC-3, and hepatocellular carcinoma Bel-7402 and 
Huh7 cells [608–610]. However, autophagy provides a 
protective role in shikonin-induced apoptosis in human 
melanoma A375 cells [608]. In addition, shikonin can 
suppress metastasis by the inhibition of tyrosine kinase 
c-Met and integrin (ITG) β1 in human NSCLC A549 cells 
[602, 611].

There are multiple mechanisms involved in the anti-
cancer effects of shikonin, including ER stress, ROS 
generation, glutathione (GSH) depletion, mitochondrial 
membrane potential disruption, p53, superoxide dis-
mutase (SOD) and Bax up-regulation, PARP cleavage, 
catalase and Bcl-2 down-regulation [591, 612–614]. The 
pro-apoptotic effect of shikonin is also caused by the dis-
ruption of intracellular  Ca2+ homeostasis and mitochon-
drial dysfunction, which involves enhanced  Ca2+ and 
potassium  (K+) efflux, caspase-3, -8 and -9 activation, 
and Bcl-2 family protein modulation [615, 616]. ERK 
pathway also plays a role in shikonin-induced anti-cancer 
effects. Shikonin induces apoptosis and inhibits metasta-
sis through suppressing ERK pathway in human NSCLC 
NCI-H460 and A549 cells, respectively [611, 617]. c-Myc 
down-regulation along with inhibition of ERK/JNK/
MAPK and Akt pathways are also involved in shikonin-
induced apoptosis and anti-proliferation in acute and 
chronic leukemia [618–620]. Moreover, the activation of 
necroptosis initiators, receptor interacting serine-threo-
nine protein kinase (RIP) 1 and RIP3, by shikonin does 
not only contribute to DNA double strand breaks via 
ROS overproduction [621], but also facilitates glycolysis 
suppression via intracellular  H2O2 production [622]. In 
addition, shikonin induces cell cycle arrest through p21 
and p27 up-regulation, cyclin and CDK down-regulation 
[605]. Therefore, numerous pathways involved in shi-
konin-induced anti-cancer effects may explain the broad 
range of its activities.

Shikonin is also shown to modulate the function of 
the immune system. It can enhance the proliferation of 
NK cells and its cytotoxicity to human colorectal cancer 
Caco-2 cells by regulating ERK1/2 and Akt expressions 
[623]. It can also bind directly to heterogeneous nuclear 
ribonucleoprotein A1 to induce immunogenic cell death 
in human breast cancer MDA-MB-231 cells [624]. Shi-
konin is also reported to be used as an immunotherapy 
modifier in cell-based cancer vaccine systems, suggesting 
its potential application in cancer immunotherapy [625].

Derivatives are developed to enhance the anti-
cancer and tumor targeting effects of shikonin. The 

naphthazarin ring of shikonin is modified to produce 
DMAKO-05, which can specifically target cancer cells 
instead of normal cells [626]. DMAKO-05 can also sup-
press cell survival in human colorectal cancer HCT-116 
cells, and inhibits tumor growth in colorectal cancer 
CT-26 xenograft mice [627]. Besides, it inhibits cell pro-
liferation and migration, and induces cell cycle arrest 
and apoptosis in murine melanoma B16F0 cells [626]. 
Another novel shikonin derivative, cyclopropylacetyl-
shikonin, exhibits strong anti-tumor and pro-apoptotic 
effects in human melanoma WM164 and MUG-MEL2 
cells [628]. In addition, drug delivery system is also 
developed to promote the intracellular delivery of shi-
konin. The shikonin-loaded nanogel enhances RIP1- and 
RIP3-dependent necroptosis in human osteosarcoma 
143B cells [629]. There is an increased accumulation of 
shikonin-loaded nanogel in the tumor tissue, and this 
nanogel can further inhibit tumor growth and metasta-
sis in 143B xenograft mice. Furthermore, the modified 
shikonin-loaded liposomes have higher cytotoxicity, and 
inhibit cell proliferation, metastasis in human breast can-
cer MDA-MB-231 cells [630].

The combination therapy is widely used to provide 
synergistic effects of anti-cancer activities. Shikonin 
can enhance the pro-apoptotic effect of taxol in human 
breast cancer MBA-MD-231 cells, and this combination 
improves mice survival and inhibits tumor growth in 
MDA-MB-231 xenograft mice [631]. Besides, shikonin 
can also potentiate the anti-cancer effects of gemcitabine 
through NF-kB suppression and by regulating RIP1 and 
RIP3 expressions in human pancreatic cancer [632, 633]. 
Shikonin is also reported to promote the efficacy of adri-
amycin in lung cancer and osteosarcoma [634, 635], and 
enhance sensitization to cisplatin in colorectal cancer 
[636]. Apart from the synergistic effect of shikonin, the 
combination of shikonin and paclitaxel reverses MDR in 
human ovarian cancer A2780 cells [10].

The single or combined therapies with shikonin show 
promising anti-cancer effects in vitro and in vivo, so pre-
clinical data has confirmed its therapeutic use in cancer 
treatment, as a result, clinical trials will be carried out to 
further to confirm its safety and efficacy in humans.

Gambogic acid (GA)
GA (Fig.  2) is one of the major compounds derived 
from gambogethe resin exuded from Garcinia spe-
cies including G. hanburyi and G. Morella [637]. It has 
multiple biological activities such as anti-oxidative, 
anti-inflammatory, and anti-cancer activities [638, 
639]. Plenty of evidence shows that GA inhibits cell 
proliferation, invasion, survival, metastasis and chemo-
resistance, and induces angiogenesis in many types of 
cancers such as gastric and prostate cancers, leukemia, 
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multiple myeloma, osteosarcoma, and renal carcinoma 
through multiple signaling mechanisms [640–646].

Many studies have reported the anti-cancer effects 
of GA in human breast cancer [647–650]. GA at low 
concentrations (0.3–1.2  μM) can inhibit cell inva-
sion without affecting cell viability, while high con-
centrations of GA (3 and 6  μM) can induce apoptosis 
via ROS accumulation and mitochondrial apoptotic 
pathway in human breast cancer MDA-MB-231 cells 
[651]. GA also induces apoptosis via ROS production 
in human bladder T24 and UMUC3 cells [652]. At ear-
lier time points, GA induces ROS-mediated autophagy, 
which produces a strong cell survival response. How-
ever, at later time points, caspases are activated which 
degrade autophagic proteins and cell survival proteins, 
and this eventually induces apoptosis. Similarly, GA-
induced autophagy via ROS provides a cytoprotective 
effect to human pancreatic cancer Panc-1 and BxPC-3 
cells [653], and ROS scavenger, N-acetylcysteine, can 
reverse GA-induced autophagy in human NSCLC NCI-
H441 cells [654]. Moreover, GA inhibits cell invasion 
and migration through reversion-inducing-cysteine-
rich protein with kazal motifs (RECK) up-regulation 
in human NSCLC A549 cells and A549 xenograft 
mice [655], and prevents TNF-α-induced invasion in 
human prostate cancer PC-3 cells [656]. It also inhibits 
angiogenesis in HUVECs, and prevents tumor growth 
through the inhibition of tumor angiogenesis [657].

ROS-related pathways play a vital role in GA-induced 
cell death [642, 646, 647, 651–654, 658]. GA induces 
apoptosis mainly through ROS accumulation in human 
pancreatic cancer Panc-1 and BxPC-3, NSCLC NCI-
H441, castration-resistant prostate cancer PCAP-1, 
melanoma A375, breast cancer MCF-7 cells [642, 646, 
647, 653, 654]. It also induces oxidative stress-dependent 
caspase activation to mediate apoptosis in human blad-
der cancer T24 and UMUC3 cells [652]. Moreover, GA 
increases the expressions of ER stress markers such as 
GRP78, CHOP, activating transcription factor 6 (ATF-6) 
and caspase-12, and co-treatment with chemical chaper-
one, 4-PBA, significantly reduces these expressions and 
apoptosis in human NSCLC A549 cells, so it is suggested 
that GA induces ER stress to mediate apoptosis [659].

Previous studies have shown some immunomodula-
tory activities of GA [660, 661]. The activation of TLRs 
is important to initiate immune responses, and TLR4 
forms a complex with myeloid differentiation factor 2 
(MD2) to recognize its ligand, like LPS. GA is shown to 
reduce pro-inflammatory cytokine production in LPS-
primed primary macrophages such as TNF-α, IL-1β, 
IL-6 and IL-12, and also inhibit the activation of TLR4 by 
disrupting the interaction of TLR4/MD2 complex with 
LPS [660]. Similarly, it also reduces pro-inflammatory 

cytokine production including TNF-α, IL-1β and IL-6 by 
suppressing p38 pathway in murine macrophage RAW 
264.7 cells [661].

GA has low solubility, instability and poor pharma-
cokinetic properties [662]. In order to increase its water 
solubility, GA is conjugated with a cell-penetrating pep-
tide, trans-activator of transcription, to form GA-TAT 
[658]. This GA-TAT enhances apoptosis through ROS 
accumulation in human bladder cancer EJ cells. Another 
study uses a co-polymer to encapsulate GA to form GA 
micelles [639]. These GA micelles have better cellular 
uptake which can further enhance apoptosis in human 
breast cancer MCF-7 cells and the anti-tumor effects in 
MCF-7 xenograft mice. Moreover, GA is encapsulated 
into the core of the nanoparticles to enhance the stability 
of GA and its circulation time [662]. These nanoparticles 
have tumor targeting properties, and enhance the anti-
tumor activities of GA without inducing higher toxicity.

The combination of GA and other chemotherapy agents 
has been widely used to improve the therapeutic effects 
against various cancers such as osteosarcoma, pancreatic 
and lung cancers [639, 653, 663, 664]. Cisplatin resist-
ance is a main clinical problem for the treatment of lung 
cancer, and the treatment of cisplatin with GA is shown 
to enhance apoptosis and decrease the cisplatin resist-
ance index in human NSCLC cisplatin-resistance A549/
DDP cells [663]. Moreover, GA and retinoic acid chloro-
chalcone are loaded into glycol chitosan nanoparticles to 
form RGNP [639]. The RGNP exhibits synergistic effects 
to inhibit cell proliferation and induces apoptosis in oste-
osarcoma. The combination of GA with doxorubicin syn-
ergistically reduces cell viability in human ovarian cancer 
platinum-resistance SKOV3 cells, and this combination 
also suppresses tumor growth in SKOV3 xenograft mice 
[665].

The safety and efficacy of GA at different dosages in 
patients with advanced malignant tumors have been 
compared in a phase IIa clinical trial [666]. GA had a 
safety profile at a dosage of 45 mg/m2. The patients with 
GA administration on days 1–5 in a 2-week cycle showed 
a greater disease control rate and only Grades I and II 
adverse reactions. To further investigate the safety and 
efficacy of GA, a phase IIb clinical trial involving a larger 
sample size of patients would be needed.

Artesunate
Artesunate (Fig. 2) is a semi-synthetic compound derived 
from ART, which is widely used as an anti-malarial 
agent [667]. As an analog of ART, artesunate exerts bet-
ter water solubility and higher oral bioavailability, due 
to its special structure with an additional hemisuccinate 
group that makes it a better candidate for cancer treat-
ment [668]. The anti-cancer effects of artesunate have 
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been demonstrated in bladder, breast, cervical, colorec-
tal, esophageal, gastric, ovarian and prostate cancer, renal 
carcinoma, leukemia, melanoma and multiple myeloma 
[179, 669–679]. Its anti-cancer effects include induction 
of cell cycle arrest and apoptosis, inhibition of cell pro-
liferation and growth, metastasis and angiogenesis [670, 
678, 680].

Artesunate can induce apoptosis in various cancers 
including human breast cancer MCF-7, MDA-MB-468 
and SKBR3 cells, gastric cancer SGC-7901 and HGC-
27, colorectal cancer HCT-116, and esophageal cancer 
Eca109 and Ec9706 cells [670, 672, 673, 681–683]. It also 
induces cell cycle arrest at ROS-dependent G2/M phase 
and ROS-independent G1 phase in human breast can-
cer MDA-MB-468 and SKBR3, and ovarian cancer HEY1 
and HEY2 cells [670, 684], and induces G2/M cell cycle 
arrest through autophagy in human breast cancer MCF-7 
and MDA-MB-231 cells [685]. Artesunate is also shown 
to induce autophagy to exert cytoprotective effects in 
human colorectal cancer HCT-116 cells, and the inhibi-
tion of autophagy enhances artesunate-mediated apop-
tosis [179]. Similarly, artesunate-induced mitophagy 
provides a protective effects against cell death in human 
cervical cancer HeLa cells [686]. Moreover, it inhibits 
cell invasion and migration in human prostate cancer 
DU-145 and LNCaP, cervical cancer Caski and HeLa 
cells, and uveal melanoma cells [675, 678, 687], and sup-
presses tumor angiogenesis in HUVECs and renal carci-
noma 786-O xenograft mice [676, 680].

In most cases, the inhibition effects of artesunate 
against cancer cells are resulted from apoptosis. Artesu-
nate induces apoptosis through cyclooxygenase-2 
(COX-2) down-regulation in human bladder cancer T24 
and RT4, and gastric cancer HGC-27 cells [669, 683]. 
Mitochondrial pathways also play an important role in 
artesunate-mediated anti-cancer effects [673, 681, 683]. 
Artesunate inhibits tumor growth through ROS- and 
p38 MAPK-mediated apoptosis in human rhabdomyo-
sarcoma TE671 cells [688]. It also exerts anti-tumor 
activities through the loss of mitochondrial membrane 
potential, Bcl-2 down-regulation, Bax up-regulation, 
and caspase-3 activation in human gastric cancer SGC-
7901 and HGC-27, esophageal cancer Eca109 and Ec9706 
cells, and breast cancer MCF-7 xenograft mice [673, 681, 
683]. In addition, gene expression analysis identifies that 
ER stress is the most relevant pathway for the anti-tumor 
activity of artesunate in B-cell lymphoma [689]. Interest-
ingly, artesunate selectively inhibits cell growth through 
iron-dependent and ROS-mediated ferroptosis in human 
head and neck cancer HN9 cells [690].

Immunomodulation also plays a vital role in artesu-
nate-mediated anti-cancer effects [671, 674, 691, 692]. 
Artesunate induces Th1 differentiation into  CD4+ T cells 

to mediate apoptosis in murine ovarian cancer ID8 cells 
[674]. It also exerts anti-tumor effects through suppress-
ing NK killing activity and lymphocyte proliferation, 
which results in decreased TGF-β1 and IL-10 levels in 
colorectal cancer Colon-26 and RKO cells [691]. Besides, 
artesunate also exerts immunosuppression through 
forkhead box P3 (Foxp3) down-regulation in T cells and 
decreases prostaglandin  E2  (PGE2) production in human 
cervical cancer Caski and HeLa cells [671]. Moreover, it 
enhances γδ T cell-mediated anti-cancer effect through 
augmenting γδ T cell cytotoxicity and decreasing TGF-β1 
levels to reverse immune escape in human hepatocellular 
carcinoma HepG2 cells [692].

The treatment of artesunate with other therapies shows 
promising anti-cancer effects in several studies [693–
697]. Artesunate and cisplatin synergistically induce 
DNA double-strand breaks and inhibit clonogenic forma-
tion to mediate cytotoxic effects in human ovarian cancer 
A2780 and HO8910 cells [693]. The combined treatment 
of artesunate and erlotinib enhances the inhibition of cell 
growth in human glioblastoma multiforme U87MG cells 
[694].

Clinical studies are carried out to investigate the safety 
and efficacy of artesunate in patients with colorectal and 
breast cancers, and advanced solid tumor malignancies 
[698–701]. A phase I study is performed to evaluate the 
safety and the maximum tolerated dose of artesunate in 
patients with metastatic breast cancer, the oral admin-
istration of artesunate is safe and 2.2–3.9 mg/kg per day 
is well tolerated [701]. Another phase I study is assessed 
in patients with advanced solid tumor malignancies, and 
the maximum tolerated dose of intravenous artesunate 
is 18 mg/kg [698]. The tolerability and anti-proliferative 
properties of oral artesunate are also shown in patients 
with colorectal cancer [699]. Moreover, a study of long 
term treatment with oral artesunate is performed in 
patients with metastatic breast cancer, 2.3–4.1 mg/kg per 
day treatment for up to 1115 cumulative days does not 
show any major safety concerns [700]. An ongoing phase 
II clinical trial is carried out to study the safety and effec-
tiveness of neoadjuvant artesunate in patients with stage 
II or III colorectal cancer awaiting surgical treatment.

Wogonin
Wogonin (Fig. 2) is a plant flavonoid extracted from roots 
of Scutellaria baicalensis, Scutellaria amoena and Scutel-
laria rivularis, and stem of Anodendron affine Druce, and 
has many pharmacological effects including anti-viral, 
anti-oxidative, anti-inflammatory, anti-cancer and neuro-
protective activities [702–705]. It has various anti-cancer 
effects in many cancers, including lung, breast, head and 
neck, gastric and colorectal cancers, glioma, leukemia, 
lymphoma, and osteosarcoma, through the induction 
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of apoptosis and cell cycle arrest, and inhibition of cell 
growth, migration, invasion, and angiogenesis [706–716].

Wogonin can induce apoptosis and inhibit cell prolif-
eration in human neuroblastoma SK-N-BE2 and IMR-32, 
NSCLC A549, glioma U251 and U87, and hepatocellu-
lar carcinoma HepG2 and Bel-7402 cells [704, 706, 711, 
717]. It also induces cell cycle arrest in human colorectal 
cancer HCT-116, NSCLC A549, chronic myelogenous 
leukemia imatinib-resistant K562, and ovarian cancer 
A2780 cells [716, 718–720]. Besides, wogonin induces 
autophagy in human pancreatic cells Panc-1 and Colo-
357, and nasopharyngeal carcinoma NPC-TW076 and 
NPC-TW039 cells [721, 722]. However, inhibition of 
autophagy promotes wogonin-induced apoptosis in 
human nasopharyngeal carcinoma NPC-TW076 and 
NPC-TW039 cells [722]. It also inhibits metastasis in 
human hepatocellular carcinoma Bel-7402 and HepG2 
cells, and NSCLC A549 cells [717, 723], and through 
MMP-9 suppression in human hepatocellular carcinoma 
MHCC97-L and PLC/PRF/5 cells [724]. In addition, 
wogonin also represses multiple myeloma-stimulated 
angiogenesis through c-Myc/von Hippel-Lindau tumor 
suppressor (VHL)/HIF-1α signaling pathway [725], LPS- 
and  H2O2-induced angiogenesis through PI3K/Akt/
NF-κB pathway [726, 727].

Mitochondrial dysfunction, oxidative stress and ER 
stress play important roles in wogonin-induced anti-
cancer effects. Wogonin activates mitochondrial and 
ER stress-related pathways including the modulation of 
Bcl-2 family proteins, cytochrome c release, GRP78 and 
94-kDa glucose-regulated protein (GRP94) accumula-
tion, and caspase activation in human neuroblastoma 
SK-N-BE2 and IMR-32 cells, and induces mitochondrial 
dysfunction through IRE1α-dependent pathway [704]. ER 
stress markers and downstream pathways are also acti-
vated following wogonin treatment in human leukemia 
HL-60 and osteosarcoma U2OS cells, including IRE1α, 
PERK-eIF2α, ATF-6, CHOP, GRP94 and GRP78 [714, 
728]. Wogonin also enhances ROS production in human 
glioma U251 and U87, pancreatic cancer Panc-1 and 
Colo-357, and NSCLC A549 cells [711, 721, 729]. Moreo-
ver, it inhibits cell growth and induces apoptosis through 
NF-κB suppression in Epstein–Barr virus-positive lym-
phoma cells [730], and suppresses cell proliferation and 
invasion through NF-κB/Bcl-2 and EGFR pathways in 
human hepatocellular carcinoma HepG2 and Bel-7402 
cells [717].

Wogonin has immunomodulatory effects in cancer 
cells. It enhances the recruitment of DCs, T and NK cells 
into the tumor tissues in gastric cancer MFC xenograft 
mice, and also down-regulates the level of B7-H1, an 
immunoglobulin-like immune suppressive molecule, to 
promote anti-tumor immunity [731]. It also inhibits cell 

migration through modulating inflammatory microen-
vironment via IL-6/STAT3 pathway in human NSCLC 
A549 cells [723]. Moreover, immunization with wogonin-
treated tumor cell vaccine effectively inhibits tumor 
growth in MFC xenograft mice [732]. Targeting TNF 
receptor with wogonin is also suggested to be a potential 
strategy for the treatment of chronic lymphocytic leuke-
mia [712].

In order to enhance the accumulation and retention of 
wogonin in cancer cells, wogonin-conjugated Pt(IV) pro-
drug is developed [733]. This pro-drug enhances the anti-
proliferative and pro-apoptotic effects through casein 
kinase 2 (CK2)-mediated NF-κB pathway in human gas-
tric cancer SGC-7901 and cisplatin-resistant SGC-7901/
cDDP cells, and reverses cisplatin resistance in cisplatin-
resistant SGC-7901/cDDP xenograft mice. It also fur-
ther induces cell cycle arrest, enhances ROS production 
and apoptosis, and decreases mitochondrial membrane 
potential compared to wogonin in SGC-7901 cells [734]. 
LW-213, a derivative of wogonin, inhibits cell prolifera-
tion and induces cell cycle arrest in human breast cancer 
MCF-7 and MDA-MB-231 cells, and suppresses tumor 
growth in MCF-7 xenograft mice [735]. A synthetic 
wogonin derivative, GL-V9, inhibits metastasis in human 
breast cancer MDA-MB-231 and MCF-7 cells [736], and 
induces apoptosis and cell cycle arrest in human hepato-
cellular carcinoma HepG2 and gastric cancer cells MGC-
803 cells [737–739]. Moreover, targeting cancer cells 
specifically is an important strategy in cancer therapy, so 
wogonin-loaded liposomes are synthesized [740]. These 
liposomes accumulate in the liver and prolong its reten-
tion time and exert better inhibitory effects than wogonin 
in human hepatocellular carcinoma HepG2 cells.

The combination therapy has been widely used to 
enhance the anti-cancer effects of wogonin. The com-
bined treatment of wogonin and oxaliplatin syn-
ergistically inhibits cell growth in human gastric 
cancer BGC-823 cells and BGC-823 xenograft zebrafish, 
through nitrosative stress and disruption of mitochon-
drial membrane potential [741]. Wogonin also suppresses 
sorafenib-induced autophagy to exacerbate apoptosis in 
human hepatocellular carcinoma Hep3B and Bel-7402 
cells [742], and augments cisplatin-induced apoptosis 
through  H2O2 accumulation in human NSCLC A549 and 
cervical cancer HeLa cells [743].

As wogonin has various anti-cancer activities, it is cur-
rently under phase I clinical trial to test the safety and 
efficacy as an anti-cancer drug in China [734].

β‑Elemene
β-Elemene (Fig.  2) is a sesquiterpene mixture isolated 
from various Chinese herbs such as Curcuma wenyujin 
Y. H. Chen et C. Ling, Rhizoma zedoariae, and Curcuma 
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Zedoary. It has various pharmacological effects includ-
ing anti-oxidative, anti-inflammatory and anti-cancer 
activities [744–746]. It exerts anti-cancer effects in many 
cancers, such as lung, gastric, cervical, breast and blad-
der cancers, osteosarcoma, through apoptosis, inhibition 
of cell proliferation, migration and invasion, angiogenesis 
[746–752].

β-Elemene is shown to induce apoptosis in human 
cervical cancer SiHa, NSCLC A549 cells, primary blad-
der cancer cells, and Burkitt’s lumphoma, and inhibit 
tumor growth in Lewis tumor-bearing mice [746, 747, 
749, 753, 754]. It up-regulates insulin-like growth factor-
binding protein 1 (IGFBP1) to induce a reciprocal inter-
action between microRNA 155-5p and FoxO3a, which 
leads to the inhibition of cell growth in human NSCLC 
A549 and H1975 cells [755]. β-Elemene also induces S 
phase arrest in human NSCLC A549 cells [754], while it 
induces G0/G1 phase arrest in human glioblastoma U87 
cells [756]. Moreover, it induces protective autophagy 
in human gastric cells MGC-803 and SGC-7901, and 
NSCLC A549 cells, as autophagy inhibition promotes 
β-elemene-induced anti-tumor effects [748, 757]. How-
ever, autophagy inhibition attenuates β-elemene-induced 
apoptosis in human NSCLC cisplatin-resistant SPC-A-1 
cells [758]. β-Elemene can also inhibit cell migration and 
invasion in human cervical cancer SiHa, murine breast 
cancer 4T1 and melanoma B16F10 cells [749, 752, 759], 
whilst it inhibits cell growth and metastasis through 
angiogenesis suppression in murine melanoma B16F10 
cells [752]. In addition, β-elemene can reverse drug 
resistance in human NSCLC erlotinib-resistant A549/ER 
cells by inhibiting P-gp expression and P-gp dependent 
drug efflux [760].

β-Elemene exerts anti-tumor effects through phos-
phatase and tensin homolog (PTEN) up-regulation and 
Akt suppression in human primary bladder cancer cells 
[746]. It also inhibits cell proliferation and invasion, 
and induces apoptosis via inhibition of Wnt/β-catenin 
signaling pathway in human cervical cancer SiHa cells 
[749]. β-elemene-induced apoptosis is also shown to be 
through mitochondrial-related pathways, including p21 
and Bax up-regulation, caspase-9 activation, Bcl-2 and 
survivin down-regulation [754]. On the other hand, it 
reverses drug resistance through mitochondrial-medi-
ated apoptosis in human NSCLC cisplatin-resistant 
A549/DDP cells, via cytochrome c release, caspase-3 
activation, Bcl-2 associated agonist of cell death (Bad) 
up-regulation and Bcl-2 down-regulation [761]. ER 
stress also plays a role in β-elemene-induced apoptosis. 
β-Elemene up-regulates ER stress markers to induce 
apoptosis in human NSCLC A549 cells, including 
PERK, IRE1α, ATF-6, ATF-4 and CHOP [747]. Moreo-
ver, it also enhances ROS production in human NSCLC 

A549 cells [747], and up-regulates HIF-1α expression 
via ROS to induce apoptosis in human osteosarcoma 
MG63 and Saos-2 cells [751].

β-Elemene has immunomodulatory effects in cancer 
and immune cells. It inhibits LPS-induced IL-6, TNF-
α, IL-1β and IL-10 secretion, as well as inducible nitric 
oxide synthase in murine RAW264.7 marcophages 
[745]. M2 macrophages are regarded as tumor-associ-
ated macrophages, which can promote tumorigenesis 
[762]. β-Elemene can induce the polarization of M2 
to M1 macrophages, and can also suppress M2 mac-
rophage-treated conditioned medium-induced cell pro-
liferation, migration and invasion in mouse lung cancer 
Lewis cells [762].

β-Elemene has poor water solubility, low oral bio-
availability and severe phlebitis, so different deliv-
ery systems have been developed to solve these issues 
[763–765]. β-Elemene-loaded nanostructured lipid car-
riers are synthesized to enhance the intravenous deliv-
ery of β-elemene, and have higher bioavailiabity [763]. 
They inhibit tumor growth compared to β-elemene in 
hepatocellular carcinoma H22 xenograft mice. ETME, a 
novel β-elemene derivative, synergizes with arsenic tri-
oxide to induce cell cycle arrest and apoptosis in human 
hepatocellular carcinoma SMMC-7721 cells, which is 
dependent on p53 [766]. Another β-elemene derivative, 
13,14-bis(cis-3,5-dimethyl-1-piperazinyl)-β-elemene 
(IIi), is shown to inhibit cell proliferation in human gas-
tric cancer SGC-7901 and cervical cancer HeLa cells, and 
inhibit tumor growth in sarcoma S-180 xenograft mice 
[767]. It also induces autophagy in human breast cancer 
MCF-7 cells, so it can be a potential anti-tumor agent.

The combination therapy is commonly used to 
enhance the efficacy of β-elemene for cancer treatment. 
β-Elemene when combined with cisplatin synergisti-
cally enhances apoptosis and inhibits cell proliferation 
in human gingival squamous cell carcinoma YD-38 cells 
and YD-38 xenograft mice [768]. β-Elemene potenti-
ates the anti-proliferation effect of gefitinib as well as 
the induction of apoptosis and autophagy in human glio-
blastoma multiforme U251 and U87MG cells, through 
inhibiting EGFR signaling pathway [769]. It also reverses 
drug resistance in chemo-resistant breast cancer cells by 
reducing resistance transmission via exosomes [770], and 
enhances the sensitivity to TNF‐related apoptosis‐induc-
ing ligand (TRAIL) partly through death-inducing signal-
ing complex formation in human gastric cancer BGC-823 
and SGC-7901 cells [771].

The Elemene Emulsion mainly containing β-elemene 
has been approved by China’s State Food and Drug 
Administration, and now it is prescribed as an oral or 
injected drug to improve anti-cancer efficacy and reduce 
the side effects as adjuvant therapy.
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Cepharanthine (CEP)
CEP (Fig.  2), a natural product derived from Chinese 
herbs such as Stephania cepharantha Hayata and Stepha-
nia japonica, is a cationic and amphipathic alkaloid that 
has been reported to decrease the fluidity of biological 
membranes [772]. With the presence of a 1-benzyliso-
quinoline moiety on alkyl chain, CEP belongs to a class 
of compounds called biscoclaurine alkaloids that have 
attracted significant attentions to pharmacologists and 
clinicians due to their resemblance to polypeptides 
[773]. CEP is widely used in Japan for the treatment of 
many acute and chronic diseases [773]. It exhibits anti-
malarial, anti-viral, anti-inflammatory, anti-metastatic, 
and anti-cancer activities in various cell lines and animal 
models [772, 774–776]. Among its anti-cancer activities, 
CEP exhibits multiple pharmacological actions, including 
apoptosis and radiation sensitization, inhibition of angio-
genesis and metastasis, and reversing MDR [776–789].

CEP induces apoptosis and cell cycle arrest in many 
types of cancer cells [783–786, 790]. It induces autophagy 
to mediate apoptosis through suppressing Akt/mTOR 
signaling pathway in human breast cancer MCF-7 and 
MDA-MB-231 cells [785], and stimulates AMPK-mTOR-
dependent autophagy to induce cell death in apoptosis-
resistant cells [791]. In contrast, the inhibition of autophagy 
is an effective treatment for NSCLC, and CEP is identified 
as a novel autophagic inhibitor in human NSCLC NCI-
H1975 cells [782]. It inhibits autophagy by preventing 
autophagosome–lysosome fusion and inhibiting lysosomal 
cathepsin B and cathepsin D maturation. Therefore, this 
suggests that autophagy plays a dual role in cancer via dif-
ferent signaling routes. Moreover, CEP is suggested to be 
a potential anti-angiogenic agent, it blocks angiogenesis in 
endothelial cells, zebrafish and xenograft mice by inhibiting 
cholesterol trafficking [777]. It can also suppress metasta-
sis in a highly metastatic tumor, cholangiocarcinoma, and 
markedly inhibit cell migration in human cholangiocarci-
noma KKU-M213 and KKU-M214 cells [776].

CEP has anti-tumor action mainly by inducing apop-
tosis and ROS production [783, 784, 786]. ROS is shown 
to be an important factor to determine cell fate, and it 
can be regulated by p21 [792]. CEP efficiently inhibits 
the growth of p53-mutated colorectal cancer cells that 
are often resistant to commonly used chemotherapeutic 
agents [783]. It also effectively induces cell cycle arrest 
and apoptosis through ROS production, p21 up-regula-
tion, cyclin A and Bcl-2 down-regulation [783]. Similarly, 
CEP triggers apoptosis via ROS production and reduc-
ing mitochondrial membrane potential, thus inducing 
caspase-3 and PARP activation in human NSCLC H1299 
and A549 cells [786]. It also exerts anti-tumor activity 
through ROS production and JNK activation in human 
choroidal melanoma MEL15-1 cells and xenograft mice 

[784]. In addition, CEP is also a potential anti-cancer 
drug for ovarian cancer by markedly increasing p21 
expression and decreasing cyclins A and D levels in 
human ovarian cancer CaOV-3 and OVCAR3 cells [787].

CEP also plays an important role in immunity. It is 
shown to reduce IL-6 and TNF-α secretion in LPS-stim-
ulated DCs, and inhibits LPS-stimulated DC matura-
tion and antigen uptake by DCs [793]. CEP-treated DCs 
becomes a poor stimulator of allogeneic T cell activation 
and reduces IFN-γ production [793]. Therefore, it is sug-
gested that CEP may have potential to be a cancer immu-
nomodulatory agent.

Targeting P-gp using P-gp inhibitors is one of the main 
strategies to reverse MDR, and cepharanthine hydrochlo-
ride (CEH), a salt form of CEP, is suggested to be a potent 
P-gp inhibitor [779]. CEH exhibits MDR reversal potency 
in various cancer cells [779–781, 788]. CEH can reverse 
MDR-mediated cisplatin resistance in esophageal squa-
mous cell carcinoma [780]. It increases the sensitivity of 
the cells and induces apoptosis via c-Jun activation, thus 
down-regulating P-gp and enhancing p21 levels. Simi-
larly, CEH also reverses P-gp-mediated MDR through 
suppressing PI3K/Akt pathway in human ovarian cancer 
A2780/Taxol cells [788]. In addition, by reversing MDR, 
CEH induces cell cycle arrest and apoptosis in human 
nasopharyngeal carcinoma CNE-1 and CNE-2 cells [789].

In addition to chemotherapy, CEP may act as a radio-
sensitizer. Radiotherapy in the presence of CEP exhibits 
significant enhancement of tumor responses in human 
oral squamous cell carcinoma [778]. This pre-clinical data 
indicates that CEP has the potential to be used in clini-
cal settings in combination with radiotherapy to treat oral 
squamous cell carcinoma. Moreover, paclitaxel and CEP co-
loaded nano-particles also enhance the anti-cancer effects 
in human gastric cancer MKN45 cells and xenograft mice, 
suggesting that these nano-particles could be a potential for-
mulation for gastric cancer [794]. In addition, CEP enhances 
the anti-cancer effects of dacomitinib in human NSCLC 
NCI-H1975 cells and NCI-H1975 xenograft mice [782], and 
cisplatin in lung and breast xenograft mice [777].

Although CEP has not yet been translated into clini-
cal use for the treatment of cancer, the pharmacological 
activities and pre-clinical data support its significant clin-
ical potential for anti-cancer therapy.

Conclusions
Chinese herbal medicine has played, and still plays, an 
important role in human health care in China and other 
Asian countries. Natural products orignianted from 
Chinese herbal medicine has also become a “hot topic” 
in anti-cancer research. Chinese herbal medicine is also 
recognized worldwide as a rich source for the discovery 
of novel drugs in the past decades. Table 1 illustrates the 



Page 23 of 58Luo et al. Chin Med           (2019) 14:48 

Ta
bl

e 
1 

Li
st

 o
f a

nt
i-c

an
ce

r n
at

ur
al

 c
om

po
un

ds
 fr

om
 C

hi
ne

se
 h

er
ba

l m
ed

ic
in

es

Co
m

po
un

ds
O

ri
gi

ns
Ca

nc
er

 ty
pe

s
In

 v
itr

o 
m

od
el

s
In

 v
iv

o 
m

od
el

s
A

nt
i‑c

an
ce

r 
eff

ec
ts

U
nd

er
ly

in
g 

m
ec

ha
ni

sm
s

D
os

ag
e

Co
m

bi
na

tio
na

l 
ag

en
ts

Re
fe

re
nc

es

Cu
rc

um
in

Cu
rc

um
a 

lo
ng

a,
 

Cu
rc

um
a 

ze
do

ar
ia

, 
Ac

or
us

 
ca

la
m

us
 L

.

Bl
ad

de
r c

an
ce

r; 
br

ea
st

 
ca

nc
er

; c
er

vi
ca

l 
ca

nc
er

; c
ol

or
ec

ta
l 

ca
nc

er
; e

so
ph

ag
ea

l 
sq

ua
m

ou
s 

ce
ll 

ca
rc

i-
no

m
a;

 g
as

tr
oi

nt
es

tin
al

 
ca

nc
er

; g
lio

m
a;

 h
ep

a-
to

ce
llu

la
r c

ar
ci

no
m

a;
 

la
ry

ng
ea

l c
an

ce
r; 

lu
ng

 
ca

nc
er

; l
eu

ke
m

ia
; l

iv
er

 
ca

nc
er

; m
es

ot
he

-
lio

m
a;

 n
eu

ro
bl

as
to

m
a;

 
or

al
 s

qu
am

ou
s 

ce
ll 

ca
rc

in
om

a;
 p

an
cr

ea
tic

 
ca

nc
er

; p
ro

st
at

e 
ca

n-
ce

r; 
re

na
l c

ar
ci

no
m

a;
 

re
tin

ob
la

st
om

a

T2
4,

 R
T4

, M
D

A
-

M
B-

23
1,

 H
eL

a,
 S

iH
a,

 
H

C
T-

11
6,

 H
T-

29
, 

RK
O

, H
C

T-
15

, D
LD

-
1,

 E
C

1,
 E

C
97

06
, 

KY
SE

45
0,

 T
E1

3,
 A

G
S,

 
U

87
, T

98
G

, H
ep

G
2,

 
Tu

21
2,

 A
54

9,
 H

12
99

, 
H

46
0,

 H
29

2,
 N

C
I-

H
52

0,
 N

C
I-H

13
73

, 
N

C
I-H

21
70

, K
56

2,
 

H
L-

60
, P

LC
/P

RF
5,

 
W

RL
68

, H
uh

7,
 

KM
C

H
, R

N
5,

 N
2a

, 
SC

C
-2

5,
 P

at
u8

98
8,

 
Pa

nc
-1

, C
4-

2,
 P

C
-3

, 
LN

Ca
P, 

VC
aP

, C
ak

i, 
O

-R
b5

0,
 Y

79

Bx
PC

-3
-G

em
R 

xe
no

gr
af

t m
ic

e;
 C

4-
2 

xe
no

gr
af

t m
ic

e;
 P

C
-3

 
xe

no
gr

af
t m

ic
e;

 R
N

5 
xe

no
gr

af
t m

ic
e;

 U
87

 
xe

no
gr

af
t m

ic
e

A
nt

i-a
ng

io
-

ge
ne

si
s; 

an
ti-

m
et

as
ta

si
s; 

an
ti-

pr
ol

ife
ra

-
tio

n;
 in

du
ce

s 
ce

ll 
cy

cl
e 

ar
re

st
; i

nh
ib

its
 

ce
ll 

vi
ab

ili
ty

; 
pr

o-
ap

op
to

si
s

A
ct

iv
at

es
 c

as
pa

se
-3

, -
9,

 P
A

RP
; 

D
ow

n-
re

gu
la

te
s 

A
kt

, B
cl

-2
, 

Bc
l-x

L,
 C

TG
F, 

cy
cl

in
 D

1,
 c

yc
lin

 
E1

, E
RK

1/
2,

 E
ZH

2,
 F

ox
M

1,
 G

LI
1,

 
IT

G
A

5,
 Ja

k1
, J

N
K,

 M
M

P-
2,

 M
cl

-1
, 

N
F-

κB
, N

ot
ch

1,
 p

15
, p

16
, p

62
, 

p7
0S

6 
K,

 R
O

C
K1

, R
ho

A
, S

H
H

, 
SS

AT
, S

TA
T1

, S
TA

T3
, S

uz
12

, 
TR

O
P2

, v
im

en
tin

, W
T1

, X
IA

P, 
YA

P/
TA

Z;
 E

nh
an

ce
s 

cy
to

ch
ro

m
e 

c 
re

le
as

e,
 R

O
S 

ac
cu

m
ul

at
io

n;
 

In
hi

bi
ts

 C
D

K2
 a

ct
iv

ity
, P

I3
K/

A
kt

/
m

TO
R,

 S
H

H
/G

LI
1,

 S
TA

T3
, T

G
F-

β 
pa

th
w

ay
s; 

U
p-

re
gu

la
te

s 
A

IF
, 

Ba
x,

 B
ex

-1
, -

2,
 -3

, -
4,

 -6
, H

IF
-1

α,
 

m
ic

ro
RN

A
-1

5a
, m

ic
ro

RN
A

-1
6-

1,
 

m
ic

ro
RN

A
-9

9a
, p

21
, p

53
, p

73
, 

PK
D

1,
 S

M
O

X

0–
5 

μM
; 0

–1
5 

μM
; 

0–
16

 μ
M

; 0
–2

0 
μM

; 
0–

25
 μ

M
; 0

–4
0 

μM
; 

0–
50

 μ
M

; 0
–1

25
 μ

M
; 

10
–4

0 
μM

; 1
5,

 
25

 μ
M

; 2
5 

μM
; 

30
 μ

M
; 0

–6
 μ

g/
m

l; 
5 

m
g/

kg
; 6

0 
m

g/
kg

; 
20

0 
m

g/
kg

; 5
00

 m
g/

kg
; 2

5 
μg

/m
ou

se

G
em

ci
ta

bi
ne

; 
N

VP
-B

EZ
23

5;
 

α-
To

m
at

in
e

[1
2,

 2
1,

 
79

5–
81

4]

EG
CG

 
Ca

m
el

lia
 

sin
en

sis
Bi

lia
ry

 tr
ac

t c
an

ce
r; 

bl
ad

de
r c

an
ce

r; 
br

ea
st

 c
an

ce
r; 

ce
rv

ic
al

 
ca

nc
er

; c
ol

or
ec

ta
l 

ca
nc

er
; g

al
lb

la
dd

er
 

ca
nc

er
; g

as
tr

ic
 c

an
ce

r; 
gl

io
bl

as
to

m
a;

 h
ea

d 
an

d 
ne

ck
 c

an
ce

r; 
lu

ng
 

ca
nc

er
; n

as
op

ha
ry

n-
ge

al
 c

ar
ci

no
m

a;
 

N
SC

LC
; o

ra
l c

an
ce

r; 
pa

nc
re

at
ic

 c
an

ce
r; 

ph
eo

ch
ro

m
oc

yt
om

a;
 

pr
os

ta
te

 c
an

ce
r; 

sk
in

 
ca

nc
er

BD
C

, C
C

SW
-1

, E
G

I-1
, 

Sk
C

hA
-1

, T
FK

-1
, 

SW
-7

80
, M

C
F-

7,
 4

T1
, 

T4
7D

, M
D

A
-M

B-
23

1,
 

M
D

A
-M

B-
43

6,
 

SU
M

-1
49

, S
U

M
-1

90
, 

H
eL

a,
 D

LD
-1

, H
T-

29
, 

H
C

T-
11

6,
 G

BC
, 

M
zC

hA
-1

, M
zC

hA
-2

, 
SG

C
-7

90
1/

FU
, 

M
G

C
-8

03
/F

U
, A

G
S,

 
C

6,
 U

25
1,

 S
H

G
-4

4,
 

U
87

, K
3,

 K
4,

 K
5,

 
C

L1
-5

, C
L1

-0
, T

W
01

, 
TW

06
, N

C
I-H

12
99

, 
A

54
9,

 H
46

0,
 S

CC
-9

, 
M

IA
 P

aC
a-

2,
 P

an
c-

1,
 

PC
-1

2,
 B

Ca
PT

1,
 

BC
aP

T1
0,

 B
Ca

PM
-

T1
0,

 L
N

Ca
P, 

A
43

1,
 

SC
C

13

4T
1 

xe
no

gr
af

t m
ic

e;
 

A
54

9 
xe

no
gr

af
t m

ic
e;

 
BC

aP
T1

0 
xe

no
gr

af
t 

m
ic

e;
 B

Ca
PM

-T
10

 
xe

no
gr

af
t m

ic
e;

 
C

L1
-5

 x
en

og
ra

ft
 

m
ic

e;
 O

ra
l s

qu
am

ou
s 

ce
ll 

ca
rc

in
om

a 
xe

no
gr

af
t m

ic
e;

 
PC

-1
2 

xe
no

gr
af

t 
m

ic
e;

 S
CG

-7
90

1/
FU

 x
en

og
ra

ft
 m

ic
e;

 
SS

C
-9

 x
en

og
ra

ft
 

m
ic

e;
 S

U
M

-1
49

 x
en

o-
gr

af
t m

ic
e;

 S
W

-7
80

 
xe

no
gr

af
t m

ic
e

A
nt

i-a
ng

io
-

ge
ne

si
s; 

an
ti-

m
et

as
ta

si
s; 

an
ti-

pr
ol

ife
ra

-
tio

n;
 in

du
ce

s 
au

to
ph

ag
y,

 
ce

ll 
cy

cl
e 

ar
re

st
; i

nh
ib

its
 

ce
ll 

vi
ab

ili
ty

, 
ep

ith
el

ia
l–

m
es

en
ch

ym
al

 
tr

an
si

tio
n;

 p
ro

-
ap

op
to

si
s

A
ct

iv
at

es
 c

as
pa

se
-3

, -
7,

 P
A

RP
; 

D
ow

n-
re

gu
la

te
s 

A
BC

G
2,

 A
kt

, 
A

XL
, B

cl
-2

, B
cl

-x
L,

 E
-c

ad
he

rin
, 

β-
ca

te
ni

n,
 C

D
K2

, C
D

K4
, C

O
X-

2,
 

C
TT

N
, c

yc
lin

 B
1,

 c
yc

lin
 D

1,
 c

yc
lin

 
D

2,
 c

yc
lin

 D
3,

 D
N

M
T1

, E
G

FR
, 

ER
α,

 E
RK

1/
2,

 F
A

K,
 F

N
1,

 G
SK

3β
, 

H
D

A
C

1,
 H

ER
2,

 H
SP

90
, I

KK
α,

 JN
K,

 
M

D
R-

1,
 M

G
M

T,
 M

M
P-

2,
 M

M
P-

9,
 

N
A

N
O

G
, N

F-
κB

, N
ot

ch
, O

ct
-4

, 
u-

PA
, p

ax
ill

in
, P

-g
p,

 P
I3

K,
 R

af
-1

, 
Sn

ai
l, 

SO
X2

, S
p1

, S
rc

, S
TA

T3
, 

su
rv

iv
in

, T
FA

P2
A

, T
yr

o3
, V

EG
F, 

vi
m

en
tin

; E
nh

an
ce

s 
cy

to
ch

ro
m

e 
c 

re
le

as
e,

 R
O

S 
ac

cu
m

ul
at

io
n;

 
In

du
ce

s 
m

ito
ch

on
dr

ia
l d

ep
o-

la
riz

at
io

n;
 In

hi
bi

ts
 M

A
PK

/E
RK

, 
PI

3K
/A

kt
 p

at
hw

ay
s; 

Re
du

ce
s 

AT
P 

le
ve

ls
; R

ep
re

ss
es

 D
N

A
 re

pl
ic

a-
tio

n;
 U

p-
re

gu
la

te
s 

Ba
x,

 C
K1

α,
 

en
do

st
at

in
, m

ic
ro

RN
A

-1
6,

 p
21

, 
p5

3,
 T

IM
P-

1,
 T

IM
P-

2

0–
20

 µ
M

; 0
–4

0 
µM

; 
0–

50
 µ

M
; 0

–1
00

 µ
M

; 
0–

20
0 

µM
; 

0–
40

0 
μM

; 
2–

10
0 

μM
; 1

0 
μM

; 
20

 μ
M

; 2
5,

 5
0,

 
10

0 
μM

; 4
0 

μM
; 5

0,
 

10
0 

μM
; 8

0 
µM

; 
0–

60
 μ

g/
m

l; 
10

 m
g/

kg
; 1

0–
20

 m
g/

kg
; 1

5 
m

g/
kg

; 
16

.5
 m

g/
kg

; 2
0 

m
g/

kg
; 2

5 
m

g/
kg

; 
25

–1
00

 m
g/

kg
; 

50
 m

g/
kg

; 0
.0

25
%

, 
0.

05
%

; 0
.0

6%

Bl
eo

m
yc

in
; C

is
pl

-
at

in
; C

ur
cu

m
in

; 
D

oc
et

ax
el

; 
5-

Fl
uo

ro
ur

ac
il;

 
O

xa
lip

la
tin

; 
Pt

er
os

til
be

ne
; 

Te
m

oz
ol

om
id

e

[9
3–

95
, 1

00
, 

10
1,

 1
03

, 
12

3–
12

5,
 

81
5–

83
4]



Page 24 of 58Luo et al. Chin Med           (2019) 14:48 

Ta
bl

e 
1 

(c
on

ti
nu

ed
)

Co
m

po
un

ds
O

ri
gi

ns
Ca

nc
er

 ty
pe

s
In

 v
itr

o 
m

od
el

s
In

 v
iv

o 
m

od
el

s
A

nt
i‑c

an
ce

r 
eff

ec
ts

U
nd

er
ly

in
g 

m
ec

ha
ni

sm
s

D
os

ag
e

Co
m

bi
na

tio
na

l 
ag

en
ts

Re
fe

re
nc

es

Be
rb

er
in

e
Co

pt
id

is 
cg

ub
eb

su
s 

Fr
an

ch
., 

M
ah

on
ia

 
be

al
ei

 (F
or

t.)
 

Ca
rr.

, P
he

l-
lo

de
nd

ro
n 

ch
in

en
se

 
Sc

hn
ei

d

Br
ea

st
 c

an
ce

r; 
ce

rv
ic

al
 

ca
nc

er
; c

ho
la

ng
io

-
ca

rc
in

om
a;

 c
ol

or
ec

ta
l 

ca
nc

er
; e

nd
om

et
ria

l 
ca

rc
in

om
a;

 e
so

ph
a-

ge
al

 s
qu

am
ou

s 
ca

nc
er

; g
as

tr
ic

 c
an

ce
r; 

gl
io

bl
as

to
m

a;
 h

ea
d 

an
d 

ne
ck

 c
an

ce
r; 

he
pa

to
ce

llu
la

r c
ar

ci
-

no
m

a;
 le

uk
em

ia
; l

un
g 

ca
nc

er
; m

ed
ul

lo
bl

as
-

to
m

a;
 m

el
an

om
a;

 
na

so
ph

ar
yn

ge
al

 
ca

rc
in

om
a;

 o
ra

l s
qu

a-
m

ou
s 

ce
ll 

ca
rc

in
om

a;
 

os
te

os
ar

co
m

a;
 o

va
r-

ia
n 

ca
nc

er
; p

an
cr

ea
tic

 
ca

nc
er

; p
ro

st
at

e 
ca

nc
er

; s
ki

n 
ca

nc
er

; 
ut

er
in

e 
le

io
m

yo
m

a

M
C

F-
7,

 M
C

F-
7/

H
ER

2,
 M

C
F-

7/
TA

M
, M

D
A

-M
B1

57
, 

M
D

A
-M

B2
31

, 
M

D
A

-M
B4

53
, B

T2
0,

 
BT

54
9,

 H
s5

78
T,

 
T4

7D
, S

KB
R3

, B
T4

74
, 

H
eL

a,
 S

iH
a,

 Q
BC

93
9,

 
KK

U
-2

13
, K

KU
-2

14
, 

SW
-4

80
, S

W
-6

20
, 

H
T-

29
, D

LD
-1

; 
H

C
T-

11
6,

 L
S1

74
T,

 
Lo

Vo
, E

ca
10

9,
 T

E1
3,

 
KY

SE
-7

0,
 E

A
C

, 
SK

G
T4

, A
N

3 
C

A
, 

H
EC

-1
-A

, K
LE

, M
G

C
-

80
3,

 S
G

C
-7

90
1,

 A
G

S,
 

BG
C

-8
23

, M
KN

45
, 

U
87

, U
25

1,
 U

11
8,

 
SH

G
-4

4,
 F

aD
u,

 H
22

, 
H

ep
a1

-6
, H

ep
G

2,
 

Be
l-7

40
4,

 H
uh

7,
 

W
RL

68
, M

H
CC

97
L,

 
K5

62
, A

54
9,

 B
16

F1
0,

 
H

O
N

E1
, H

K1
-E

BV
, 

C
N

E-
2,

 K
B,

 U
2O

S,
 

Pa
nc

-1
, M

IA
 P

aC
a-

2,
 

LN
Ca

P, 
D

U
-1

45
, 

LA
PC

-4
, P

C
-3

, 
22

RV
1,

 C
4-

2B
, C

42
, 

RM
-1

, A
-4

31

22
RV

1 
xe

no
gr

af
t m

ic
e;

 
A

27
80

 x
en

og
ra

ft
 

m
ic

e;
 A

54
9 

xe
no

gr
af

t 
m

ic
e;

 B
G

C
-8

23
 x

en
o-

gr
af

t m
ic

e;
 E

ca
10

9 
xe

no
gr

af
t m

ic
e;

 H
22

 
xe

no
gr

af
t m

ic
e;

 
H

O
N

E1
 x

en
og

ra
ft

 
m

ic
e;

 L
oV

o 
xe

no
gr

af
t 

m
ic

e;
 L

N
Ca

P 
xe

no
-

gr
af

t m
ic

e;
 M

D
A

-
M

B-
23

1 
xe

no
gr

af
t 

m
ic

e;
 M

ed
ul

lo
bl

as
-

to
m

a 
xe

no
gr

af
t m

ic
e;

 
M

H
CC

97
L 

xe
no

gr
af

t 
m

ic
e;

 S
G

C
-7

90
1 

xe
no

gr
af

t m
ic

e;
 

SW
-6

20
 x

en
og

ra
ft

 
m

ic
e;

 S
iH

a 
xe

no
gr

af
t 

m
ic

e;
 U

87
 x

en
og

ra
ft

 
m

ic
e

A
nt

i-a
ng

io
-

ge
ne

si
s; 

an
ti-

pr
ol

ife
ra

tio
n;

 
an

ti-
m

et
as

ta
si

s; 
en

ha
nc

es
 

ra
di

os
en

si
tiv

-
ity

; i
nd

uc
es

 
au

to
ph

ag
y,

 
ce

ll 
cy

cl
e 

ar
re

st
; i

nh
ib

its
 

ce
ll 

vi
ab

ili
ty

, 
ep

ith
el

ia
l–

m
es

en
ch

ym
al

 
tr

an
si

tio
n;

 p
ro

-
ap

op
to

si
s

A
ct

iv
at

es
 c

as
pa

se
-3

, -
7,

 -8
, -

9,
 

PA
RP

; D
ec

re
as

es
 m

ito
ch

on
dr

ia
l 

m
em

br
an

e 
po

te
nt

ia
l, 

ca
ta

la
se

 
an

d 
su

pe
ro

xi
de

 d
is

m
ut

as
e 

ac
tiv

iti
es

; D
ow

n-
re

gu
la

te
s 

A
kt

, 
A

R,
 B

cl
-2

, B
cl

-x
L,

 B
id

, β
-c

at
en

in
, 

N
-c

ad
he

rin
, C

D
K1

, C
D

K2
, 

C
D

K4
, C

O
X-

2,
 P

LA
2,

 c
yc

lin
 A

1,
 

cy
cl

in
 B

1,
 c

yc
lin

 D
1,

 c
yc

lin
 E

, 
D

H
C

R2
4,

 D
H

FR
, E

2F
1,

 E
BN

A
1,

 
EG

FR
, E

F-
Tu

, E
RK

, E
zr

in
, F

A
K,

 F
N

, 
H

ER
2,

 H
IF

-1
α,

 H
M

G
B1

, H
N

F4
α,

 
IT

G
β1

, J
ak

2,
 JN

K,
 M

cl
-1

, M
EK

, 
M

M
P-

1,
 M

M
P-

2,
 M

M
P-

9,
 m

TO
R,

 
c-

M
yc

, N
A

N
O

G
, N

F-
κB

, i
N

O
S,

 
oc

cl
ud

in
, O

ct
-4

, p
38

, p
50

, p
62

, 
p1

00
, p

10
5,

 p
70

S6
 K

, p
ax

ill
in

, 
u-

PA
, P

C
N

A
, P

D
K1

,  P
G

E 2, 
PK

C
-α

, 
PS

A
, P

TE
N

, P
TT

G
-1

, R
A

D
51

, 
b-

Ra
f, 

c-
Ra

f, 
Se

pt
in

-8
, S

lu
g,

 S
na

il,
 

SO
X2

, S
p1

, S
rc

, S
TA

T3
, s

ur
vi

vi
n,

 
U

Q
C

RC
1,

 V
EG

F, 
vi

m
en

tin
, W

nt
5α

, 
ZE

BR
A

; E
nh

an
ce

s 
cy

to
ch

ro
m

e 
c 

re
le

as
e,

 R
O

S 
ac

cu
m

ul
at

io
n,

 S
SA

T 
ac

tiv
ity

; I
nd

uc
es

 D
N

A
 d

am
ag

e;
 

In
hi

bi
ts

 A
kt

/m
TO

R/
p7

0S
6 

K/
S6

, a
ra

ch
id

on
ic

 a
ci

d 
m

et
ab

ol
ic

, 
an

dr
og

en
 re

ce
pt

or
 p

at
hw

ay
s; 

Re
du

ce
s 

N
O

 p
ro

du
ct

io
n;

 S
up

-
pr

es
se

s 
H

ed
ge

ho
g 

si
gn

al
in

g 
pa

th
w

ay
; U

p-
re

gu
la

te
s 

A
CC

, A
IF

, 
A

M
PK

α,
 A

pa
f-1

, A
TF

-6
, B

ad
, B

ak
, 

Ba
x,

 B
ec

lin
-1

, B
im

, E
-c

ad
he

rin
, 

D
R5

, F
as

L,
 F

ox
O

1,
 F

ox
O

3a
, 

G
RP

78
, H

RK
, L

ig
4,

 M
ST

1,
 p

21
, 

p2
7,

 p
53

, P
H

LP
P2

, S
SA

T,
 T

IM
P-

2,
 

TR
A

IL
, U

LK
1

0–
10

 µ
M

; 0
–2

0 
μM

; 
0–

25
 μ

M
; 0

–4
0 

μM
; 

0–
50

 µ
M

; 0
–8

0 
μM

; 
0–

90
 µ

M
; 0

–1
00

 µ
M

; 
0–

12
0 

µM
; 

0–
15

0 
μM

; 
0–

16
0 

µM
; 

0–
20

0 
µM

; 
0–

25
0 

μM
; 

0–
35

0 
μM

; 
0–

10
00

 μ
M

; 
10

–8
0 

μM
; 1

5 
µM

; 
20

 μ
M

; 5
0 

μM
; 

0–
1 

µg
/m

l; 
0–

80
 μ

g/
m

l; 
5 

m
g/

kg
; 1

0 
m

g/
kg

; 1
2.

5–
50

 m
g/

kg
; 2

0 
m

g/
kg

; 
50

, 1
00

 m
g/

kg
; 5

0–
20

0 
m

g/
kg

; 2
00

 m
g/

kg
; 

0.
01

13
6 

g/
kg

Ca
ffe

in
e;

 C
et

ux
i-

m
ab

; D
ox

or
u-

bi
ci

n;
 E

rlo
tin

ib
; 

d-
lim

on
en

e;
 

N
ira

pa
rib

; 
Ta

m
ox

ife
n;

 
Ta

xo
l; T

RA
IL

[1
39

, 1
40

, 1
44

, 
14

5,
 1

47
–

14
9,

 1
53

, 
17

1,
 1

74
, 

83
5–

87
0]



Page 25 of 58Luo et al. Chin Med           (2019) 14:48 

Ta
bl

e 
1 

(c
on

ti
nu

ed
)

Co
m

po
un

ds
O

ri
gi

ns
Ca

nc
er

 ty
pe

s
In

 v
itr

o 
m

od
el

s
In

 v
iv

o 
m

od
el

s
A

nt
i‑c

an
ce

r 
eff

ec
ts

U
nd

er
ly

in
g 

m
ec

ha
ni

sm
s

D
os

ag
e

Co
m

bi
na

tio
na

l 
ag

en
ts

Re
fe

re
nc

es

A
rt

em
is

in
in

s
Ar

te
m

isi
a 

an
nu

a 
L.

Br
ea

st
 c

an
ce

r; 
ce

rv
ic

al
 

ca
nc

er
; c

ol
or

ec
ta

l 
ca

nc
er

; g
al

lb
la

dd
er

 
ca

nc
er

; g
as

tr
ic

 c
an

ce
r; 

gl
io

m
a;

 h
ep

at
oc

el
-

lu
la

r c
ar

ci
no

m
a;

 
Is

hi
ka

w
a 

en
do

m
et

ria
l 

ca
nc

er
; l

un
g 

ca
nc

er
; 

ne
ur

ob
la

st
om

a;
 o

ra
l 

ca
rc

in
om

a;
 p

an
cr

ea
tic

 
ca

nc
er

M
C

F-
7,

 M
D

A
-M

B-
23

1,
 

H
eL

a,
 H

C
T-

11
6,

 
SW

-4
80

, S
W

-6
20

, 
G

BC
-S

D
, N

O
Z,

 
M

G
C

-8
03

, C
6,

 
H

ep
G

2,
 H

ep
3B

, 
SM

M
C

-7
72

1,
 Is

hi
-

ka
w

a,
 A

37
5,

 A
54

9,
 

A
ST

C
-a

-1
, H

12
99

, 
BE

(2
) -

C
, S

H
EP

1,
 

SK
-N

-A
S,

 S
K-

N
-D

Z,
 

SC
C

25
, R

IN

A
54

9 
xe

no
gr

af
t m

ic
e;

 
BE

(2
)-

C
 x

en
og

ra
ft

 
m

ic
e;

 C
6 

xe
no

gr
af

t 
m

ic
e;

 G
BC

-S
D

 
xe

no
gr

af
t m

ic
e;

 H
C

T-
11

6 
xe

no
gr

af
t m

ic
e;

 
H

ep
G

2 
xe

no
gr

af
t 

m
ic

e;
 N

O
Z 

xe
no

gr
af

t 
m

ic
e

A
nt

i-m
et

as
ta

si
s; 

an
ti-

pr
ol

ife
ra

-
tio

n;
 in

du
ce

s 
ap

op
to

si
s, 

au
to

ph
ag

y,
 c

el
l 

cy
cl

e 
ar

re
st

; 
in

hi
bi

ts
 c

el
l 

vi
ab

ili
ty

A
ct

iv
at

es
 c

as
pa

se
-3

, -
8,

 -9
, P

A
RP

; 
D

ec
re

as
es

 m
ito

ch
on

dr
ia

l m
em

-
br

an
e 

po
te

nt
ia

l, 
M

M
P 

ac
tiv

ity
; 

D
ow

n-
re

gu
la

te
s 

Bc
l-2

, C
D

K2
, 

C
D

K4
, c

yc
lin

 D
1,

 c
yc

lin
 E

2,
 D

vl
2,

 
ER

K1
/2

, L
RP

6,
 M

M
P-

2,
 N

A
N

O
G

, 
O

ct
-4

, p
38

, p
62

, S
O

X2
, v

im
en

tin
, 

W
nt

5α
/β

; E
nh

an
ce

s 
cy

to
ch

ro
m

e 
c 

re
le

as
e,

 R
O

S 
ac

cu
m

ul
at

io
n;

 
In

du
ce

s 
D

N
A

 d
am

ag
e;

 In
hi

bi
ts

 
W

nt
/β

-c
at

en
in

 s
ig

na
lin

g 
pa

th
-

w
ay

; U
p-

re
gu

la
te

s 
A

xi
n2

, B
ax

, 
E-

ca
dh

er
in

, β
-c

at
en

in
, N

KD
2,

 
p1

6,
 T

IM
P-

2

0–
75

 μ
M

; 0
–1

60
 μ

M
; 

0–
20

0 
μM

; 
0–

25
0 

μM
; 

0–
40

0 
μM

; 
0–

50
0 

μM
; 

0–
10

00
 μ

M
; 

0–
12

00
 μ

M
; 

10
–3

20
 μ

M
; 

40
–1

60
 μ

M
; 

0–
40

 μ
g/

m
l; 

10
 m

g/
kg

; 5
0 

m
g/

kg
; 

60
 m

g/
kg

; 1
00

 m
g/

kg

3C
A

; H
al

of
ug

i-
no

ne
; 

H
ol

ot
ra

ns
fe

rr
in

; 
Re

sv
er

at
ro

l

[1
84

, 1
86

, 2
13

, 
87

1–
88

3]

G
in

se
no

si
de

 
Rg

3
Pa

na
x 

no
to

gi
ns

en
g 

(B
ur

k.
) F

. H
. 

C
he

n,
 P

an
ax

 
gi

ns
en

g,
 C

in
-

na
m

om
um

 
ca

ss
ia

 P
re

sl
.

Br
ea

st
 c

an
ce

r; 
co

lo
re

ct
al

 
ca

nc
er

; e
so

ph
ag

ea
l 

ca
rc

in
om

a;
 g

al
lb

la
d-

de
r c

an
ce

r; 
ga

st
ric

 
ca

nc
er

; g
lio

bl
as

to
m

a;
 

gl
io

m
a;

 h
ep

at
oc

el
-

lu
la

r c
ar

ci
no

m
a;

 le
u-

ke
m

ia
; l

un
g 

ca
nc

er
; 

m
el

an
om

a;
 m

ul
tip

le
 

m
ye

lo
m

a;
 o

va
ria

n 
ca

nc
er

; p
an

cr
ea

tic
 

ca
nc

er
; p

ro
st

at
e 

ca
nc

er

BT
54

9,
 M

D
A

-M
B-

23
1,

 
M

D
A

-M
B-

45
3,

 
C

T-
26

, H
C

T-
11

6,
 

Lo
Vo

, S
W

-4
80

, 
SW

-6
20

, E
C

10
9,

 
KY

SE
17

0,
 T

E1
, 

G
BC

-S
D

, M
z-

C
hA

-1
, 

Q
BC

93
9,

 S
G

C
-7

90
1,

 
U

87
M

G
, U

87
, H

ep
1-

6,
 H

ep
G

2,
 L

ew
is

, 
Ju

rk
at

, A
54

9,
 A

54
9/

D
D

P, 
H

23
, H

12
99

, 
A

37
5,

 C
81

61
, S

K-
M

EL
-2

8,
 R

PM
I 8

22
6,

 
SK

O
-0

07
, U

26
6,

 
A

27
80

, 3
A

O
, S

KO
V3

, 
A

cP
C

-1
, B

xP
C

-3
, 

Pa
nc

-1
, S

W
19

90
, 

PC
-3

A
37

5 
xe

no
gr

af
t m

ic
e;

 
A

54
9 

xe
no

gr
af

t m
ic

e;
 

Bx
PC

-3
 x

en
og

ra
ft

 
m

ic
e;

 C
T-

26
 x

en
o-

gr
af

t m
ic

e;
 G

BC
-S

D
 

xe
no

gr
af

t m
ic

e;
 

H
C

T-
11

6 
xe

no
gr

af
t 

m
ic

e;
 H

ep
1-

6 
xe

no
gr

af
t m

ic
e;

 H
23

 
xe

no
gr

af
t m

ic
e;

 
Le

w
is

 tu
m

or
-b

ea
rin

g 
m

ic
e;

 L
oV

o 
xe

no
gr

af
t 

m
ic

e;
 M

D
A

-M
B-

23
1 

xe
no

gr
af

t m
ic

e;
 M

C
F-

 
7 

xe
no

gr
af

t m
ic

e;
 

SK
O

V3
 x

en
og

ra
ft

 
m

ic
e;

 S
W

19
90

 x
en

o-
gr

af
t m

ic
e;

 S
W

-6
20

 
xe

no
gr

af
t m

ic
e

A
nt

i-a
ng

io
-

ge
ne

si
s; 

an
ti-

pr
ol

ife
ra

tio
n;

 
an

ti-
m

et
as

ta
si

s; 
en

ha
nc

es
 

ra
di

os
en

si
tiv

-
ity

; i
nc

re
as

es
 

ce
ll 

su
rv

iv
al

; 
in

du
ce

s 
au

to
ph

ag
y,

 
ce

ll 
cy

cl
e 

ar
re

st
; i

nh
ib

its
 

ch
em

ot
ax

is
, 

ep
ith

el
ia

l–
m

es
en

ch
ym

al
 

tr
an

si
tio

n;
 p

ro
-

ap
op

to
si

s

A
ct

iv
at

es
 c

as
pa

se
-3

, -
8,

 -9
, 1

2,
 

PA
RP

; D
ec

re
as

es
 m

ito
ch

on
dr

ia
l 

m
em

br
an

e 
po

te
nt

ia
l; 

D
ow

n-
re

gu
la

te
s 

A
kt

, A
Q

P1
, B

7-
H

1,
 

B7
-H

3,
 B

cl
-2

, B
cl

-x
L,

 V
E-

ca
dh

er
in

, 
C

D
K2

, C
O

X-
2,

 C
XC

R4
, c

yc
lin

 
D

1,
 c

yc
lin

 E
, D

N
M

T3
A

, E
G

FR
, 

EP
H

A
2,

 E
RK

, F
U

T4
, H

D
A

C
3,

 
H

IF
-1

α,
 H

K2
, I

A
P, 

JN
K,

 L
eY

, 
M

M
P-

2,
 M

M
P-

9,
 m

TO
R,

 c
-M

yc
, 

N
F-

κB
, p

38
, p

53
, P

C
N

A
, P

D
-L

1,
 

PI
3K

, P
KM

2,
 R

b,
 S

TA
T3

, s
ur

vi
vi

ng
, 

VE
G

F;
 E

nh
an

ce
s 

cy
to

ch
ro

m
e 

c 
re

le
as

e,
 R

O
S 

pr
od

uc
tio

n;
 In

hi
bi

ts
 

th
e 

W
ar

bu
rg

 e
ffe

ct
, W

nt
/β

-
ca

te
ni

n 
pa

th
w

ay
; U

p-
re

gu
la

te
s 

A
tg

-5
, A

tg
-7

, B
ax

, C
H

O
P, 

IR
E1

, 
m

ic
ro

RN
A

-5
32

-3
p,

 p
16

, p
21

, 
p2

7,
 p

53
, P

ER
K

0–
10

 μ
M

; 0
–3

0 
μM

; 
0–

35
 μ

M
; 0

–6
0 

μM
; 

0–
80

 μ
M

; 0
–1

00
 μ

M
; 

0–
15

0 
μM

; 
0–

16
0 

μM
; 

0–
20

0 
μM

; 
0–

40
0 

μM
; 

0–
60

0 
μM

; 
25

 μ
M

; 0
–6

00
 n

g/
m

l; 
0–

80
 μ

g/
m

l; 
0–

10
0 

μg
/

m
l; 

0–
16

0 
μg

/m
l; 

0–
20

0 
μg

/m
l; 

40
, 

80
 μ

g/
m

l; 
50

 μ
g/

m
l; 

80
, 1

60
 μ

g/
m

l; 
80

, 
16

0 
m

g/
m

l; 
3 

m
g/

kg
; 5

 m
g/

kg
; 5

, 1
0,

 
20

 m
g/

kg
; 6

 m
g/

kg
; 7

.5
–3

0 
m

g/
kg

; 
10

 m
g/

kg
; 2

0 
m

g/
kg

C
is

pl
at

in
; C

yc
lo

-
ph

os
ph

am
id

e;
 

Er
lo

tin
ib

; 
5-

Fl
uo

ro
ur

ac
il;

 
O

xa
lip

la
tin

; 
Pa

cl
ita

xe
l

[2
27

, 2
32

–2
34

, 
23

6–
24

1,
 

24
6,

 2
52

–
25

5,
 2

60
, 

88
4–

90
0]



Page 26 of 58Luo et al. Chin Med           (2019) 14:48 

Ta
bl

e 
1 

(c
on

ti
nu

ed
)

Co
m

po
un

ds
O

ri
gi

ns
Ca

nc
er

 ty
pe

s
In

 v
itr

o 
m

od
el

s
In

 v
iv

o 
m

od
el

s
A

nt
i‑c

an
ce

r 
eff

ec
ts

U
nd

er
ly

in
g 

m
ec

ha
ni

sm
s

D
os

ag
e

Co
m

bi
na

tio
na

l 
ag

en
ts

Re
fe

re
nc

es

U
rs

ol
ic

 a
ci

d
Va

cc
in

iu
m

 
m

ac
ro

ca
rp

on
 

A
it.

, A
rc

to
-

st
ap

hy
lo

s 
uv

a-
ur

si 
(L

.) 
Sp

re
ng

, R
ho

-
do

de
nd

ro
n 

hy
m

en
an

th
es

 
M

ak
in

o,
 

Er
io

bo
tr

ya
 

ja
po

ni
ca

, 
Ro

se
m

ar
in

us
 

offi
ci

na
lis

, 
Ca

llu
na

 
vu

lg
ar

is,
 

Eu
ge

ni
a 

ja
m

bo
la

na
, 

O
ci

m
um

 
sa

nc
tu

m

Bl
ad

de
r c

an
ce

r; 
br

ea
st

 
ca

nc
er

; c
er

vi
ca

l 
ca

nc
er

; c
ol

or
ec

ta
l 

ca
nc

er
; E

hr
lic

k 
as

ci
te

s 
ca

rc
in

om
a;

 le
uk

em
ia

; 
liv

er
 c

an
ce

r; 
lu

ng
 

ca
nc

er
; m

el
an

om
a;

 
ov

ar
ia

n 
ca

nc
er

; 
pr

os
ta

te
 c

an
ce

r; 
sk

in
 

ca
nc

er

BI
U

-8
7,

 T
24

, M
D

A
-

M
B-

23
1,

 M
C

F-
7,

 
M

C
F-

7/
A

D
R,

 H
eL

a,
 

H
C

T-
8,

 H
C

T-
11

6,
 

H
T-

29
, C

ac
o-

2,
 

SW
-4

80
, S

W
-6

20
, 

H
C

T-
15

, C
O

11
5,

 
H

L-
60

, H
L-

60
/A

D
R,

 
Ju

rk
at

, K
56

2,
 K

56
2/

A
D

R,
 U

93
7,

 H
L-

60
/

A
D

R,
 H

ep
3B

, H
uh

7,
 

H
A

22
T,

 A
54

9,
 

H
32

55
, C

al
u-

6,
 

M
4B

eu
, S

KO
V3

, 
D

U
-1

45
, L

N
Ca

P, 
PC

-3

12
-d

im
et

hy
lb

en
z[

a]
an

th
ra

ce
ne

-in
du

ce
d 

m
ic

e;
 D

U
-1

45
 x

en
o-

gr
af

t m
ic

e;
 E

hr
lic

h 
as

ci
te

s 
ca

rc
in

om
a 

xe
no

gr
af

t m
ic

e;
 H

C
T-

11
6 

xe
no

gr
af

t m
ic

e;
 

H
C

T-
15

 x
en

og
ra

ft
 

m
ic

e;
 U

93
7 

xe
no

gr
af

t 
m

ic
e

A
nt

i-a
ng

io
-

ge
ne

si
s; 

an
ti-

m
et

as
ta

si
s; 

an
ti-

pr
ol

ife
ra

-
tio

n;
 e

nh
an

ce
s 

ch
em

os
en

si
tiv

-
ity

; i
nd

uc
es

 
ap

op
to

si
s, 

au
to

ph
ag

y,
 c

el
l 

cy
cl

e 
ar

re
st

; 
in

hi
bi

ts
 M

D
R

A
ct

iv
at

es
 c

as
pa

se
-3

, -
7,

 -8
, -

9,
 

Fa
s 

re
ce

pt
or

, P
A

RP
; D

ec
re

as
es

 
m

ito
ch

ro
nd

ria
l m

em
br

an
e 

po
te

nt
ia

l; 
D

ow
n-

re
gu

la
te

s 
A

EG
-1

, A
kt

, B
cl

-2
, B

cl
-x

L,
 B

id
, 

β-
ca

te
ni

n,
 C

D
31

, c
yc

lin
 D

1,
 

EG
FR

, E
RK

, c
FL

IP
, F

N
, H

IF
-1

α,
 

cI
A

P-
1,

 IC
A

M
-1

, I
κB

α,
 IK

Kα
/β

, I
L-

8,
 

Ja
k2

, K
i-6

7,
 M

cl
-1

, M
M

P-
2,

 M
M

P-
9,

 N
F-

κB
, i

N
O

S,
 p

65
, u

-P
A

, P
-g

p,
 

S6
 K

, S
rc

, S
TA

T3
, s

ur
vi

vi
n,

 m
TO

R,
 

TN
F-

α,
 V

EG
F, 

W
nt

5α
/β

, X
IA

P;
 

En
ha

nc
es

 c
yt

oc
hr

om
e 

c 
re

le
as

e,
 

 PG
E 2 l

ev
el

s, 
RO

S 
pr

od
uc

tio
n;

 
In

hi
bi

ts
 N

O
 p

ro
du

ct
io

n;
 U

p-
re

gu
la

te
s 

A
CC

, A
M

PK
, A

SK
1,

 B
ax

, 
C

H
O

P, 
D

R4
, D

R5
, e

IF
2α

, G
RP

78
, 

G
SK

3β
, I

L-
12

, J
N

K,
 c

-J
un

, N
A

D
PH

, 
p2

1,
 p

52
, p

53
, P

ER
K

0–
4 

μM
; 0

–1
6 

μM
; 

0–
17

.5
 μ

M
; 

0–
20

 μ
M

; 0
–4

0 
μM

; 
0–

50
 μ

M
; 0

–8
0 

μM
; 

0–
10

0 
μM

; 4
 μ

M
; 

20
 μ

M
; 0

–4
00

 μ
g/

m
l; 

10
 m

g/
kg

; 
25

–1
00

 m
g/

kg
; 

50
 m

g/
kg

; 7
5 

m
g/

kg
; 2

50
 m

g/
kg

; 
2 

μm
ol

/m
ou

se

Ca
pe

ci
ta

bi
ne

; 
5-

Fl
uo

ro
ur

ac
il;

 
O

xa
lip

la
tin

; 
Re

sv
er

at
ro

l; 
TR

A
IL

[2
74

, 2
76

, 2
81

, 
28

3–
28

9,
 

29
3,

 
90

1–
90

7]

Si
lib

in
in

Si
ly

bu
m

 
m

ar
ia

nu
m

 L
. 

G
ae

rt
n

Br
ea

st
 c

an
ce

r; 
co

lo
re

ct
al

 
ca

nc
er

; e
pi

de
rm

oi
d 

ca
rc

in
om

a;
 g

lio
bl

as
-

to
m

a;
 h

ep
at

oc
el

lu
la

r 
ca

rc
in

om
a;

 o
st

eo
-

sa
rc

om
a;

 p
an

cr
ea

tic
 

ca
nc

er
; p

ro
st

at
e 

ca
n-

ce
r; 

re
na

l c
ar

ci
no

m
a;

 
th

yr
oi

d 
ca

nc
er

BT
-2

0,
 M

C
F-

7,
 M

D
A

-
M

B-
23

1,
 M

D
A

-
M

B-
46

8,
 S

KB
R3

, 
T4

7D
, A

sP
C

-1
, B

xP
C

-
3,

 P
an

c-
1,

 H
T-

29
, 

H
C

T-
11

6,
 L

oV
o,

 
SW

-4
80

, C
ac

o-
2,

 
A

-4
31

, L
N

18
, S

N
B1

9,
 

U
87

M
G

, H
ep

3B
, 

H
ep

G
2,

 S
K-

H
ep

-1
, 

Sa
O

S2
, P

C
-3

, 7
69

-P
, 

78
6-

O
, A

C
H

N
, 

O
S-

RC
-2

, S
W

83
9,

 
Ca

ki
, T

PC
-1

78
6-

O
 x

en
og

ra
ft

 m
ic

e;
 

A
zo

xy
m

et
ha

ne
-

in
du

ce
d 

ra
ts

; 
D

ie
th

yl
ni

tr
os

am
in

e-
in

du
ce

d 
m

ic
e

A
nt

i-m
et

as
ta

si
s; 

an
ti-

pr
ol

ife
ra

-
tio

n;
 in

du
ce

s 
ap

op
to

si
s, 

au
to

ph
ag

y,
 c

el
l 

cy
cl

e 
ar

re
st

; 
in

hi
bi

ts
 c

el
l 

vi
ab

ili
ty

A
ct

iv
at

es
 c

as
pa

se
-3

, -
8,

 -9
, P

A
RP

; 
D

ow
n-

re
gu

la
te

s 
A

kt
, B

cl
-2

, E
G

FR
, 

ER
K,

 G
LI

1,
 IL

-1
β,

 F
N

, M
M

P-
2,

 
M

M
P-

7,
 M

M
P-

9,
 N

F-
κB

, i
N

O
S,

 
PL

A
2,

 T
N

F-
α,

 m
TO

R;
 E

nh
an

ce
s 

C
YP

2E
1 

ac
tiv

ity
, c

yt
oc

hr
om

e 
c 

re
le

as
e,

 R
O

S 
pr

od
uc

tio
n;

 U
p-

re
gu

la
te

s 
A

IF
, B

ax
, B

id
, c

al
pa

in
, 

EG
R1

, I
C

A
D

, N
A

G
-1

, P
TE

N

0–
75

 μ
M

; 0
–1

00
 μ

M
; 

0–
20

0 
μM

; 
0–

30
0 

μM
; 

0–
80

0 
μM

; 2
5,

 
50

 μ
M

; 1
20

 μ
M

; 
12

5 
μM

; 2
00

 m
g/

kg
; 

30
0 

m
g/

kg
; 0

.5
%

Cu
rc

um
in

; 
lu

te
ol

in
[3

18
, 3

19
, 

32
9–

33
1,

 
33

4,
 

34
2–

34
5,

 
35

7,
 3

58
, 

90
8–

91
0]



Page 27 of 58Luo et al. Chin Med           (2019) 14:48 

Ta
bl

e 
1 

(c
on

ti
nu

ed
)

Co
m

po
un

ds
O

ri
gi

ns
Ca

nc
er

 ty
pe

s
In

 v
itr

o 
m

od
el

s
In

 v
iv

o 
m

od
el

s
A

nt
i‑c

an
ce

r 
eff

ec
ts

U
nd

er
ly

in
g 

m
ec

ha
ni

sm
s

D
os

ag
e

Co
m

bi
na

tio
na

l 
ag

en
ts

Re
fe

re
nc

es

Em
od

in
Rh

eu
m

 
pa

lm
at

um
, 

Po
ly

go
nu

m
 

cu
sp

id
at

um
, 

Po
ly

go
nu

m
 

m
ul

tifl
or

um
, 

C
as

sia
 

ob
tu

sif
ol

ia

Bl
ad

de
r c

an
ce

r; 
br

ea
st

 
ca

nc
er

; c
ol

or
ec

ta
l 

ca
nc

er
; g

al
lb

la
dd

er
 

ca
nc

er
; g

as
tr

ic
 c

an
ce

r; 
he

pa
to

ce
llu

la
r c

ar
ci

-
no

m
a;

 lu
ng

 c
an

ce
r; 

na
so

ph
ar

yn
ge

al
 

ca
rc

in
om

a;
 o

ra
l c

ar
-

ci
no

ge
ne

si
s; 

ov
ar

ia
n 

ca
nc

er
; p

an
cr

ea
tic

 
ca

nc
er

; p
ro

st
at

e 
ca

nc
er

M
BT

2,
 T

24
, T

SG
H

83
01

, 
4T

1,
 E

O
77

1,
 M

C
F-

7,
 

M
D

A
-M

B-
23

1,
 

M
D

A
-M

B-
43

5,
 

M
D

A
-M

B-
45

3,
 H

C
T-

11
6,

 L
oV

o,
 L

S1
03

4,
 

SG
C

-9
96

, M
KN

45
, 

C
3A

, H
ep

3B
, 

H
ep

G
2,

 P
LC

/P
RF

/5
, 

SM
M

C
-7

72
1,

 A
54

9,
 

C
N

E-
2Z

, A
27

80
, 

SK
O

V3
, A

sP
C

-1
, 

Bx
PC

-3
, P

an
c-

1,
 

SW
19

90
, S

W
19

90
/

G
Z,

 P
C

-3

4T
1 

xe
no

gr
af

t m
ic

e;
 

7,
12

-d
im

et
hy

l 
be

nz
(a

)a
nt

hr
ac

en
e-

in
du

ce
d 

go
ld

en
 

Sy
ria

n 
ha

m
st

er
s; 

EO
77

1 
xe

no
gr

af
t 

m
ic

e;
 H

CC
LM

3 
tu

m
or

-b
ea

rin
g 

m
ic

e;
 

LS
10

34
 x

en
og

ra
ft

 
m

ic
e;

 M
D

A
-M

B-
23

1 
xe

no
gr

af
t m

ic
e;

 
SG

C
-9

96
 x

en
og

ra
ft

 
m

ic
e;

 S
KO

V3
 x

en
o-

gr
af

t m
ic

e;
 S

W
19

90
 

xe
no

gr
af

t m
ic

e;
 T

24
 

xe
no

gr
af

t m
ic

e

A
nt

i-m
et

as
ta

si
s; 

an
ti-

pr
ol

ife
ra

-
tio

n;
 in

du
ce

s 
ap

op
to

si
s, 

au
to

ph
ag

y,
 

ce
ll 

cy
cl

e 
ar

re
st

; i
nh

ib
its

 
ce

ll 
vi

ab
ili

ty
, 

ep
ith

el
ia

l-
m

es
en

ch
ym

al
 

tr
an

si
tio

n

A
ct

iv
at

es
 c

as
pa

se
-3

, -
9,

 P
A

RP
, 

ch
lo

rid
e 

cu
rr

en
ts

; D
ec

re
as

es
 

m
ito

ch
on

dr
ia

l m
em

br
an

e 
po

te
nt

ia
l; 

D
ow

n-
re

gu
la

te
s 

A
kt

, 
Bc

l-2
, B

cl
-x

L,
 B

im
-1

, β
-c

at
en

in
, 

C
D

K1
, C

SF
1,

 C
SF

2,
 C

XC
L1

2,
 

C
XC

R4
, c

yc
lin

 D
1,

 E
Rα

, E
RK

, 
FA

BP
4,

 b
FG

F, 
H

BP
17

, H
ER

2,
 IL

K,
 

Ja
gg

ed
1,

 Ja
k1

, J
ak

2,
 K

i-6
7,

 M
cl

-1
, 

M
C

P-
1,

 M
M

P-
2,

 M
M

P-
9,

 M
RP

1,
 

N
F-

κB
, p

38
, p

62
, u

-P
A

, u
-P

A
R,

 
Sl

ug
, S

na
il,

 S
rc

, S
TA

T3
, s

ur
vi

vi
n,

 
Th

y-
1,

 V
EG

F, 
vi

m
en

tin
, X

IA
P, 

ZE
B1

; E
nh

an
ce

s 
 Ca

2+
 le

ve
ls

, 
cy

to
ch

ro
m

e 
c 

re
le

as
e,

 R
O

S 
pr

od
uc

tio
n;

 U
p-

re
gu

la
te

s 
A

IF
, 

Ba
x,

 B
ec

lin
-1

, E
-c

ad
he

rin
, G

SK
3β

, 
m

ic
ro

RN
A

-3
4,

 N
ot

ch
1,

 S
H

P-
1

0–
10

 μ
M

; 0
–4

0 
μM

; 
0–

50
 μ

M
; 0

–6
0 

μM
; 

0–
80

 μ
M

; 0
–1

00
 μ

M
; 

0–
25

0 
μM

; 
0–

32
0 

μM
; 

0–
10

00
 μ

M
; 2

0 
μM

; 
20

–8
0 

μM
; 4

0 
μM

; 
0.

05
 m

M
; 4

0 
m

g/
m

l; 
20

, 4
0 

m
g/

kg
; 

20
, 5

0 
m

g/
kg

; 2
5,

 
50

 m
g/

kg
; 4

0 
m

g/
kg

; 5
0 

m
g/

kg

C
is

pl
at

in
; 

cu
rc

um
in

; 
5-

flu
or

ou
ra

ci
l; 

ge
m

ci
ta

bi
ne

[6
4,

 3
67

–3
78

, 
38

0,
 3

82
, 

38
3,

 3
85

, 
38

9,
 3

94
, 

39
5,

 4
02

, 
40

3,
 4

05
, 

91
1]

Tr
ip

to
lid

e
Tr

ip
te

ry
gi

um
 

w
ilf

or
di

i 
H

oo
k.

 F
.

Bl
ad

de
r c

an
ce

r; 
br

ea
st

 
ca

nc
er

; c
ol

or
ec

ta
l 

ca
nc

er
; e

nd
om

e-
tr

ia
l c

ar
ci

no
m

a;
 

liv
er

 c
an

ce
r; 

lu
ng

 
ca

nc
er

; l
ym

ph
om

a;
 

m
el

an
om

a;
 m

ye
lo

m
a;

 
na

so
ph

ar
yn

ge
al

 
ca

rc
in

om
a;

 n
eu

ro
bl

as
-

to
m

a;
 o

st
eo

sa
rc

om
a;

 
ov

ar
ia

n 
ca

nc
er

; o
ra

l 
ca

nc
er

; p
an

cr
ea

tic
 

ca
nc

er
; p

ro
st

at
e 

ca
nc

er

U
M

U
C

3,
 M

D
A

-
M

B-
23

1,
 M

C
F-

7,
 

D
LD

-1
, H

C
T-

11
6,

 
H

EC
-1

B,
 M

H
CC

-9
7H

, 
H

ep
aR

G
, H

ep
G

2,
 

H
46

0,
 H

35
8,

 
A

54
9,

 A
54

9/
Ta

xo
l, 

H
TB

18
2,

 B
EA

S-
2B

, 
H

12
99

, N
C

I-
H

20
09

, N
C

I-H
46

0,
 

Ju
rk

at
, M

ol
t-

3,
 R

aj
i, 

N
A

M
A

LW
A

, D
au

di
, 

B1
6F

10
, H

S-
su

lta
n,

 
IM

9,
 R

PM
I 8

22
6,

 
U

26
6,

 C
N

E,
 M

G
63

, 
BE

(2
)-

C
, S

H
-S

Y5
Y,

 
SA

O
S2

, U
2O

S,
 

SK
O

V3
, S

KO
V3

/D
D

P, 
A

27
80

, S
A

S,
 P

an
c-

1,
 

A
sP

C
-1

, S
W

19
90

, 
Bx

PC
-3

, L
N

Ca
P, 

PC
-3

, D
U

-1
45

3L
L 

xe
no

gr
af

t m
ic

e;
 

A
54

9 
xe

no
gr

af
t m

ic
e;

 
A

sP
C

-1
 x

en
og

ra
ft

 
m

ic
e;

 B
E(

2)
-C

 
xe

no
gr

af
t m

ic
e;

 
C

N
E 

xe
no

gr
af

t m
ic

e;
 

D
au

di
 x

en
og

ra
ft

 
m

ic
e;

 H
35

8 
xe

no
gr

af
t 

m
ic

e;
 H

46
0 

xe
no

gr
af

t 
m

ic
e;

 H
EC

-1
B 

xe
no

-
gr

af
t m

ic
e;

 Ju
rk

at
 

xe
no

gr
af

t m
ic

e;
 

M
H

CC
-9

7H
 x

en
og

ra
ft

 
m

ic
e;

 S
A

S 
+

 U
93

7 
xe

no
gr

af
t m

ic
e;

 
SK

O
V3

/D
D

P 
xe

no
-

gr
af

t m
ic

e;
 S

W
19

90
 

xe
no

gr
af

t m
ic

e

A
nt

i-a
ng

io
-

ge
ne

si
s; 

an
ti-

m
et

as
ta

si
s; 

an
ti-

pr
ol

ife
ra

-
tio

n;
 e

nh
an

ce
s 

ra
di

os
en

si
tiv

-
ity

; i
nd

uc
es

 
au

to
ph

ag
y,

 c
el

l 
cy

cl
e 

ar
re

st
; 

in
hi

bi
ts

 c
el

l 
vi

ab
ili

ty
; p

ro
-

ap
op

to
si

s

A
ct

iv
at

es
 c

as
pa

se
-3

, -
7,

 -8
, 

-9
, G

SK
3β

, P
A

RP
; D

ec
re

as
es

 
m

ito
ch

on
dr

ia
l m

em
br

an
e 

po
te

nt
ia

l; 
D

ow
n-

re
gu

la
te

s 
A

kt
, 

A
R,

 B
C

A
R1

, B
cl

-2
, β

-c
at

en
in

, 
Ca

v-
1,

 C
D

14
7,

 C
D

K2
, C

H
K1

, C
O

X 
IV

, C
XC

R4
, c

yc
lin

 A
1,

 E
RK

, E
TS

2,
 

FA
K,

 c
-F

LI
P, 

G
RB

2,
 H

IF
-1

α,
 H

SF
1,

 
H

SP
70

, I
κB

α,
 IT

G
β1

, I
TG

αV
β6

, 
JM

JD
3,

 JM
JD

2B
, N

K,
 p

38
 M

A
PK

, 
M

cl
-1

, M
KP

-1
, M

M
P-

2,
 M

M
P-

3,
 

M
M

P-
7,

 M
M

P-
9,

 M
M

P-
14

, M
M

P-
19

, c
–M

yc
, N

F-
κB

, i
N

O
S,

 N
rf

2,
 

p6
5,

 P
C

N
A

, P
I3

K,
 P

YK
2,

 R
O

C
K1

, 
Rh

oA
, S

lu
g,

 S
na

il,
 S

O
S1

, S
rc

, 
su

rv
iv

in
, m

TO
R,

 T
w

is
t, 

U
TX

, V
EG

F, 
vi

m
en

tin
, Z

EB
1;

 E
nh

an
ce

s 
 Ca

2+
 

le
ve

ls
, c

yt
oc

hr
om

e 
c 

re
le

as
e,

 
RO

S 
pr

od
uc

tio
n;

 In
hi

bi
ts

 W
nt

/β
-

Ca
te

ni
n 

pa
th

w
ay

; U
p-

re
gu

la
te

s 
AT

M
, B

ax
, B

ec
lin

-1
, E

-c
ad

he
rin

, 
ca

th
ep

si
n 

B,
 F

as
, D

KK
1,

 D
R5

, 
EN

Y2
, F

A
D

D
, F

RZ
B,

 G
SK

3β
, I

L-
2,

 
γ-

H
2A

X,
 L

M
P, 

LS
D

1,
 p

53
, P

PA
Rγ

, 
PT

EN
, S

FR
P1

, S
IR

T3
, S

m
ac

, 
SU

V3
9H

1,
 T

N
F-

α,
 W

nt
3α

0–
10

 n
M

; 0
–4

0 
nM

; 
0–

50
 n

M
; 0

–8
0 

nM
; 

0–
10

0 
nM

; 
0–

16
0 

nM
; 

0–
20

0 
nM

; 
0–

30
0 

nM
; 

0–
32

0 
nM

; 
0–

40
0 

nM
; 

0–
50

0 
nM

; 
0–

0.
1 

μM
; 0

–2
5 

μM
; 

0–
15

0 
μM

; 
0–

20
0 

μM
; 1

0 
nM

; 
50

, 7
2 

nM
; 1

00
 n

M
; 

0–
8 

ng
/m

l; 
0–

36
 n

g/
m

l; 
0–

50
 n

g/
m

l; 
0–

40
0 

ng
/m

l; 
5,

 
10

 n
g/

m
l; 

5–
16

0 
ng

/
m

l; 
8 

ng
/m

l; 
25

0 
μg

/
kg

; 0
–0

.8
 m

g/
kg

; 
0.

04
–0

.3
6 

m
g/

kg
; 0

.0
75

 m
g/

kg
; 0

.1
5 

m
g/

kg
; 

0.
25

 m
g/

kg
; 0

.4
 m

g/
kg

; 1
 m

g/
kg

; 
1.

5 
m

g/
kg

; 2
–4

 μ
g/

m
ou

se

C
is

pl
at

in
; 

ep
iru

bi
ci

n;
 

5-
flu

or
ou

ra
ci

l; 
ge

m
ci

ta
bi

ne
; 

hy
dr

ox
yc

am
p-

to
th

ec
in

[4
08

, 4
10

, 4
11

, 
41

4,
 4

15
, 

41
7,

 4
19

, 
42

2,
 4

23
, 

42
5–

42
7,

 
42

9,
 4

31
–

43
4,

 4
38

, 
44

4,
 4

46
, 

45
3,

 4
54

, 
91

2–
92

5]



Page 28 of 58Luo et al. Chin Med           (2019) 14:48 

Ta
bl

e 
1 

(c
on

ti
nu

ed
)

Co
m

po
un

ds
O

ri
gi

ns
Ca

nc
er

 ty
pe

s
In

 v
itr

o 
m

od
el

s
In

 v
iv

o 
m

od
el

s
A

nt
i‑c

an
ce

r 
eff

ec
ts

U
nd

er
ly

in
g 

m
ec

ha
ni

sm
s

D
os

ag
e

Co
m

bi
na

tio
na

l 
ag

en
ts

Re
fe

re
nc

es

Cu
cu

rb
ita

ci
n 

B
Br

yo
ni

a,
 

Cu
cu

m
is,

 
Cu

cu
rb

ita
 

an
d 

Le
pi

di
um

 
sa

tiv
um

Br
ea

st
 c

an
ce

r; 
ce

rv
ic

al
 

ca
nc

er
; h

ep
at

oc
el

lu
la

r 
ca

rc
in

om
a;

 lu
ng

 c
an

-
ce

r; 
ne

ur
ob

la
st

om
a;

 
pr

os
ta

te
 c

an
ce

r

4T
1,

 H
CC

19
37

, 
M

C
F-

7,
 M

C
F-

7/
A

D
R,

 M
D

A
-M

B-
23

1,
 

M
D

A
-M

B-
43

6,
 

SK
BR

-3
, H

eL
a,

 T
47

D
, 

SK
-H

ep
1,

 H
ep

3B
, 

H
ep

G
2,

 B
el

-7
40

2,
 

Be
l-7

40
2/

5-
Fu

, 
A

54
9,

 H
12

99
, H

23
; 

SH
-S

Y5
Y;

 L
N

Ca
P, 

PC
-3

4-
(m

et
hy

ln
itr

os
am

in
o)

-
1-

(3
-p

yr
id

yl
)-1

-
bu

ta
no

ne
-in

du
ce

d 
m

ic
e;

 4
T-

1 
xe

no
gr

af
t 

m
ic

e;
 B

el
-7

40
2 

xe
no

-
gr

af
t m

ic
e;

 M
D

A
-

M
B-

23
1 

xe
no

gr
af

t 
m

ic
e;

 N
N

K-
in

du
ce

d 
m

ic
e;

 P
C

-3
 x

en
og

ra
ft

 
m

ic
e

A
nt

i-a
ng

io
ge

n-
es

is
; A

nt
i-

m
et

as
ta

si
s; 

A
nt

i-p
ro

lif
er

a-
tio

n;
 In

du
ci

ng
 

ap
op

to
si

s, 
ce

ll 
cy

cl
e 

ar
re

st
; I

nh
ib

its
 

ep
ith

el
ia

l-
m

es
en

ch
ym

al
 

tr
an

si
tio

n

A
ct

iv
at

es
 c

as
pa

se
-3

, -
8,

 -9
, P

A
RP

; 
D

ec
re

as
es

 m
ito

ch
on

dr
ia

l 
m

em
br

an
e 

po
te

nt
ia

l; 
D

ow
n-

re
gu

la
te

s 
A

kt
, A

C
LY

, B
C

A
R1

, 
Bc

l-2
, β

-c
at

en
in

, C
D

31
, C

D
K1

, 
C

IP
2A

, c
yc

lin
 B

1,
 c

yc
lin

 D
1,

 E
G

FR
, 

ER
K,

 F
A

K,
 g

al
ec

tin
-3

, G
SK

3β
, 

H
ER

2,
 H

IF
-1

α,
 IL

K1
, I

TG
A

6,
 IT

G
B4

, 
Ja

k2
, M

M
P-

2,
 M

M
P-

9,
 M

RP
1,

 
c-

M
yc

, n
uc

le
op

ho
sm

in
, P

-g
p,

 
pa

xi
lli

n,
 R

ho
A

, R
O

C
K1

, S
TA

T3
, 

Sr
c,

 s
ur

vi
vi

n,
 TA

C
E,

 T
C

F1
, m

TO
R,

 
Tw

is
t, 

VE
G

F, 
VE

G
FR

2,
 W

nt
3;

 
En

ha
nc

es
 c

yt
oc

hr
om

e 
c 

re
le

as
e,

 
PP

2A
 a

ct
iv

ity
, R

O
S 

pr
od

uc
tio

n;
 

In
hi

bi
ts

 W
nt

/β
-c

at
en

in
 p

at
hw

ay
; 

U
p-

re
gu

la
te

s 
AT

M
, B

ax
, B

im
, 

E-
ca

dh
er

in
, C

D
C

25
C

, C
H

K1
, 

γ-
H

2A
X,

 JN
K,

 p
21

, p
53

0–
10

0 
nM

; 0
–2

00
 n

M
; 

0–
10

00
 n

M
; 0

.1
–

10
00

 n
M

; 0
–0

.1
 μ

M
; 

0–
1 

μM
; 0

–1
.6

 μ
M

; 
0–

30
 μ

M
; 0

–1
00

 μ
M

; 
0–

12
8 

μM
; 0

.0
2–

 
62

.5
 μ

M
; 0

–1
00

 μ
g/

m
l; 

0.
1–

10
0 

μg
/m

l; 
0.

1,
 0

.2
 m

g/
kg

; 0
.1

, 
0.

25
 m

g/
kg

; 0
.5

, 
1 

m
g/

kg
; 1

, 5
 m

g/
kg

; 2
 m

g/
kg

; 1
0 

m
g/

kg
; 0

.1
 μ

m
ol

/m
ou

se

Cu
rc

um
in

; 
do

ce
ta

xe
l; 

ge
fit

in
ib

; 
ge

m
ci

ta
bi

ne

[4
52

, 4
60

–4
62

, 
47

2–
47

5,
 

48
5,

 4
99

, 
92

6–
93

1]

Ta
ns

hi
no

ne
 II

A
Sa

lv
ia

 m
ilt

io
r-

rh
iz

a 
Bu

ng
e

Br
ea

st
 c

an
ce

r; 
bl

ad
de

r 
ca

nc
er

; c
er

vi
ca

l c
an

-
ce

r; 
co

lo
re

ct
al

 c
an

ce
r; 

es
op

ha
ge

al
 c

ar
ci

-
no

m
a;

 g
as

tr
ic

 c
an

ce
r; 

N
SC

LC
; o

st
eo

sa
rc

om
a;

 
or

al
 s

qu
am

ou
s 

ca
rc

in
om

a

BT
-2

0,
 5

63
7,

 B
FT

C
 9

05
, 

T2
4,

 H
eL

a,
 C

33
 A

, 
H

C
T-

11
6,

 C
O

LO
-

20
5,

 L
oV

o,
 H

T-
29

, 
SW

-6
20

, E
ca

10
9,

 
SG

C
-7

90
1,

 M
KN

45
, 

A
54

9,
 H

59
6,

 H
12

99
, 

Ca
lu

-1
, H

46
0,

 1
43

B,
 

SC
C

09
0

H
T-

29
 x

en
og

ra
ft

 m
ic

e;
 

M
KN

45
 x

en
og

ra
ft

 
m

ic
e;

 S
G

C
-7

90
1 

xe
no

gr
af

t m
ic

e;
 1

43
B 

xe
no

gr
af

t m
ic

e

A
nt

i-a
ng

io
-

ge
ne

si
s; 

an
ti-

m
et

as
ta

si
s; 

an
ti-

pr
ol

ife
ra

-
tio

n;
 e

nh
an

ce
s 

ch
em

os
en

si
tiv

-
ity

, r
ad

io
se

ns
i-

tiv
ity

; i
nd

uc
es

 
au

to
ph

ag
y,

 
ce

ll 
cy

cl
e 

ar
re

st
; i

nh
ib

its
 

ce
ll 

vi
ab

ili
ty

, 
ep

ith
el

ia
l–

m
es

en
ch

ym
al

 
tr

an
si

tio
n;

 p
ro

-
ap

op
to

si
s

A
ct

iv
at

es
 c

as
pa

se
-3

, -
8,

 -9
, -

12
, 

PA
RP

; D
ow

n-
re

gu
la

te
s 

A
LD

H
1,

 
Bc

l-2
, B

IP
, N

-c
ad

he
rin

, β
-c

at
en

in
, 

C
D

31
, C

O
X-

2,
 C

TG
F, 

Fo
xM

1,
 

H
IF

-1
α,

 K
i-6

7,
 L

EF
1,

 M
C

P-
1,

 M
fn

-
1,

 M
fn

-2
, M

M
P-

2,
 M

M
P-

9,
 c

-M
yc

, 
N

A
N

O
G

, O
pa

-1
, p

65
, P

C
N

A
, 

Sl
ug

, S
na

il,
 S

TA
T3

, s
ur

vi
vi

n,
 T

C
F3

, 
VE

G
F, 

vi
m

en
tin

, Y
A

P;
 E

nh
an

ce
s 

cy
to

ch
ro

m
e 

c 
re

le
as

e,
 R

O
S 

ac
cu

m
ul

at
io

n;
 R

ed
uc

es
 m

ito
-

ch
on

dr
ia

l m
em

br
an

e 
po

te
nt

ia
l; 

U
p-

re
gu

la
te

s 
AT

F-
4,

 B
ax

, B
ak

, 
Ba

d,
 E

-c
ad

he
rin

, C
H

O
P, 

D
rp

-1
, 

D
R5

, G
RP

78
, p

21

0–
8 

μM
; 0

–2
0 

µM
; 

0–
40

 µ
M

; 0
–6

0 
µM

; 
0–

80
 μ

M
; 0

–1
00

 µ
M

; 
0–

54
.4

 μ
M

; 0
–2

0 
ng

/
m

l; 
0–

4 
µg

/m
l; 

0–
8 

μg
/m

l; 
0–

18
 µ

g/
m

l; 
0–

60
 µ

g/
m

l; 
1 

m
g/

kg
; 1

0,
 3

0 
m

g/
kg

; 2
0 

m
g/

kg

A
dr

ia
m

yc
in

 
5-

flu
or

ou
ra

ci
l; 

TR
A

IL

[5
14

, 5
15

, 5
17

, 
51

9,
 5

23
, 

53
1,

 5
39

, 
93

2–
93

5]



Page 29 of 58Luo et al. Chin Med           (2019) 14:48 

Ta
bl

e 
1 

(c
on

ti
nu

ed
)

Co
m

po
un

ds
O

ri
gi

ns
Ca

nc
er

 ty
pe

s
In

 v
itr

o 
m

od
el

s
In

 v
iv

o 
m

od
el

s
A

nt
i‑c

an
ce

r 
eff

ec
ts

U
nd

er
ly

in
g 

m
ec

ha
ni

sm
s

D
os

ag
e

Co
m

bi
na

tio
na

l 
ag

en
ts

Re
fe

re
nc

es

O
rid

on
in

Ra
bd

os
ia

 
ru

be
sc

en
s 

(H
em

sl
.) 

H
ar

a

Br
ea

st
 c

an
ce

r; 
ce

rv
ic

al
 

ca
nc

er
; c

ol
or

ec
ta

l 
ca

nc
er

; e
so

ph
ag

ea
l 

ca
nc

er
; g

as
tr

ic
 

ca
nc

er
; h

ep
at

oc
el

lu
la

r 
ca

rc
in

om
a;

 la
ry

ng
ea

l; 
le

uk
em

ia
; l

iv
er

 
ca

nc
er

; l
un

g 
ca

nc
er

; 
m

el
an

om
a;

 m
ul

tip
le

 
m

ye
lo

m
a;

 n
eu

ro
bl

as
-

to
m

a;
 o

ra
l s

qu
am

ou
s 

ca
rc

in
om

a;
 o

st
eo

sa
r-

co
m

a;
 o

va
ria

n 
ca

nc
er

; 
pa

nc
re

at
ic

 c
an

ce
r; 

pr
os

ta
te

 c
an

ce
r; 

uv
ea

l 
m

el
an

om
a

4T
1,

 M
C

F-
7,

 
M

D
A

-M
B-

23
1,

 
SW

-4
8,

 S
W

-4
80

, 
SW

-6
20

, S
W

-1
11

6,
 

H
eL

a,
 L

oV
o,

 
H

C
T-

11
6,

 H
C

T-
15

, 
CO

LO
-2

05
, R

KO
, 

EC
97

06
, K

YS
E-

30
, 

KY
SE

-1
50

, S
G

C
-

79
01

, A
G

S,
 H

ep
G

2,
 

H
uh

6,
 M

H
CC

97
-H

 
H

CC
, H

ep
-2

, K
56

2,
 

K5
62

/A
D

R,
 H

L-
60

, 
H

L-
60

/A
D

R,
 M

V4
-

11
/D

D
P, 

M
O

LM
-1

3/
D

D
P, 

A
54

9,
 S

H
SY

-5
Y,

 
SK

-N
-M

C
, L

P-
1,

 S
CC

-
25

, H
SC

-3
, H

SC
-4

, 
M

G
63

, U
2O

S,
 H

O
S,

 
Sa

os
-2

, 1
43

B,
 W

SU
-

H
N

4,
 W

SU
-H

N
6,

 
C

A
L2

7,
 S

KO
V3

, 
Bx

PC
-3

, P
C

-3
, 

LN
Ca

P, 
D

U
-1

45
, 

RM
-1

, M
U

M
2B

, 
O

C
M

-1

14
3B

 x
en

og
ra

ft
 m

ic
e;

 
4T

1 
xe

no
gr

af
t m

ic
e;

 
H

C
T-

11
6 

xe
no

gr
af

t 
m

ic
e;

 H
ep

G
2 

xe
no

gr
af

t m
ic

e 
an

d 
ze

br
afi

sh
; H

L-
60

 
xe

no
gr

af
t m

ic
e;

 H
O

S 
xe

no
gr

af
t m

ic
e;

 
K5

62
 x

en
og

ra
ft

 m
ic

e;
 

KY
SE

-1
50

 x
en

og
ra

ft
 

m
ic

e;
 L

oV
o 

xe
no

gr
af

t 
m

ic
e;

 M
V4

-1
1/

D
D

P 
xe

no
gr

af
t m

ic
e;

 R
M

-1
 

xe
no

gr
af

t m
ic

e;
 S

CC
-

25
 x

en
og

ra
ft

 m
ic

e;
 

SH
SY

-5
Y 

xe
no

gr
af

t 
m

ic
e;

 S
W

-4
80

 x
en

o-
gr

af
t m

ic
e;

 W
SU

-H
N

6 
xe

no
gr

af
t m

ic
e

A
nt

i-a
ng

io
-

ge
ne

si
s; 

an
ti-

m
et

as
ta

si
s; 

an
ti-

pr
ol

ife
ra

-
tio

n;
 in

du
ce

s 
ap

op
to

si
s, 

au
to

ph
ag

y,
 c

el
l 

cy
cl

e 
ar

re
st

, 
ep

ith
el

ia
l–

m
es

en
ch

ym
al

 
tr

an
si

tio
n

A
ct

iv
at

es
 c

as
pa

se
-3

, -
8,

 -9
, P

A
RP

; 
D

ec
re

as
es

 m
ito

ch
on

dr
ia

l 
m

em
br

an
e 

po
te

nt
ia

l; 
D

ow
n-

re
gu

la
te

s 
A

kt
, A

M
PK

, A
P-

1,
 B

cl
-2

, 
Bc

l-x
L,

 N
-c

ad
he

rin
, C

D
31

, C
D

44
, 

C
D

C
25

C
, C

D
K1

, C
D

K2
, C

la
ud

in
 1

, 
C

la
ud

in
 4

, C
la

ud
in

 7
, α

-C
PI

, c
yc

-
lin

 B
1,

 c
yc

lin
 D

1,
 c

yc
lin

 E
, D

H
FR

, 
EG

FR
, E

RK
, G

LU
T-

1,
 G

SK
3β

, H
O

-1
, 

IC
A

D
, M

cl
-1

, M
C

T1
, M

D
M

2,
 

M
M

P-
2,

 M
M

P-
9,

 c
-M

yc
, N

F-
κB

, 
N

ot
ch

, N
rf

2,
 N

Q
O

1,
 p

38
, p

62
, 

PC
N

A
, P

I3
K,

 R
ac

2,
 R

af
, R

as
, 

SE
RT

A
D

1,
 S

lu
g,

 S
m

ad
, S

na
il,

 
St

at
hm

in
, S

RE
BP

1,
 m

TO
R,

 v
im

en
-

tin
; E

nh
an

ce
s 

cy
to

ch
ro

m
e 

c 
re

le
as

e,
 in

tr
ac

el
lu

la
r  C

a2+
 le

ve
ls

, 
RO

S 
pr

od
uc

tio
n;

 In
hi

bi
ts

 T
rx

R 
ac

tiv
ity

; U
p-

re
gu

la
te

s 
A

IF
, A

SK
1,

 
AT

M
, B

ad
, B

ax
, B

ec
lin

-1
, B

im
, 

BM
P7

, E
-c

ad
he

rin
, C

H
K2

, C
H

O
P, 

C
KS

2,
 e

IF
2α

, F
A

D
D

, G
A

D
D

45
A

Q
, 

G
RP

78
, γ

-H
2A

X,
 H

ER
C

5,
 H

SP
90

, 
IR

E1
, J

N
K,

 p
21

, p
53

, P
ER

K,
 P

PA
Rγ

, 
RE

CQ
L4

, S
FN

, P
TE

N

0–
10

00
 n

M
; 0

–1
.5

 μ
M

; 
0–

4 
μM

; 0
–9

 μ
M

; 
0–

12
 μ

M
; 0

–1
5 

μM
; 

0–
20

 μ
M

; 0
–2

5 
μM

; 
0–

30
 μ

M
; 0

–3
2 

μM
; 

0–
40

 μ
M

; 0
–5

0 
μM

; 
0–

60
 μ

M
; 0

–6
4 

μM
; 

0–
80

 μ
M

; 0
–1

00
 μ

M
; 

0–
16

0 
μM

; 3
6 

μM
; 

0–
10

 m
M

; 0
–6

4 
μg

/
m

l; 
5–

30
 μ

g/
m

l; 
1.

87
5,

 7
.5

 m
g/

m
l; 

1 
m

g/
kg

; 2
–8

 m
g/

kg
; 2

.5
–1

0 
m

g/
kg

; 5
, 

10
 m

g/
kg

; 5
–1

0 
m

g/
kg

; 5
–1

5 
m

g/
kg

; 7
.5

–3
0 

m
g/

kg
; 1

0 
m

g/
kg

; 1
0,

 
20

 m
g/

kg
; 1

5 
m

g/
kg

; 3
0 

m
g/

kg
; 5

0,
 

10
0 

m
g/

kg

C
is

pl
at

in
; 

N
VP

-B
EZ

23
5;

 
va

lp
ro

ic
 a

ci
d

[5
44

–5
56

, 
55

8–
56

7,
 

57
3–

57
6,

 
57

8,
 5

79
, 

93
6–

94
6]

Sh
ik

on
in

Li
th

os
pe

rm
um

 
er

yt
hr

or
hi

-
zo

n,
 A

rn
eb

ia
 

eu
ch

ro
m

a,
 

Ar
ne

bi
a 

gu
tt

at
a

Br
ea

st
 c

an
ce

r; 
ce

rv
ic

al
 

ca
nc

er
; c

ol
or

ec
ta

l 
ca

nc
er

; g
al

lb
la

d-
de

r c
an

ce
r; 

ga
st

ric
 

ca
nc

er
; g

lio
bl

as
to

m
a 

m
ul

tif
or

m
e;

 g
lio

m
a;

 
he

pa
to

ce
llu

la
r c

ar
ci

-
no

m
a;

 le
uk

em
ia

; l
un

g 
ca

nc
er

; N
SC

LC
; r

en
al

 
ca

rc
in

om
a;

 p
an

cr
ea

tic
 

ca
nc

er
; t

hy
ro

id
 c

an
ce

r

M
C

F-
7,

 M
D

A
-M

B-
23

1,
 

SK
BR

3,
 H

eL
a,

 
H

C
T-

11
6,

 H
T-

29
, 

SN
U

-4
07

, S
W

-1
11

6,
 

SW
-6

80
, S

W
-6

20
, 

N
O

Z,
 B

G
C

-8
23

, 
SG

C
-7

90
1,

 P
rim

ar
y 

gl
io

bl
as

to
m

a 
st

em
 c

el
ls

, C
6,

 
SH

G
-4

4,
 U

87
, U

25
1,

 
SM

M
C

-7
72

1,
 N

B4
, 

Ca
lu

-6
, H

35
8,

 
H

CC
-2

27
9,

 N
C

I-H
15

, 
N

C
I-H

46
0,

 N
C

I-
H

12
29

, N
C

I-H
14

37
, 

N
C

I-H
17

03
, A

54
9,

 
78

9-
O

, C
ap

an
-1

, 
Su

it-
2,

 8
30

5C
, 

85
05

C
, B

C
PA

P, 
C

64
3,

 
FT

C
13

3,
 IH

H
4,

 K
1,

 
TP

C
1

A
54

9 
xe

no
gr

af
t m

ic
e;

 
G

lio
bl

as
to

m
a 

st
em

 
ce

ll 
xe

no
gr

af
t m

ic
e;

 
H

C
T-

11
6 

xe
no

gr
af

t 
m

ic
e;

 N
O

Z 
xe

no
gr

af
t 

m
ic

e;
 S

G
C

-7
90

1 
xe

no
gr

af
t m

ic
e

A
nt

i-m
et

as
ta

si
s; 

an
ti-

pr
ol

ife
ra

-
tio

n;
 e

nh
an

ce
s 

ch
em

os
en

si
tiv

-
ity

; i
nd

uc
es

 
ap

op
to

si
s, 

ce
ll 

cy
cl

e 
ar

re
st

, 
ne

cr
op

to
si

s

A
ct

iv
at

es
 c

as
pa

se
s-

3,
 -8

, -
9,

 -1
2,

 
PA

RP
, J

N
K/

c-
Ju

n,
 p

38
 M

A
PK

, 
PE

RK
/e

lF
2α

/C
H

O
P, 

pa
th

w
ay

s; 
D

ec
re

as
es

 m
ito

ch
on

dr
ia

l 
m

em
br

an
e 

po
te

nt
ia

l; 
D

ow
n-

re
gu

la
te

s 
A

kt
, B

cl
-2

, C
D

K4
, c

yc
lin

 
D

1,
 F

ox
O

3a
, I

C
BP

90
, I

TG
β1

, 
M

D
M

2,
 M

M
P-

9,
 c

-M
yc

, R
IP

K1
; 

El
ev

at
es

 in
tr

ac
el

lu
la

r  C
a2+

 a
nd

 
RO

S 
le

ve
ls

; E
nh

an
ce

s 
 Ca

2+
 a

nd
 

 K+
 e

ffl
ux

; I
nh

ib
its

 E
RK

 p
at

hw
ay

, 
PK

M
2 

ac
tiv

ity
; P

ro
m

ot
es

 R
IP

1/
RI

P3
 n

ec
ro

so
m

e 
fo

rm
at

io
n;

 U
p-

re
gu

la
te

s 
Ba

x,
 B

im
, C

bl
-b

, C
H

O
P, 

cy
to

ch
ro

m
e 

c,
 E

G
R1

, e
IF

2α
, 

G
RP

78
, I

RE
1α

, p
16

, p
21

, p
53

, 
p7

3,
 P

ER
K,

 R
IP

1,
 R

IP
3

0–
2 

μM
; 0

–4
 μ

M
; 

0–
5 

μM
; 0

–6
 μ

M
; 

0–
10

 μ
M

; 0
–2

0 
μM

; 
0–

50
 μ

M
; 

0.
1–

0.
4 

μM
; 1

 μ
M

; 
2 

μM
; 2

0 
m

g/
kg

; 
2 

m
g/

kg

C
is

pl
at

in
; 

5-
flu

or
ou

ra
ci

l; 
ox

al
ip

la
tin

[5
93

, 5
95

, 6
00

, 
60

3,
 6

07
, 

61
1,

 6
14

, 
61

5,
 6

17
, 

62
0,

 6
36

, 
94

7–
95

2]



Page 30 of 58Luo et al. Chin Med           (2019) 14:48 

Ta
bl

e 
1 

(c
on

ti
nu

ed
)

Co
m

po
un

ds
O

ri
gi

ns
Ca

nc
er

 ty
pe

s
In

 v
itr

o 
m

od
el

s
In

 v
iv

o 
m

od
el

s
A

nt
i‑c

an
ce

r 
eff

ec
ts

U
nd

er
ly

in
g 

m
ec

ha
ni

sm
s

D
os

ag
e

Co
m

bi
na

tio
na

l 
ag

en
ts

Re
fe

re
nc

es

G
am

bo
gi

c 
ac

id
G

. h
an

bu
ry

i, 
G

. 
M

or
el

la
Br

ea
st

 c
an

ce
r; 

co
lo

re
ct

al
 

ca
nc

er
; g

lio
m

a;
 h

ep
a-

to
ce

llu
la

r c
ar

ci
no

m
a;

 
N

SC
LC

; o
st

eo
sa

rc
om

a;
 

ov
ar

ia
n 

ca
nc

er
; 

pa
nc

re
at

ic
 c

an
ce

r; 
pr

os
ta

te
 c

an
ce

r; 
re

na
l 

ca
rc

in
om

a

4T
1,

 M
C

F-
7,

 M
D

A
-

M
B-

23
1,

 H
C

T-
15

, 
H

C
T-

15
R,

 H
C

T-
11

6,
 

H
T-

29
, S

W
-4

80
, 

SW
-6

20
, L

oV
o/

L-
O

H
P, 

Lo
Vo

/L
-O

H
P/

G
A

, T
98

G
, H

ep
3B

, 
H

uh
7,

 A
54

9,
 A

54
9/

D
D

P, 
SP

C
-A

-1
, 

M
G

63
, S

KO
V3

, 
Bx

PC
-3

, C
ap

an
-1

, 
Ca

pa
n-

2,
 C

ol
o-

35
7,

 
M

IA
 P

aC
a-

2,
 P

an
c-

1,
 

Su
it-

00
7,

 S
ui

t-
2,

 
SW

19
90

, B
6W

T,
 

D
U

-1
45

, L
A

PC
-4

, 
LN

Ca
P, 

PC
-3

, P
C

A
P-

1,
  P

TE
N
−

/−
/p

53
−

/−
, 

Ca
ki

4T
1 

xe
no

gr
af

t m
ic

e;
 

A
54

9 
xe

no
gr

af
t m

ic
e;

 
B1

6F
10

 a
nd

 M
C

38
 

xe
no

gr
af

t m
ic

e;
 

Bx
PC

-3
 x

en
og

ra
ft

 
m

ic
e;

 C
26

 x
en

og
ra

ft
 

m
ic

e;
 S

KO
V3

 x
en

o-
gr

af
t m

ic
e

A
nt

i-a
ng

io
-

ge
ne

si
s; 

an
ti-

m
et

as
ta

si
s; 

an
ti-

pr
ol

ife
r-

at
io

n;
 a

nt
i-

tu
m

or
 g

ro
w

th
; 

en
ha

nc
es

 
ch

em
os

en
si

tiv
-

ity
; i

nd
uc

es
 

ap
op

to
si

s, 
au

to
ph

ag
y,

 
ce

ll 
cy

cl
e 

ar
re

st
; i

nh
ib

its
 

ce
ll 

vi
ab

ili
ty

, 
su

rv
iv

al

A
ct

iv
at

es
 c

as
pa

se
-3

, -
7,

 -8
, -

9,
 

PA
RP

, J
N

K 
pa

th
w

ay
; D

ec
re

as
es

 
m

ito
ch

on
dr

ia
l m

em
br

an
e 

po
te

nt
ia

l; 
D

ow
n-

re
gu

la
te

s 
A

kt
, 

A
LD

O
A

, A
TG

4B
, B

cl
-2

, B
cl

-x
L,

 
β-

ca
te

ni
n,

  c
FL

IP
L, 

cy
cl

in
 D

1,
 

D
LL

1,
 D

LL
3,

 D
LL

4,
 E

RK
, J

ag
ge

d1
, 

Ja
gg

ed
2,

 L
RP

, p
-5

3,
 P

-g
p,

 M
cl

-1
, 

M
M

P-
2,

 M
M

P-
9,

 M
RP

2,
 P

I3
K,

 
RR

M
2,

 S
IR

T1
, s

ur
vi

vi
n,

 T
O

PI
Iα

, 
VE

G
F, 

XI
A

P;
 E

nh
an

ce
s 

RO
S 

ac
cu

m
ul

at
io

n,
 c

yt
oc

hr
om

e 
c 

re
le

as
e;

 In
hi

bi
ts

 E
RK

/E
2F

1/
RR

M
2,

 
M

A
PK

, P
I3

K/
A

kt
 p

at
hw

ay
s, 

N
F-

κB
 

p6
5 

bi
nd

in
g 

ac
tiv

ity
, T

rx
 a

ct
iv

ity
; 

U
p-

re
gu

la
te

s 
A

IF
, A

tg
-5

, B
ax

, 
C

H
O

P, 
D

U
SP

1,
 D

U
SP

5,
 F

ox
O

3a
, 

c-
Ju

n,
 p

27
, p

53

20
0–

40
0 

nM
; 

0–
1 

μM
; 0

–2
 μ

M
; 

0–
3 

μM
; 0

–5
 μ

M
; 

0–
8 

μM
; 0

–1
0 

μM
; 

0–
40

 μ
M

; 0
–5

0 
μM

; 
0–

51
.8

 μ
M

; 0
.5

 µ
M

; 
0–

3 
μg

/m
l; 

2 
m

g/
kg

; 
8 

m
g/

kg

C
hl

or
oc

ha
lc

on
e;

 
C

is
pl

at
in

; 
D

ox
or

ub
ic

in
; 

5–
Fl

uo
ro

ur
ac

il;
 

G
em

ci
ta

bi
ne

; 
 N

al
13

1 ; O
xa

lip
l-

at
in

; R
et

in
oi

c 
ac

id
; T

RA
IL

[6
39

, 6
44

, 6
46

, 
64

7,
 6

50
, 

65
6,

 6
57

, 
66

3–
66

5,
 

95
3–

96
6]

A
rt

es
un

at
e

Ar
te

m
isi

a 
an

nu
a 

L.
B-

ce
ll 

ly
m

ph
om

a;
 b

la
d-

de
r c

an
ce

r; 
br

ea
st

 
ca

nc
er

; c
ol

or
ec

ta
l 

ca
nc

er
; g

as
tr

ic
 c

an
ce

r; 
he

ad
 a

nd
 n

ec
k 

ca
nc

er
; h

ep
at

oc
el

lu
la

r 
ca

rc
in

om
a;

 m
ye

lo
d-

ys
pl

as
tic

 s
yn

dr
om

e;
 

ov
ar

ia
n 

ca
nc

er
; 

pa
nc

re
at

ic
 c

an
ce

r; 
pr

os
ta

te
 c

an
ce

r; 
rh

ab
-

do
m

yo
sa

rc
om

a

BL
-4

1,
 R

aj
i, 

Ra
m

os
, 

Re
c-

1,
 R

T4
, T

24
, 

A
C

H
N

, B
T-

47
4,

 
M

C
F-

7,
 M

D
A

-
M

B-
23

1,
 B

G
C

-8
23

, 
H

G
C

-2
7,

 M
G

C
-8

03
, 

SG
C

-7
90

1,
 H

N
3,

 
H

N
4,

 H
N

9,
 S

KM
-1

, 
H

O
89

10
, S

KO
V3

, 
A

sP
C

-1
, B

xP
C

-3
, 

Co
lo

-3
57

, P
an

c-
1,

 
D

U
-1

45
, L

N
Ca

P, 
RD

18
, T

E6
71

BL
-4

1 
xe

no
gr

af
t m

ic
e;

 
A

27
80

 x
en

og
ra

ft
 

m
ic

e;
 H

O
89

10
 x

en
o-

gr
af

t m
ic

e;
 T

E6
71

 
xe

no
gr

af
t m

ic
e;

 
M

C
F-

7 
xe

no
gr

af
t 

m
ic

e

A
nt

i-a
ng

io
-

ge
ne

si
s; 

an
ti-

m
et

as
ta

si
s; 

an
ti-

pr
ol

ife
r-

at
io

n;
 a

nt
i-

tu
m

or
 g

ro
w

th
; 

in
du

ce
s 

ap
op

to
si

s, 
ce

ll 
cy

cl
e 

ar
re

st
, 

D
N

A
 d

am
ag

e,
 

fe
rr

op
to

si
s

A
ct

iv
at

es
 c

as
pa

se
-3

, -
9,

 p
38

 
M

A
PK

 p
at

hw
ay

; D
ec

re
as

es
 

m
et

ab
ol

ic
 c

ap
ac

ity
, m

ito
ch

on
-

dr
ia

l m
em

br
an

e 
po

te
nt

ia
l, 

 PG
E 2 

pr
od

uc
tio

n;
 D

ow
n-

re
gu

la
te

s 
Bc

l-2
, C

D
C

25
A

, C
O

X-
2,

 c
yc

lin
 

B,
 c

yc
lin

 D
1,

 c
yc

lin
 E

2,
 γ

-H
2A

X,
 

IG
F-

1R
, K

ea
p1

, c
-M

yc
, P

A
X7

, 
RA

D
51

, S
TA

T3
, U

C
A

1,
 x

C
T;

 
En

ha
nc

es
 R

O
S 

pr
od

uc
tio

n;
 U

p-
re

gu
la

te
s 

AT
F-

4,
 A

TM
, A

TR
, B

ax
, 

BR
C

A
1,

 E
-c

ad
he

rin
, C

H
K1

, C
H

K2
, 

C
H

O
P, 

H
O

-1
, m

ic
ro

RN
A

-1
6,

 
m

ic
ro

RN
A

-1
33

, m
ic

ro
RN

A
-2

06
, 

N
rf

2,
 p

53

0.
1–

10
 μ

M
; 0

–5
0 

μM
; 

0–
10

0 
μM

; 
0–

12
0 

μM
; 

0–
20

0 
μM

; 
50

 μ
M

; 0
–5

0 
μg

/
m

l; 
0–

16
0 

m
g/

L;
 

0–
20

0 
m

g/
kg

; 
50

 m
g/

kg
; 5

0,
 

15
0 

m
g/

kg
; 1

00
 m

g/
kg

; 2
00

 m
g/

kg

C
is

pl
at

in
; C

on
-

ne
xi

n-
43

; 
Pa

cl
ita

xe
l

[6
69

, 6
73

, 6
75

, 
68

1,
 6

83
, 

68
8–

69
0,

 
69

3,
 6

95
, 

96
7–

97
1]



Page 31 of 58Luo et al. Chin Med           (2019) 14:48 

Ta
bl

e 
1 

(c
on

ti
nu

ed
)

Co
m

po
un

ds
O

ri
gi

ns
Ca

nc
er

 ty
pe

s
In

 v
itr

o 
m

od
el

s
In

 v
iv

o 
m

od
el

s
A

nt
i‑c

an
ce

r 
eff

ec
ts

U
nd

er
ly

in
g 

m
ec

ha
ni

sm
s

D
os

ag
e

Co
m

bi
na

tio
na

l 
ag

en
ts

Re
fe

re
nc

es

W
og

on
in

Sc
ut

el
la

ria
 

ba
ic

al
en

sis
, 

Sc
ut

el
la

ria
 

am
oe

na
, 

Sc
ut

el
la

ria
 

riv
ul

ar
is,

 
An

od
en

dr
on

 
affi

ne
 D

ru
ce

Br
ea

st
 c

an
ce

r; 
ga

st
ric

 
ca

nc
er

; h
ea

d 
an

d 
ne

ck
 c

an
ce

r; 
he

pa
-

to
ce

llu
la

r c
ar

ci
no

m
a;

 
le

uk
em

ia
; l

ym
ph

om
a;

 
m

el
an

om
a;

 m
ul

tip
le

 
m

ye
lo

m
a;

 n
eu

ro
bl

as
-

to
m

a;
 o

st
eo

sa
rc

om
a;

 
ov

ar
ia

n 
ca

nc
er

; 
pa

nc
re

at
ic

 c
an

ce
r; 

N
SC

LC

M
D

A
-M

B-
23

1,
 B

G
C

-
82

3,
 M

FC
, M

G
C

-8
03

, 
M

KN
45

, S
G

C
-7

90
1,

 
A

M
C

-H
N

2,
 A

M
C

-
H

N
3,

 A
M

C
-H

N
4,

 
A

M
C

-H
N

5,
 A

M
C

-
H

N
9,

 A
M

C
-H

N
4-

ci
sR

, A
M

C
-H

N
9-

ci
sR

, 
SN

U
-1

04
1,

 S
N

U
-

10
66

, S
N

U
-1

07
6,

 
Be

l-7
40

2,
 H

ep
3B

, 
H

ep
G

2,
 S

M
M

C
-

77
21

, K
56

2,
 K

56
2/

A
02

, K
56

2R
, R

aj
i, 

B1
6F

10
, R

PM
I 8

22
6,

 
U

26
6,

 IM
R-

32
, 

SK
-N

-B
E2

,  C
D

13
3+

 
C

A
L7

2,
 A

54
9,

 
A

27
80

, C
ol

o-
35

7,
 

Pa
nc

-1

M
D

A
-M

B-
23

1 
xe

no
gr

af
t 

m
ic

e;
 R

aj
i x

en
og

ra
ft

 
m

ic
e;

 A
M

C
-H

N
4-

ci
sR

 
xe

no
gr

af
t m

ic
e;

 
A

M
C

-H
N

9-
ci

sR
 x

en
o-

gr
af

t m
ic

e;
 B

16
F1

0 
xe

no
gr

af
t m

ic
e;

 
BG

C
-8

23
 x

en
og

ra
ft

 
m

ic
e 

an
d 

ze
br

afi
sh

; 
M

FC
 x

en
og

ra
ft

 m
ic

e;
 

RP
M

I 8
22

6 
xe

no
gr

af
t 

m
ic

e

A
nt

i-a
ng

io
-

ge
ne

si
s; 

an
ti-

m
et

as
ta

si
s; 

an
ti-

pr
ol

ife
r-

at
io

n;
 a

nt
i-

tu
m

or
 g

ro
w

th
; 

in
du

ce
s 

ap
op

to
si

s, 
au

to
ph

ag
y,

 c
el

l 
cy

cl
e 

ar
re

st
, 

ER
 s

tr
es

s, 
m

ito
ch

on
dr

ia
l 

dy
sf

un
ct

io
n;

 
re

ve
rs

es
 d

ru
g 

re
si

st
an

ce

A
ct

iv
at

es
 c

as
pa

se
-3

, -
4,

 -8
, -

9,
 -1

2,
 

PA
RP

, I
RE

1α
-d

ep
en

de
nt

 p
at

h-
w

ay
; D

ec
re

as
es

 m
ito

ch
on

dr
ia

l 
m

em
br

an
e 

po
te

nt
ia

l; 
D

ow
n-

re
gu

la
te

s 
A

kt
, B

7H
1,

 B
cl

-2
, C

D
K4

, 
C

D
K6

, c
yc

lin
 D

1,
 c

yc
lin

 E
, E

G
FR

, 
ER

K,
 H

IF
-1

α,
 IL

-8
, I

κB
, I

KK
α,

 K
i-6

7,
 

M
M

P-
2,

 M
M

P-
9,

 c
-M

yc
, P

D
K1

, 
PI

3K
, R

ac
1,

 R
A

E-
1ε

, S
G

K1
, U

LK
1,

 
VE

G
F;

 E
nh

an
ce

s 
ca

lre
tic

ul
in

, 
H

M
G

B1
, c

yt
oc

hr
om

e 
c 

re
le

as
e,

 
RO

S 
ac

cu
m

ul
at

io
n;

 In
hi

bi
ts

 
5-

LO
/B

LT
2/

ER
K/

IL
-8

/M
M

P-
9,

 
N

F-
κB

 p
at

hw
ay

s; 
U

p-
re

gu
la

te
s 

A
SK

, B
ax

, B
id

, G
RP

78
, G

RP
94

, 
IR

E1
α,

 JN
K,

 p
21

, p
53

, P
U

.1
, 

PU
M

A

0–
20

 μ
M

; 0
–4

0 
μM

; 
0–

50
 μ

M
; 0

–6
0 

μM
; 

0–
80

 μ
M

; 0
–1

00
 μ

M
; 

0–
15

0 
μM

; 
0–

20
0 

μM
; 4

0 
μM

; 
50

 μ
M

; 0
–4

0 
μg

/
m

l; 
0–

60
 m

g/
kg

; 
0–

80
 m

g/
kg

; 8
 m

g/
kg

; 2
0 

m
g/

kg
; 

60
 m

g/
kg

; 1
2.

5 
ng

/
ze

br
afi

sh

C
is

pl
at

in
; 

Pa
cl

ita
xe

l; 
O

xa
lip

la
tin

; 
So

ra
fe

ni
b

[7
04

, 7
08

, 
70

9,
 7

16
, 

71
7,

 7
19

, 
72

1,
 7

25
, 

73
0,

 7
31

, 
74

1,
 7

42
, 

97
2–

97
6]

β-
El

em
en

e
Cu

rc
um

a 
w

en
yu

jin
 

Y.
 H

. C
he

n 
et

 C
. L

in
g,

 
Rh

iz
om

a 
ze

do
ar

ia
e,

 
Cu

rc
um

a 
Ze

do
ar

y

Bl
ad

de
r c

an
ce

r; 
bo

ne
 

ne
op

la
sm

s; 
br

ea
st

 
ca

nc
er

; c
er

vi
ca

l 
ca

nc
er

; g
as

tr
ic

 c
an

ce
r; 

m
el

an
om

a;
 N

SC
LC

; 
os

te
os

ar
co

m
a;

 th
yr

oi
d 

ca
nc

er

PB
C

, B
ca

p3
7,

 
M

BA
-M

D
-2

31
, 

M
C

F-
7,

 M
C

F-
7/

A
D

R,
 

M
C

F-
7/

D
O

C
, 5

63
7,

 
Si

H
a,

 T
-2

4,
 B

G
C

-8
23

, 
M

KN
45

, S
G

C
-7

90
1,

 
B1

6F
10

, A
54

9,
 

H
35

8,
 H

46
0,

 H
12

99
, 

H
16

50
, H

19
75

, 
Le

w
is

, P
C

9,
 M

G
63

, 
U

2O
S,

 F
TC

-1
33

A
54

9 
xe

no
gr

af
t m

ic
e;

 
B1

6F
10

 x
en

og
ra

ft
 

m
ic

e;
 B

G
C

-8
23

 x
en

o-
gr

af
t m

ic
e;

 L
ew

is
 

tu
m

or
-b

ea
rin

g 
m

ic
e;

 
M

G
63

 x
en

og
ra

ft
 

m
ic

e;
 U

2O
S 

xe
no

-
gr

af
t m

ic
e

A
nt

i-a
ng

io
-

ge
ne

si
s; 

an
ti-

m
et

as
ta

si
s; 

an
ti-

pr
ol

ife
r-

at
io

n;
 a

nt
i-

tu
m

or
 g

ro
w

th
; 

en
ha

nc
es

 
ra

di
os

en
si

tiv
-

ity
; i

nd
uc

es
 

ap
op

to
si

s, 
au

to
ph

ag
y,

 c
el

l 
cy

cl
e 

ar
re

st
; 

re
ve

rs
es

 c
he

m
-

or
es

is
ta

nc
e

A
ct

iv
at

es
 c

as
pa

se
-3

, -
7,

 -8
, -

9,
 

-1
0;

 D
ow

n-
re

gu
la

te
s 

A
kt

, B
cl

-2
, 

β-
ca

te
ni

n,
 C

D
C

25
C

, C
D

K1
, c

yc
lin

 
B1

, c
yc

lin
 D

1,
 e

nd
os

ta
tin

, E
RK

, 
D

N
M

T1
, M

M
P-

2,
 M

M
P-

3,
 M

M
P-

9,
 M

TA
3,

 c
-M

yc
, S

TA
T3

, S
p1

, 
su

rv
iv

in
, T

C
F7

, T
IM

P-
1,

 T
IM

P-
2,

 
VE

G
F;

 E
nh

an
ce

s 
RO

S 
ac

cu
m

ul
a-

tio
n;

 In
du

ce
s 

po
la

riz
at

io
n 

fro
m

 M
2 

to
 M

1 
m

ac
ro

ph
ag

es
; 

In
hi

bi
ts

 W
nt

/β
-c

at
en

in
 p

at
hw

ay
; 

U
p-

re
gu

la
te

s 
AT

F-
4,

 A
TF

-6
, B

ad
, 

Ba
x,

 B
TF

, C
H

K2
, C

H
O

P, 
Fo

xO
3a

, 
IG

FB
P1

, I
RE

1α
, p

15
, p

21
, p

53
, 

Pa
k1

, P
A

K1
IP

1,
 P

ER
K,

 T
O

PI
Iα

0–
25

 μ
M

; 0
–1

00
0 

μM
; 

67
.5

–1
00

0 
μM

; 
0–

40
 μ

g/
m

l; 
0–

50
 μ

g/
m

l; 
0–

12
0 

μg
/

m
l; 

0–
16

0 
μg

/
m

l; 
0–

20
0 

μg
/

m
l; 

0–
32

0 
μg

/
m

l; 
0–

50
0 

μg
/

m
l; 

0–
80

0 
μg

/m
l; 

0–
0.

16
 m

g/
m

l; 
15

, 
30

 μ
g/

m
l; 

10
0 

m
g/

m
l; 

1 
m

g/
kg

; 2
0 

m
g/

kg
; 5

0 
m

g/
kg

; 
75

 m
g/

kg
; 2

00
 m

g/
kg

C
is

pl
at

in
; 

Pa
cl

ita
xe

l; 
Ra

pa
m

yc
in

[7
46

, 7
47

, 7
49

, 
75

2,
 7

54
, 

75
5,

 7
62

, 
97

7–
98

7]



Page 32 of 58Luo et al. Chin Med           (2019) 14:48 

Ta
bl

e 
1 

(c
on

ti
nu

ed
)

Co
m

po
un

ds
O

ri
gi

ns
Ca

nc
er

 ty
pe

s
In

 v
itr

o 
m

od
el

s
In

 v
iv

o 
m

od
el

s
A

nt
i‑c

an
ce

r 
eff

ec
ts

U
nd

er
ly

in
g 

m
ec

ha
ni

sm
s

D
os

ag
e

Co
m

bi
na

tio
na

l 
ag

en
ts

Re
fe

re
nc

es

Ce
ph

ar
an

th
in

e
St

ep
ha

ni
a 

ce
ph

ar
an

th
a 

H
ay

at
a,

 
St

ep
ha

ni
a 

ja
po

ni
ca

C
ho

ro
id

al
 m

el
an

om
a;

 
co

lo
re

ct
al

 c
an

ce
r; 

br
ea

st
 c

an
ce

r; 
ga

st
ric

 
ca

nc
er

; l
eu

ke
m

ia
; 

na
so

ph
ar

yn
ge

al
 

ca
rc

in
om

a;
 N

SC
LC

; 
ov

ar
ia

n 
ca

nc
er

; r
en

al
 

ca
rc

in
om

a

M
EL

15
-1

, C
O

LO
-2

05
, 

H
C

T-
11

6 
H

T-
29

, 
SW

-6
20

, M
C

F-
7,

 
M

D
A

-M
B-

23
1,

 
Ju

rk
at

 T
-c

el
ls

, A
54

9,
 

H
12

99
, H

CC
82

7,
 

N
C

I-H
12

99
, N

C
I-

H
16

50
, N

C
I-H

19
75

, 
C

N
E-

1,
 C

N
E-

2,
 

A
27

80
, A

27
80

/T
ax

ol
, 

Ca
O

V-
3,

 O
VC

A
R3

, 
Ca

ki

A
54

9 
xe

no
gr

af
t m

ic
e;

 
N

C
I-H

19
75

 x
en

og
ra

ft
 

m
ic

e

A
nt

i-a
ng

io
-

ge
ne

si
s; 

an
ti-

m
et

as
ta

si
s; 

an
ti-

pr
ol

ife
r-

at
io

n;
 a

nt
i-

tu
m

or
 g

ro
w

th
; 

in
du

ce
s 

ap
op

to
si

s, 
au

to
ph

ag
y,

 c
el

l 
cy

cl
e 

ar
re

st
; 

Re
ve

rs
es

 m
ul

ti-
dr

ug
 re

si
st

an
ce

A
ct

iv
at

es
 c

as
pa

se
-3

, -
9,

 P
A

RP
; 

D
ec

re
as

es
 m

ito
ch

on
dr

ia
l m

em
-

br
an

e 
po

te
nt

ia
l; 

D
ow

n-
re

gu
la

te
s 

A
kt

, B
cl

-2
, B

cl
-x

L,
 C

D
K4

, c
yc

lin
 A

, 
cy

cl
in

 D
, c

-F
LI

P, 
m

TO
R,

 p
50

, p
52

, 
su

rv
iv

in
; E

nh
an

ce
s 

cy
to

ch
ro

m
e 

c 
re

le
as

e,
 R

O
S 

ac
cu

m
ul

at
io

n;
 

In
hi

bi
ts

 ly
so

so
m

al
 c

at
he

ps
in

 B
 

an
d 

ca
th

ep
si

n 
D

 m
at

ur
at

io
n,

 
A

kt
/m

TO
R,

 N
F-

κB
, p

at
hw

ay
s; 

U
p-

re
gu

la
te

s 
A

tg
-7

, B
ak

, B
ax

, 
Be

cl
in

1,
 D

R5
, p

38
 M

A
PK

, M
cl

-1
, 

 p2
1W

af
1/

C
ip

1 , p
53

0–
15

 μ
M

; 0
–2

0 
μM

; 
0–

80
 μ

M
; 0

–1
00

 μ
M

; 
0–

12
0 

μM
; 2

–8
 μ

M
; 

4,
 5

 μ
M

; 5
–8

0 
m

M
; 

25
 m

g/
kg

; 5
0 

m
g/

kg

C
is

pl
at

in
; 

D
ac

om
iti

ni
b;

 
Pa

cl
ita

xe
l; 

TR
A

IL

[7
77

, 7
82

–7
90

, 
79

4,
 9

88
]



Page 33 of 58Luo et al. Chin Med           (2019) 14:48 

experimental models and conditions, pharmacological 
effects, as well as mechanistic actions of the natural com-
pounds derived from Chinese herbal medicine. Despite 
the unique anti-cancer beneficial features of many com-
pounds derived from Chinese herbal medicine, their 
clinical applications are disproportionally limited. As of 
2019, only preliminary  clinical studies  have been per-
formed with artemisinins, emodin, cucurbitacins, tansh-
iones, shikonin, and CEP in various cancers, without any 
approved clinical applications. The phase I safety studies 
of UA-liposomes, oridonin derivative (HAO472), and 
wogonin were evaluated in patients with advanced solid 
tumors. Curcumin, pro-drug of triptolide (minnelide™), 
triptolide derivative (LLDT-8), and GA have been inves-
tigated on cancer therapy in phase II clinical trials. The 
phase II clinical trials of berberine hydrochloride, gin-
senoside Rg3, and artesunate are being conducted in 
patients with cancer. EGCG was shown to have potential 
anti-cancer effects in a phase III clinical trial. Elemene 
Emulsion mainly containing β-elemene was approved by 
China’s State Food and Drug Administration as a Class 2 
new drug in China. Based on our critical review of those 
clinical studies, we conclude that Chinese herbal medi-
cine is a promising source and could be used as a comple-
mentary approach for cancer therapy.

We believe that as the evidence for safety and efficacy 
continues to develop, this will improve the understand-
ing about the mechanistic actions and clinical potential 
of these compounds. Chinese herbal medicine will also 
serve as a huge community from which many promising 
compounds will be developed for clinical use.
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Drp-1: dynamin-related protein 1; DUSP: dual-specificity phosphatase; Dvl2: 
dishevelled segment polarity protein 2; E2F1: E2F transcription factor 1; 
EBNA1: Epstein–Barr nuclear antigen 1; EF-Tu: elongation factor thermo 
unstable; EGCG : epigallocatechin gallate; EGFR: epidermal growth factor 
receptor; EGFR-TKI: epidermal growth factor receptor-tyrosine kinase inhibitor; 
EGR1: early growth response protein 1; ENY2: enhancer of yellow 2 transcrip-
tion factor homolog; eIF2α: eukaryotic translation-initiation factor 2α; EphA2: 
ephrin type-A receptor 2; ER: endoplasmic reticulum; ERα: estrogen receptor α; 
ERK: extracellular signal-regulated kinase; Ets2: ETS proto-oncogene 2; EZH2: 
enhancer of zeste homolog 2; FABP4: fatty acid binding protein 4; FADD: 
Fas-associated protein with death domain; FAK: focal adhesion kinase; FasL: Fas 
ligand; bFGF: basic fibroblast growth factor; c-FLIP: FLICE-like inhibitory 
protein; FN: fibronectin; FoxM1: forkhead box protein M1; FoxO: forkhead box 
O; Foxp3: forkhead box P3; FRZB: frizzled-related protein; FUT4: fucosyltrans-
ferase 4; GA: gambogic acid; GADD45AQ: growth arrest and DNA damage-
inducible 45; GLI1: glioma-associated oncogene homolog 1; GLUT-1: glucose 
transporter 1; GRB2: growth factor receptor-bound protein 2; GRP78: 78-kDa 
glucose-regulated protein; GRP94: 94-kDa glucose-regulated protein; GSH: 
glutathione; GSK3β: glycogen synthase kinase 3β; γ-H2AX: phosphorylated 
H2A histone family member X; HBP17: human fibroblast growth factor binding 
protein 1; HO-1: heme oxygenase 1; H2O2: hydrogen peroxide; HDAC: histone 
deacetylases; HER2: human epidermal growth factor receptor 2; HERC5: HECT 
domain and RCC-1-like domain-containing protein 5; HIF-1α: hypoxia-induci-
ble factor 1α; HK2: hexokinase 2; HMGB1: high mobility group box 1; HNF4α: 
hepatocyte nuclear factor 4α; HRK: activator of apoptosis harakiri; HSF1: heat 
shock factor 1; HSP: heat shock protein; HUVEC: human umbilical vein 
endothelial cell; IAP: inhibitor of apoptosis protein; ICAD: apoptosis protease 
activating factor-1; ICAM-1: intercellular adhesion molecule 1; ICBP90: inverted 
CCAAT box-binding protein of 90 kDa; IDO: indoleamine 2,3-dioxygenase; 
IFN-γ: interferon-γ; IGFBP1: insulin-like growth factor-binding protein 1; IGF-1R: 
insulin-like growth factor 1 receptor; IκB: nuclear factor of kappa light 
polypeptide gene enhancer in B-cells inhibitor; IKK: IκB kinase; IL: interleukin; 
ILK: integrin-linked kinase; iNOS: inducible nitric oxide synthase; IRE1α: 
inositol-requiring enzyme 1α; ITG: integrin; Jak1: Janus kinase 1; Jak2: Janus 
kinase 2; JMJD3: Jumonji domain-containing protein D3; JMJD2B: Jumonji 
domain-containing protein 2B; JNK: c-Jun N-terminal kinase; K+: potassium; 
Keap1: Kelch-like ECH-associated protein 1; LEF1: lymphoid enhancer-binding 
factor 1; LeY: Lewis Y; Lig4: DNA ligase 4; LLC: Lewis lung carcinoma; LMP: 
Epstein–Barr virus latent membrane protein; LRP: low density lipoprotein 
receptor-related protein; LPS: lipopolysaccharide; LSD1: lysine-specific histone 
demethylase 1; MAPK: mitogen-activated protein kinase; Mcl-1: myeloid cell 
leukemia 1; MCT1: monocarboxylate transporter 1; MCP-1: monocyte 
chemoattractant protein 1; MD2: myeloid differentiation factor 2; MDM2: 
mouse double minute 2 homolog; MDR: multi-drug resistance; MDSCs: 
myeloid-derived suppressor cells; MEK: MAPK kinase; MGMT: O-6-methylgua-
nine-DNA methyltransferase; MHC: major histocompatibility complex; Mfn: 
mitofusin; MKP-1: MAPK phosphatase 1; MMP: matrix metalloproteinase; MRP1: 
multi-drug resistance-associated protein 1; MST1: macrophage-stimulating 1; 
MTA3: metastasis-associated 1 family member 3; mTOR: mammalian target of 
rapamycin; NADPH: nicotinamide adenine dinucleotide phosphate oxidase; 
NAG-1: non-steroidal anti-inflammatory drug-activated gene 1; NF-κB: nuclear 
factor kappa-light-chain-enhancer of activated B cells; NK: natural killing; 
NKD2: naked cuticle 2; NQO1: NADPH quinone oxidoreductase 1; Nrf2: nuclear 
factor erythroid 2-related factor 2; NSCLC: non-small-cell lung carcinoma; 
Oct-4: octamer-binding transcription factor 4; Opa-1: optic atrophy protein 1; 
p70S6K: p70S6 kinase; u-PA: urokinase-type plasminogen activator; u-PAR: 
urokinase-type plasminogen activator receptor; PAI-1: plasminogen activator 
inhibitor 1; PAK1: p21-activated protein kinase 1; PAK1IP1: p21-activated 
protein kinase-interacting protein 1; PARP: poly (ADP-ribose) polymerase; 
PAX7: paired box 7; PCNA: proliferating cell nuclear antigen; PERK: protein 
kinase R-like endoplasmic reticulum kinase; PD-L1: programmed death-ligand 
1; PDK1: pyruvate dehydrogenase kinase 1; PGE2: prostaglandin  E2; P-gp: 
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P-glycoprotein; PHLPP2: pH domain and leucine Rich repeat protein 
phosphatase 2; PLA2: phospholipase A2; PI3K: phosphoinositide 3-kinase; 
PKC-α: protein kinase Cα; PKD1: polycystin 1; PKM2: pyruvate kinase isozyme 
M2; PP2A: pyrophosphatase (inorganic) 2; PPARγ: peroxisome proliferator-
activated receptor γ; PSA: prostate-specific antigen; PTEN: phosphatase and 
tensin homolog; PTTG-1: pituitary tumor-transforming gene 1 protein; PU.1: 
spleen focus forming virus proviral integration oncogene; PUMA: p53 
upregulated modulator of apoptosis; PYK2: proline-rich tyrosine kinase 2; Rac1: 
Ras-related C3 botulinum toxin substrate 1; Rac2: Ras-related C3 botulinum 
toxin substrate 2; RAE-1ε: ribonucleic acid export 1ε; Rb: retinoblastoma-
associated protein; RECK: reversion-inducing-cysteine-rich protein with kazal 
motifs; RECQL4: ATP-dependent DNA helicase Q4; RhoA: Ras homolog family 
member A; RIP: receptor-interacting serine/threonine protein; RIPK1: 
receptor-interacting serine/threonine protein kinase 1; RRM2: ribonucleotide 
reductase regulatory subunit M2; ROCK1: Rho-associated protein kinase 1; 
ROS: reactive oxygen species; S6: ribosomal protein S6; S6K: ribosomal protein 
S6 kinase; SERTAD1: SERTA domain-containing protein 1; SFRP1: secreted 
frizzled related protein 1; SFN: stratifin; SGK1: serum and glucocorticoid-regu-
lated kinase 1; SHH: sonic hedgehog; SHP-1: Src homology region 2 
domain-containing phosphatase 1; SIRT: sirtuin; Smac: second mitochondria-
derived activator of caspase; SMOX: spermine oxidase; SOS1: son of sevenless 
homolog 1; SOD: superoxide dismutase; SOX2: sex determining region 
Y-box 2; Sp1: specificity protein 1; SREBP1: sterol regulatory element-binding 
protein 1; SSAT: spermidine/spermine N1-acetyltransferase; STAT : signal 
transducer and activator of transcription; SUV39H1: suppressor of variegation 
3-9 homolog 1; Suz12: suppressor of zeste 12 protein homolog; TACE: 
TNF-α-converting enzyme; TAZ: tafazzin; TFAP2A: transcription factor 
AP-2-alpha; TCF: T-cell factor; TGF-β: transforming growth factor-β; Th1: T 
helper type 1 cell; Th2: T helper type 2 cell; Thy-1: THYmocyte differentiation 
antigen 1; TIMP: TIMP metallopeptidase inhibitor; TLR: toll-like receptor; TNF: 
tumor necrosis factor; TOPK: T-LAK cell-originated protein kinase; TOPIIα: DNA 
topoisomerase IIα; TRAF6: TNF receptor-associated factor 6; TRAIL: TNF‐related 
apoptosis‐inducing ligand; TROP2: tumor-associated calcium signal transducer 
2; Treg: regulatory T cells; Trx: thioredoxin; TrxR: thioredoxin reductase; Tyro3: 
tyrosine-protein kinase receptor; UA: ursolic acid; UAL: UA-lipsomes; UCA1: 
urothelial cancer-associated 1; ULK-1: UNC-51-like autophagy activating kinase 
1; UQCRC1: ubiquinol-cytochrome c reductase core protein 1; UTX: 
ubiquitously transcribed tetratricopeptide repeat protein X-linked; VEGF: 
vascular endothelial growth factor; VEGFR2: vascular endothelial growth factor 
receptor 2; VHL: von Hippel–Lindau tumor suppressor; XBP-1: X-box binding 
protein 1; xCT: solute carrier family 7 member 11; XIAP: X-linked inhibitor of 
apoptosis protein; WT1: Wilms tumor 1; YAP: Yes-associated protein 1; ZEB1: 
zinc finger E-box binding homeobox 1; ZEBRA: BamHI Z Epstein–Barr virus 
replication activator.
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