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Abstract 

Background:  Traditional Chinese medicine (TCM) encompasses numerous herbal formulas which play critical 
therapeutic roles through “multi-components, multi-targets and multi-pathways” mechanisms. Exploring the interac-
tion among these mechanisms can certainly help to depict the core therapeutic function of herbal formulas. Xiaoyao 
decoction (XYD) is one of the most well-known traditional Chinese medicine formulas which has been widely applied 
to treat various diseases. In this study, taking XYD as an example, we proposed a network pharmacology-based 
method to identify the main therapeutic targets of this herbal concoctions.

Methods:  Chemical data of XYD were retrieved from the Traditional Chinese Medicine Systems Pharmacology Data-
base (TCMSP), Traditional Chinese Medicines Integrated Database (TCMID) and Compound Reference Database (CRD) 
and screened oral bioavailability attributes from SwissADME using Veber’s filter. Targets of sample chemicals were 
identified using the online tool similarity ensemble approach (SEA), and pathways were enriched using STRING data-
base. On the basis of targets–pathways interactions from the enrichment, a “targets–pathways–targets” (TPT) network 
was constructed. In the TPT network, the importance of each target was calculated by the declining value of network 
efficiency, which represents the influential strength of a specific set-off target on the whole network. Network-based 
predictive results were statistically validated with existing experimental evidence.

Results:  The TPT network was comprised of 279 nodes and 6549 edges. The declining value of network efficiency 
of the sample targets was significantly correlated with their involvement frequency in existing studies of XYD using 
Spearman’s test (p < 0.001). The top 10% of candidate targets, such as AKT1, PIK3R1, NFKB1 and RELA, etc., were cho-
sen as XYD’s main therapeutic targets, which further show pharmacological functions synergistically through 11 main 
pathways. These pathways are responsible for endocrine, nutritional or metabolic diseases, neoplasms and diseases of 
the nervous system, etc.

Conclusions:  The network pharmacology-based approach in the present study shows promising potential for iden-
tifying the main therapeutic targets from TCM formulas. This study provides valuable information for TCM researchers 
and clinicians for better understanding the main therapeutic targets and therapeutic roles of herbal decoctions in 
clinical settings.
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Background
Traditional Chinese medicine (TCM), as a unique and 
complete medical system, was recorded in historical 
medical documents over 2000  years ago [1]. TCM has 

Open Access

Chinese Medicine

*Correspondence:  GChan@um.edu.mo; YuanjiaHu@um.edu.mo
†Daiyan Zhang and Yun Zhang contributed equally to this work
1 State Key Laboratory of Quality Research in Chinese Medicine, Institute 
of Chinese Medical Sciences, University of Macau, Macau, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-5244-8577
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13020-020-00302-4&domain=pdf


Page 2 of 11Zhang et al. Chin Med           (2020) 15:25 

been widely used, especially in the form of herbal formu-
las, which are various combinations of multiple natural 
herbs [2]. TCM usually plays a therapeutic role on diverse 
diseases through “multi-components, multi-targets and 
multi-pathways” [3, 4]. However, it is difficult to decode 
the molecular evidence of TCM compounds to improve 
their affinity, specificity, pharmacokinetics and stabil-
ity [5]. This research gap has restricted the international 
generalisation and development of TCM [6]. Hence, 
molecular evidence on TCM is important in order to 
modernise TCM products and expand their clinical usage 
worldwide.

Xiaoyao decoction (XYD), a conventional herbal for-
mula, has been proven effective and safe for many dis-
eases, such as depressive disorder [8, 9], stress-induced 
anxiety [7], chronic hepatitis B [8], breast cancer [9], 
hypertension [10], insomnia [11–14], anovulatory infer-
tility [15] and polycystic ovary syndrome [16]. XYD has 
also been reported to soothe liver diseases, to invigorate 
the spleen [17] and to change the content of neurotrans-
mitters, such as serotonin, norepinephrine and substance 
P [18]. Since clinical applications of XYD have not yet 
been elucidated clearly at the molecular level, and there 
are some difficulties in solving the complex system of this 
herbal formula using experimental methods, the main 
therapeutic targets and mechanisms of action of this 
decoction still need to be explored [15].

With the rapid development of bioinformatics, a prom-
ising methodology called network pharmacology (NP) 
has emerged and has been applied to the research of 
TCM [2]. NP can be used to explore network dynamics 
and interactions, which coincide with the characteristics 
of TCM and a holistic view of herbal formulas. In NP-
based TCM research, compound–target networks and 
protein–protein interaction networks are two main types 
of network analysis. In order to reflect the pathway-based 
biological effect and to meet the integrated feature of 
herbal formulas more effectively, this research employed 
the approach of a targets–pathways–targets (TPT) net-
work and proposed a series of novel network parameters 
to quantify the integrated effects of herbal formulas on 
different targets.

In this study we screened the oral bioavailability attrib-
utes of chemical data of XYD and obtained the predicted 
targets; these were the basis of an enrichment analysis 
to get potential targets and related pathways. The TPT 
network was established based on the targets–pathways 
interactions [19]. In the TPT network, the importance of 
each target was calculated by the declining value of net-
work efficiency, which represents the influential strength 
of a specific set-off target on the whole network. Fur-
thermore, a “targets–pathways–diseases” network was 
conducted to identify the scientific basis of XYD. The 

workflow of the NP-based approach and its application in 
XYD is shown in Fig. 1.

By taking XYD as an example of classic famous herbal 
formulas, this study employs the NP-based method to 
identify the main therapeutic targets of XYD and to 
provide a methodological reference of clarifying the sci-
entific basis of herbal formulas. This kind of NP-based 
research is of great significance for translating traditional 
herbal formulas into modern drugs, given that regulation 
of TCM products is becoming much stricter nowadays 
[20, 21].

Methods
Data collection and processing
XYD is composed of eight herbs: Radix Bupleuri (Bupleu-
rum Chinense DC.), Radix Angelicae Sinensis (Angelica 
sinensis (Oliv.) Diels), Radix Paeoniae Alba (Paeonia 
lactiflora Pall.), Rhizoma Atractylodis Macrocephalae 
(Atractylodes macrocephala Koidz.), Poria (Poria cocos 
(Schw.) Wolf), Radix Glycyrrhizae (Glycyrrhiza uralensis 
Fisch.), Herba Menthae Haplocalycis (Mentha haplocalyx 
Briq.) and Rhizoma Zingiberis Recens (Zingiber officinale 
Rosc.). Chemical data of the eight herbs were collected 
from three chemical databases: the Traditional Chinese 
Medicine Systems Pharmacology (TCMSP [22]; http://
lsp.nwu.edu.cn/tcmsp​.php; accessed in August 2019) 
database; the Compound Reference Database (CRD; 
http://www.chemc​pd.csdb.cn/cmpre​f/defau​lt.html; 
accessed in August 2019) from the Chinese Academy of 
Sciences; and the Traditional Chinese Medicines Inte-
grated Database (TCMID [23], http://www.megab​ionet​
.org/tcmid​/, accessed in August 2019). The common 
amino acids and compounds with high molecular weight 
were filtered out from this study. The PubChem data-
base [24] (https​://pubch​em.ncbi.nlm.nih.gov/; accessed 
in August 2019) was used to standardise the names and 
obtain simplified molecular-input line-entry system 
(SMILES) information for all chemical data.

An increasing number of studies on TCM have found 
that compounds with favourable therapeutic effects 
in vitro may not perform well in vivo due to their low oral 
bioavailability (OB) [25]. In this research, Veber’s filter 
was used for the OB prediction [26], which meant that 
the number of rotatable bonds of a given compound had 
to be ≤ 10; at the same time, the topological polar surface 
area had to be ≤ 140 Å2 [27]. Veber’s filter was also widely 
used in absorption, distribution, metabolism, excretion 
(ADME) prediction models [28–30]. SwissADME [31] 
was used to calculate the molecular properties of the 
compounds by importing the SMILES information.

The protein targets of compounds from XYD were pre-
dicted using a similarity ensemble approach (SEA [32]; 

http://lsp.nwu.edu.cn/tcmsp.php
http://lsp.nwu.edu.cn/tcmsp.php
http://www.chemcpd.csdb.cn/cmpref/default.html
http://www.megabionet.org/tcmid/
http://www.megabionet.org/tcmid/
https://pubchem.ncbi.nlm.nih.gov/
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http://sea.bksla​b.org/), which is a chemical similarity 
searching-based prediction tool.

The predicted targets were enriched from the Kyoto 
Encyclopaedia of Genes and Genomes (KEGG) pathways 
using STRING [33] (http://strin​g-db.org/; version: 11.0) 
to create the targets–pathways interaction, which laid a 
foundation for the following network construction and 
analysis. The enriched pathways with false rate discovery 
(FDR) < 0.05 were used in the subsequent research.

TPT network construction
In order to further depict the relationship between the 
predicted targets, the TPT network was established on 
the one-mode targets–targets interaction basis that was 
transferred by Pajek software [34] from the two-mode 
“targets–pathways” relationship. Nodes of the TPT net-
work were visualised and analysed using Gephi 0.9.2 soft-
ware [35], which are referred to as protein targets. If two 
nodes are connected by an edge, this means they were 
both involved in at least one of the same pathways.

Key target analysis
We considered the TPT network as an integral network 
as a whole where XYD took effect. When a target was not 
disturbed by XYD directly, the relative pathways would 

be affected. The edges would then be affected by these 
pathways, finally resulting in a change of the whole net-
work. Hence, each selected target would have a different 
impact on the entire network.

Target restraint and network parameters
Firstly, considering the influence of the target on path-
ways and the convenience of calculation, we assumed the 
contribution of each target in the pathways to be consist-
ent. Therefore, if a pathway had Nj targets, the effect of 
one set-off target on the pathway was 1Nj

 , and the efficacy 
of the pathway became Nj−1

Nj
 after setting off the target. 

Conversely, if the set-off target was unrelated to the path-
ways, the efficacy of the unaffected pathways was 1.

To compute the efficacy of the edge, we needed to 
know which pathways the edge contained, whether these 
pathways were affected or not, and what the respective 
efficacy of the affected pathways was. The efficacy of the 
edge was equal to the product of the efficacy of all the 
pathways. Since the unaffected pathway efficacy was 1, 
the final efficacy of the edge was equal to the product 
of all affected pathways’ efficacy. For example, if an edge 
had p pathways, where t pathways were affected, the edge 
efficacy (EE) would be equal to N1−1

N1
× · · · ×

Nt−1

Nt
 . The 

Fig. 1  Technology roadmap

http://sea.bkslab.org/
http://string-db.org/
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length of the affected edges was 1EE [36], and the length of 
the unaffected edges was 1.

Network efficiency decrease (NED)
Network efficiency (NE) was calculated for every TPT 
network after restraining every target in the sequence 
[37]. NE was defined as the sum of the reciprocals of 
the shortest path lengths between all pairs of nodes and 
reflected the integrity of the whole network. The pro-
gramme of network efficiency calculation was written in 
Python 3.0 with a modified Dijkstra algorithm made by 
the authors. The importance of Ti can be measured by 
NEDi; i.e., NE0–NEi. All symbols are described in Table 1.

To illustrate the NED calculation within a network, a 
sample TPT network was constructed to show the calcu-
lation process.

Figure 2a shows the original network with seven targets 
and six pathways. We chose target C as our set-off tar-
get, shown in Fig. 2b. The relative pathways would also be 
affected. The extent of the effect depended on the target 
number in one pathway. Then, the PE of pathway a and 
pathway b decreased to 67% while the efficacy of pathway 
d and pathway e decreased to 50%. Details of the affected 
pathways information are shown in Table 2. 

In the following step, pathway efficacy was transferred 
into edge efficacy and the length of the edge. As shown 

in Table 3, every edge efficacy was calculated by the spe-
cific pathways in the edge and their corresponding PE. 
The length of the edge was equal to the reciprocal of the 
edge efficacy. Finally, a distance matrix was constructed, 
as shown in Table 4. Using a Dijkstra algorithm, the NE 
of the sample TPT network with target C restrained 
was calculated. The corresponding NED value would 
be obtained in the last step. In this sample network, 
NE0 = 13.83, NEtarget C = 8.60 and NEDtarget C = 5.23.

Targets–pathways–diseases (TPD) network construction
According to the TPT network and the corresponding 
analysis, we found relatively important targets from all 
predicted targets, and further analysed the pathways they 
focused on and the relative diseases. As a credible data-
base, the Kyoto Encyclopaedia of Genes and Genomes 
[38] (KEGG; http://www.genom​e.jp/kegg/pathw​ay.html) 
was employed to identify the human diseases using 
International Classification of Diseases, 11th Revision 
(ICD-11) classification. Herein, we built a targets–path-
ways–diseases directed network and got more significant 
pathways and diseases according to the network param-
eters. The network was produced using Cytoscape 3.7.0 
software [39]. The nodes represented the main targets, 
pathways and diseases. The edges indicated the relation-
ship between two different category nodes.

Table 1  List of symbols

Ti setting-off target i, Nj the number of targets in a pathway, t the number of affected pathways in an edge, G a set of nodes in a graph, m, n nodes in a graph, dmn the 
shortest path length between nodes m and n, NE0 original network efficiency, NEi network efficiency after setting off target i

Target Pathway efficacy (PE) Edge efficacy (EE) Length of edge (L) Network efficiency (NE) Network efficiency decrease 
(NED) value

Ti PE =
Nj−1

Nj
EE =

N1−1

N1
× · · · ×

Nt−1

Nt
Laffected =

1

EE
Lunaffected = 1 NEi =

∑

m�=n∈G

1

dmn
NEDi = NE0 − NEi

Fig. 2  a The sample TPT network; b the sample TPT network with target C restrained. The nodes represent targets and the edges represent 
pathways

http://www.genome.jp/kegg/pathway.html
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Text mining and statistical verification
After retrieving data from the TPT network via key target 
analysis, a network-based approach was employed to eluci-
date the main targets of a formula after passing a statistical 
test. Based on the co-occurrence matrix, text mining has a 
wide application for different purposes, such as integrating 
disease-gene associations [40] and extracting the known 
biology [41]. To collect the data of associations between 
XYD and the relevant targets in the existing literature, the 
rationality of the predicted target was further validated by 

testing the correlation between topological scores and co-
occurrence intensity. Due to the particularity of the Chi-
nese formula, research about XYD in the present study 
was mainly from the Chinese literature database, China 
National Knowledge Infrastructure (CNKI; https​://www.
cnki.net/; accessed in September 2019). We retrieved the 
number of relative literatures from CNKI by searching 
“FT = ‘逍遥散’*‘gene name’”(FT, full text; 逍遥散, the Chi-
nese name of XYD); for example, “FT = ‘逍遥散’*‘AKT1’”. 
For abstracts, we searched “AB = ‘逍遥散’ *‘gene name’”.  

Table 2  Information in the sample TPT network

Pathway 
Edge 

colour 

Targets Target number 
Original pathway 

efficacy 

PE with target C 

restrained (PE) 

a  ABC 3 100% 67%

b  BCE 3 100% 67%

c  BE 2 100% 100% 

d  CD 2 100% 50%

E  CF 2 100% 50%

F  FG 2 100% 100% 

Table 3  Edge efficacy and length of edges after setting off target C

Edge Affected edges Unaffected 
edges

AB AC BC BE CD CE CF FG

Pathway a a a, b b, c d b e f

EE 67% 67% 67%*67% 67%*100% 50% 67% 50% 100%

L 1.5 1.5 2.25 1.5 2 1.5 2 1

Table 4  Matrix of length of edge

M means two nodes are not connected directly in the Dijkstra algorithm

A B C D E F G

A M 1.5 1.5 M M M M

B 1.5 M 2.25 M 1.5 M M

C 1.5 2.25 M 2 1.5 2 M

D M M 2 M M M M

E M 1.5 1.5 M M M M

F M M 2 M M M 1

G M M M M M 1 M

https://www.cnki.net/
https://www.cnki.net/
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In graph theory, centrality could be applied to characterise 
the importance of the nodes in a network. Hence, we chose 
two centralities, degree centrality (DC) and betweenness 
centrality (BC), as two vital network parameters of our evi-
dence [42–44]. Using SPSS 24.0, we performed Spearman’s 
test on NED, DC and BC for both abstract and full-text 
searching.

Results
TPT network
XYD is made of eight herbs and a total of 1542 com-
pounds. After data processing, 839 sample chemicals 
exhibited better oral bioavailability. 347 targets were pre-
dicted for further analysis using the SEA method.

After enrichment analysis using STRING, a total of 155 
highly related pathways were identified with 279 relevant 

potential targets. Based on these data, a TPT network 
of targets–pathways interaction in XYD treatment was 
constructed, as shown in Fig. 3. Please refer to the sup-
plementary dataset for more detailed information about 
the compounds (Additional file 1: Chemicals data), puta-
tive targets (Additional file  1: Putative targets) and rel-
evant pathways (Additional file  1: Targets–pathways 
relationship).

Based on the TPT network and key targets analysis, 
we ranked the targets according to the NED value. We 
chose the top 10% of targets as the main targets that 
might have primary effects. Detailed information of the 
top 10% of targets is shown in Table 5. Please refer to 
Additional file 1: Final results for detailed information 
about all NED results.

Fig. 3  TPT network. Yellow nodes stand for subordinate targets; orange nodes stand for main targets; the size of the nodes stands for their NED 
value; grey lines stand for the associations between nodes based on pathways; i.e., two nodes are linked if they have at least one common pathway
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TPD network
According to the target–pathway interactions, the TPD 
network was constructed. We found main targets in 
134 pathways out of a total of 155 pathways. Eleven 
main pathways with an indegree of > 10 were identified. 
Detailed information of the main pathways is shown in 
Table  6. According to the indicator of the network, 05 
endocrine, nutritional or metabolic diseases, 20 develop-
mental anomalies, 02 neoplasms and 08 diseases of the 
nervous system with an indegree of > 20. In Fig.  4, blue 
circles represent the main targets, green hexagons repre-
sent the correlative pathways and red octagons represent 
the relevant diseases. The size of the nodes represents 
their degree centrality in the network. The most impor-
tant pathways (DC > 10) and four primary diseases are 
labelled. Blue lines represent the correlation between 

targets and pathways and green lines represent the links 
of pathways and diseases. Please refer to Additional file 1: 
Pathways–diseases relationship for detailed information 
about the pathways–diseases relationship.

Blue circles represent main targets; green hexagons 
represent correlative pathways and the most important 
cluster (DC > 10) is labelled; red octagons represent rel-
evant diseases with four more important nodes labelled; 
the size of the nodes represents their degree centrality in 
the network; blue lines represent the correlation of tar-
gets and pathways, and green lines represent the links of 
pathways and diseases.

Statistical verification
Spearman’s test showed significant results (two-tailed) 
in both full texts and abstracts with NED, DC and BC 
(p < 0.001). As shown in Table 7, NED had a better per-
formance in this statistical test than DC and BC, with a 
smaller p value and higher correlation coefficient. Please 
refer to Additional file 1: Co-occurrence verification for 
detailed information about the NED, DC and BC of all 
targets.

Discussion
TCM formulas always contain multiple herbs (multiple 
components) and exert a holistic influence through the 
“multi-component, multi-target, multi-effect” mecha-
nism [3]. It is the complexity of TCM that has led to the 
difficulty of studying it. Lack of information about active 
pharmacologic principles [45], the suboptimal quality of 
some herbal products [46] and a lack of clinical evidence 
[47] make TCM unable to meet the regulatory require-
ments set for modern drugs, which are now widely 
accepted throughout the world. However, despite being 
questioned, TCM, with 5000  years of inheritance, has 
never been eliminated since its inception and, presently, 

Table 5  Top 10% of NED targets

NE0 = 20,928.37

Gene NE NED Gene NE NED

AKT1 20,333.65 594.72 PTGS2 20,708.19 220.17

PIK3R1 20,346.31 582.06 IGF1R 20,712.46 215.90

NFKB1 20,451.82 476.54 VEGFA 20,721.39 206.97

RELA 20,471.79 456.58 STAT1 20,730.23 198.14

PLCG1 20,573.21 355.16 MET 20,747.77 180.60

EGFR 20,588.51 339.85 CDK6 20,753.56 174.80

GSK3B 20,608.93 319.43 MMP9 20,776.22 152.15

JUN 20,612.22 316.14 RXRA 20,776.68 151.69

CREB1 20,630.58 297.78 HDAC1 20,777.35 151.02

IKBKG 20,642.31 286.06 CYP3A4 20,778.75 149.62

TNF 20,664.10 264.26 SLC2A1 20,780.26 148.11

FOS 20,665.18 263.19 PTK2 20,783.19 145.17

EP300 20,696.71 231.66 MAOA 20,785.74 142.63

CAMK2B 20,696.78 231.59 MAOB 20,785.74 142.63

Table 6  Pathways with high indegree value

FDR means false discovery rate

Pathway ID Pathway name FDR Indegree

hsa05200 Kaposi’s sarcoma-associated herpesvirus infection 2.23 × 10−16 21

hsa05167 Human papillomavirus infection 1.87 × 10−7 17

hsa05165 Hepatitis B 1.16 × 10−6 17

hsa05161 PI3K–Akt signalling pathway 3.96 × 10−6 14

hsa04151 Prostate cancer 3.96 × 10−6 14

hsa05215 HTLV-I infection 2.07 × 10−8 12

hsa05166 T cell receptor signalling pathway 2.15 × 10−5 12

hsa04660 Ras signalling pathway 2.17 × 10−8 12

hsa04014 TNF signalling pathway 2.60 × 10−6 12

hsa04668 MAPK signalling pathway 1.46 × 10−6 11

hsa04010 Fluid shear stress and atherosclerosis 3.96 × 10−6 11
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1.5 billion people still use TCM as healthcare supple-
ments or preventive medicine [48], suggesting that it still 
has strong vitality and significant demand. Hence, how to 
fulfil the regulatory requirements that are set for modern 
medicine is the most critical problem that TCM is cur-
rently facing. One of the core actions to tackle the chal-
lenge is to investigate the pharmacological mechanisms 
of TCM.

In molecular biology, one target could affect multiple 
pathways, and each pathway could be affected by mul-
tiple targets. By combining biological information with 
network analysis, we proposed a novel network param-
eter to evaluate the primary nodes in the TPT network. 
We considered these targets as main targets, which play 
dominant roles in this network.

In this study, we assumed that a set-off target could not 
be disturbed by XYD. After restraining the set-off target, 
we obtained a new TPT weighted network. Compared 
with the original TPT network, the effectiveness of the 
pathways associated with the target was reduced from a 
biological point of view. In the TPT network, all edges 
were composed of different pathways, and the decrease 
of pathway efficacy led to the decrease of edge efficacy. 
This change also led to the increase of edge length, and 
the network became sparser than the original network, 
eventually leading to the decrease of network efficiency. 
Finally, we got a network efficiency decline (NED) value 
from every new TPT network and compared this value to 
evaluate the influence of each target on the original net-
work. From a statistical perspective, Spearman’s test of 
NED showed better performance than DC and BC did, 
indicating that NED is a better indicator.

Generally, the association of the top ranking (main 
targets) group and relevant pharmacological studies of 
XYD have been extensively discussed in the existing lit-
erature. For instance, AKT1 (threonine-protein kinase), 
which plays a role in cell growth, survival, metabolism, 
carcinogenic transformation and other biological pro-
cesses, takes part in the alleviative effect of XYD on the 
autophagy of granulosa cells induced by chronic unpre-
dictable mild stress (CUMS) in vivo [48], affecting follicle 

Fig. 4  TPD network. Blue circles represent main targets; green hexagons represent correlative pathways and the most important cluster (DC > 10) is 
labelled; red octagons represent relevant diseases with four more important nodes labelled; the size of the nodes represents their degree centrality 
in the network; blue lines represent the correlation of targets and pathways, and green lines represent the links of pathways and diseases

Table 7  Results of Spearman’s correlation test

** Means that the correlation coefficient is significant at the 0.001 level (two-
tailed), while * shows significance at the 0.01 level (two-tailed)

NED DC BC

Full text Correlation coefficient 0.388** 0.346** 0.316**

p-value 0.000 0.000 0.000

Abstract Correlation coefficient 0.230** 0.202* 0.182*

p-value 0.000 0.001 0.002
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development [16, 49]. It is also associated with the ame-
lioration of stress-induced abnormal levels of insulin, 
blood glucose, cholesterol (CHOL), low density lipopro-
tein cholesterol (LDL-C) and high density lipoprotein 
cholesterol (HDL-C) [50]. Cyclic adenosine monophos-
phate-responsive element-binding protein 1 (CREB1), 
as a representative indicator of the hippocampus of 
depressed rats, was reported to implicate depression via 
down-regulation, and thus was considered as the poten-
tial target of XYD treatment [51]. Tumour necrosis factor 
(TNF) is related to a TNF-α pathway, which was found 
to be down-regulated by XYD to exert anxiolytic-like 
effects on chronic immobilization stress-induced anxi-
ety [52]. FOS (proto-oncogene c-Fos), which is closely 
related to signal transduction, has shown to be an indica-
tor for the potential of XYD to regulate the activity of the 
sympathetic nervous system, attributed to the increased 
expression of FOS during XYD treatment [16].

In the end, by analysing the topological properties of 
the TPD network, we found that XYD could play a thera-
peutic role in many complicated diseases, such as in 05 
endocrine, nutritional or metabolic diseases, 20 develop-
mental anomalies, 08 diseases of the nervous system and 
two neoplasms. For instance, there are several important 
pathways included in the five endocrine, nutritional or 
metabolic diseases, such as the fluid shear stress [53] and 
atherosclerosis pathway [54], the prostate cancer pathway 
[55], the Ras signalling pathway [56] and the mitogen-
activated protein kinase (MAPK) signalling pathway [57], 
etc. The relationships between pathways and diseases 
demonstrated multiple pathways in eight diseases of the 
nervous system, including the fluid shear stress [58] and 
atherosclerosis pathway [59], the prostate cancer pathway 
[60], the Ras signalling pathway [61] and the T cell recep-
tor signalling [62] pathway, etc. Also, eight of the eleven 
important pathways are mentioned in two neoplasms. 
Currently, there are not sufficient studies on XYD related 
to developmental anomalies, which could be a novel 
therapeutic area based on our research.

For the top-ranking group, we further identified active 
compounds related to the main targets based on the 
SEA results. Several specific compounds show effects 
on multiple targets in this group. For example, Querce-
tin (Pubchem CID: 5280343), derived from Radix Gly-
cyrrhizae (Glycyrrhiza uralensis Fisch.) and Radix 
Bupleuri (Bupleurum Chinese DC.), can take effect on 
AKT1, PIK3R1, EGFR, GSK3B, CAMK2B, IGF1R, MET, 
MMP9, PTK2 and MAOA. Ferulic acid (Pubchem CID: 
709), derived from Radix Angelicae Sinensis (Angelica 
sinensis (Oliv.) Diels) and Herba Menthae Haplocaly-
cis (Mentha haplocalyx Briq.), is effective for NFKB1, 
FOS, EP300, MMP9, MAOA, JUN, MAOB, IKBKG and 
MET. Similarly, apigenin (Pubchem CID: 5280443) from 

Herba Menthae Haplocalycis (Mentha haplocalyx Briq.), 
Coniferyl ferulate (Pubchem CID: 6441913) from Radix 
Angelicae Sinensis (Angelica sinensis (Oliv.) Diels) and 
6-dehydrogingerdione (Pubchem CID: 5316449) and 1, 
2-dihydrocurcumin (Pubchem CID: 5372374) from Rhi-
zoma Zingiberis Recens (Zingiber officinale Rosc.) are all 
related to more than five main targets. It would be signifi-
cant work to investigate the effects of these compounds 
on related targets by further pharmacological experi-
ments in terms of the importance of these compounds in 
the decoction.

Meanwhile, 11 pathways were considered to be impor-
tant in our study. Some of the pathways have been shown 
to be associated with pharmacologic mechanisms of 
various diseases. Generally, XYD can treat liver diseases 
through the galactose metabolism pathway [63], the 
hepatitis B pathway [64], the PI3K–Akt signalling path-
way [65] and the MAPK signalling pathway [66–69]. 
Pathway enrichment analyses also demonstrated XYD 
to be involved in the regulation of multiple pathways of 
inflammatory, including the kaposi sarcoma-associated 
herpesvirus infection pathway [70], the T cell receptor 
signalling pathway [71] and the tumour necrosis factor 
pathway. Besides, our study verified that XYD has phar-
macologic activities against cancer through the kaposi 
sarcoma-associated herpesvirus infection pathway [72], 
the human papillomavirus infection pathway [73], the 
PI3K–Akt signalling pathway [65] and the Ras signalling 
pathway [74]. Due to the complexity of TCM formulas, 
these herbs with different targets and pathways can act 
on various aspects of the disease through systems.

Several limitations of this study should be noted. 
Firstly, the SEA method, based on the two-dimensional 
(2D) structures (SMILE information) of compounds, 
might generate the same potential targets of the isomeric 
compounds. Therefore, it is not comprehensive enough 
to predict solely using the SEA method or any other 
chemical similarity searching-based prediction method 
when there are some isomeric compounds in the study. 
Secondly, further work should conduct an experimen-
tal verification to validate the conclusions drawn in this 
study.

Conclusions
By combining the biological processes displayed in the 
network and the topology parameters of the TPT net-
work itself, it is assumed that a single target can cause 
a decrease in network efficiency of the overall network 
to determine the contribution of the assumed target to 
the network. With this approach, further statistical veri-
fication demonstrated that the results obtained from the 
NED values were consistent with the research tendency 
of the XYD therapeutic targets, and the performance 
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was better than those obtained from DC and BC meth-
ods that have been widely used. We selected the top 10% 
of targets as the main targets and found that they act on 
134 of the 155 pathways. As a result, we inferred that the 
main targets were highly associated with the underlying 
mechanism of XYD. Some of these targets have been 
validated as targets for XYD by evidence-based experi-
mental studies. Herein, the network-based method pro-
vided a facile and reliable strategy for uncovering the 
potential therapeutic targets of XYD.

TCM generally lacks evidence-based medical stud-
ies; therefore, the mechanism of actions and material 
connotations are mostly unclear.  These issues are sig-
nificant barriers on the journey of transformation into 
modern drugs. As a new analytical method, network 
pharmacology has been widely employed in the inves-
tigations of the mechanism of actions and material 
basis of TCM. The present study has identified the core 
group of targets among many potential ones based on 
the holistic and systematic actions of TCM, which can 
bring insight to the efforts of modernising TCM and 
the methodology of studying various TCM formulas.
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