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Abstract 

Ethanol precipitation is a purification process widely used in the purification of Chinese medicine concentrates. This 
article reviews the research progress on the process mechanism of ethanol precipitation, ethanol precipitation pro-
cess application for bioactive component purification, ethanol precipitation and traditional Chinese medicine quality, 
ethanol precipitation equipment, critical parameters, parameter research methods, process modeling and calculation 
methods, and process monitoring technology. This review proposes that ethanol precipitation technology should be 
further developed in terms of five aspects, namely, an in-depth study of the mechanism, further study of the effects 
on traditional Chinese medicine quality, improvement of the quality control of concentrates, development of new 
process detection methods, and development of a complete intelligent set of equipment.
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Background
In the 1950s, a batch of modern dosage forms of tradi-
tional Chinese medicine (TCM) appeared in the climax 
of national dosage form reform, such as tablets, capsules, 
injections, granules, and mixtures. To meet the higher 
refining requirements of these dosage forms for the TCM 
systems, water extraction and ethanol precipitation (EP) 
technologies have been widely used in the production of 
TCM. The ethanol precipitation process (EPP) has many 
advantages, such as simple operation, easy amplification, 
and solvent safety. The EPP can effectively remove highly 
polar molecules such as sugars, salts, and proteins, and it 
is beneficial to reduce the dosage [1]. In the production 
of TCM injections, multiple EP steps are often used to 
remove impurities entirely. Alkaline EP can remove tan-
nins and further improve the safety of TCM injections 

[2]. In the Chinese Pharmacopoeia (2015 Edition) [4], 
there were 274 kinds of Chinese herbal medicines involv-
ing EPP, accounting for 18.4% of the 1493 prescriptions 
and single formulations [3, 4]. At present, the EPP also 
has disadvantages, including severe encapsulation loss, 
the low heat transfer efficiency of equipment, long stand-
ing time for precipitation, high energy consumption, and 
low efficiency of slag removal.

EP is often the first refining process or even the only 
refining process after the extraction of TCMs. The qual-
ity of the EPP has a significant impact on the difficulty 
of follow-up preparations and the quality of the final 
drug. In recent years, with the continuous improvement 
of Chinese medicine standards, the EPP has attracted 
much attention from academic and industrial circles. 
This article mainly reviews the research progress on the 
process mechanism of EPP, EPP application for bioactive 
component purification, EP and TCM quality, EP equip-
ment, critical parameters, parameter research methods, 
process modeling and calculation methods, and process 
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monitoring technology and proposes future development 
directions.

EPP mechanism
Generally, after adding ethanol to a TCM concentrate, 
the solubility of some strongly polar components and 
macromolecular components decreases in the system, 
causing precipitation. In a mixture of water and ethanol, 
the solubility of monosaccharides and oligosaccharides 
such as d-glucose, d-fructose, sucrose, maltose, raffinose, 
trehalose, and cyclodextrin has been reported [5–8]. 
Overall, the solubility of sugar components decreases 
with decreasing temperature or increasing ethanol con-
tent, which shows that properly increasing the etha-
nol concentration of the supernatant and lowering the 
standing temperature is beneficial to remove more sugar 
impurities. Bouchard et al. also reported solubility data of 
polysaccharides of inulin and dextran [5]. Ku et al. veri-
fied that polysaccharides with higher degree of polymeri-
zation were easier to precipitate in the mixed solvent of 
ethanol and water [9]. Boulet et al. found protein precipi-
tated at different ratios when pH value varied in the mix-
ture of ethanol and water. More protein precipitated as 
ethanol content in the mixed solvent increased [10].

There have been many studies on the solubility of TCM 
active components in water and ethanol. Partial solubility 

data are shown in Table  1. In general, the solubility of 
moderately polar active components in ethanol is gen-
erally higher than the solubility in water, indicating that 
these components theoretically will not precipitate dur-
ing EPP.

However, the loss of active components during EPP 
has been observed by many researchers [30]. The authors 
believe that there are at least three reasons for the loss 
of active components, including encapsulation loss, pre-
cipitation loss, and degradation loss (Fig. 1). During EPP, 
the encapsulation loss can result from incomplete mixing 
of the ethanol and the concentrate, which can result in 
agglomeration and liquid encapsulation. Therefore, the 
coating phenomenon results in part of the active com-
ponents not being dissolved in ethanol, leading to partial 
loss. The insufficient contact between ethanol and con-
centrate is caused by the large density difference between 
these solutions, the large viscosity of the concentrate, and 
the large amount of precipitate produced during EPP. 
Concentrate with higher dry matter content probably led 
to more encapsulation loss of active components [31]. 
The encapsulation loss is greatly affected by concentrate 
properties, EP equipment and operation conditions, and 
it will be reduced after a long standing time.

When the author studied the EPP of Danshen Chuanx-
iong mixed decoction concentrate [32], it was found 

Table 1 Solubility of some TCM active components in water and ethanol

Component category Active component Solubility in water Solubility in ethanol Unit of solubility Temperature/ °C References

Phenolic acids Rosmarinic acid 1.35 × 10−2 2.68 × 10−1 mol/mol 20 [11]

Gallic acid 1.07 23.7 g/100 g 25 [12]

Gentisic acid 2.20 45.5 g/100 g 25 [12]

Phenols 2-Naphthol 0.00 2.49 × 10−1 mol/mol 20 [13]

Catechol 7.52 × 10−2 3.57 × 10−1 mol/mol 20 [13]

Hydroquinone 1.02 × 10−2 1.88 × 10−1 mol/mol 20 [13]

Curcumin 2.15 × 10−8 6.62 × 10−4 mol/mol 20 [14]

trans-Resveratrol 2.90 × 10−6 1.56 × 10−2 mol/mol 20 [15]

Flavonoids Apigenin 7.00 × 10−7 2.44 × 10−4 mol/mol 15 [16]

Baicalein 6.63 × 10−6 1.04 × 10−3 mol/mol 20 [17]

Chrysin 1.26 × 10−5 6.89 × 10−3 mol/mol 20 [18]

Genistein 5.30 × 10−6 3.74 × 10−2 mol/L 25 [19]

Luteolin 1.75 × 10−6 1.88 × 10−3 mol/mol 25 [20]

Hesperetin 2.40 × 10−6 7.30 × 10−2 mol/L 20 [21]

Hesperidin 1.42 × 10−7 3.08 × 10−5 mol/mol 20 [22]

Naringenin 6.62 × 10−7 9.20 × 10−3 mol/mol 20 [23]

Naringin 9.76 × 10−7 3.98 × 10−5 mol/mol 20 [24]

Daidzin 4.10 × 10−6 3.97 × 10−4 mol/mol 20 [25]

Daidzein 6.08 × 10−8 2.70 × 10−4 mol/mol 20 [26]

Alkaloids Piperine 1.07 × 10−5 8.99 × 10−3 mol/mol 25 [27]

Coumarins Osthole 4.86 × 10−7 1.75 × 10−2 mol/mol 20 [28]

Isoimperatorin 7.42 × 10−7 3.77 × 10−3 mol/mol 20 [29]



Page 3 of 17Tai et al. Chin Med           (2020) 15:84  

that the total content of danshensu and salvianolic acid 
B in the supernatant and precipitation after EPP was 
less than the total amount in the concentrate. However, 
the content of lithospermic acid in the supernatant and 
precipitation was significantly higher than that in the 
concentrate. This phenomenon indicates that the active 

components may be degraded or polymerized in the 
supernatant, resulting in degradation loss.

The dissociation constant values of salvianolic acids 
in several liquid–liquid equilibrium systems were deter-
mined [33], which verified that phenolic acids often exist 
in medicinal plants in the form of phenolic acid salts 
according to the pH value of concentrate. The solubility 

a Encapsulation loss. b Precipitation loss. c Degradation loss.

Concentrate

Concentrate

Active components with small solubility in supernatant

Active components with large solubility in supernatant

Concentrate

Supernatant

Precipitate

Supernatant

Precipitate

Supernatant

Precipitate

a

b

c

Active components without degradation in EPP
Active components degraded in EPP
Active components generated in EPP

Ethanol 
precipitation

Ethanol 
precipitation

Ethanol 
precipitation

Fig. 1 Loss mechanism of active components



Page 4 of 17Tai et al. Chin Med           (2020) 15:84 

of phenolic acid salts in the supernatant is usually lower 
than that of phenolic acid molecules, which is the reason 
for the precipitation loss of phenolic acids.

Three types of active component loss may exist simul-
taneously in an EPP. Degradation loss can be determined 
by comparing the total amount of an active component 
before and after EPP. For an active component with 
large solubility in the mixed solvent of water and etha-
nol, encapsulation loss probably exists when some of this 
active component is found in the precipitate. However, it 
is still difficult to distinguish between precipitation loss 
and encapsulation loss when the solubility of the active 
component is not very large.

EPP application for bioactive component 
purification
EPP is a conventional purification technology for bioac-
tive components in TCMs, such as alkaloids, flavonoids 
[30], anthraquinones [34], organic acids, polysaccharides, 
and proteins. Polysaccharides and proteins are usually 
collected from the precipitate of EPP. The polysaccha-
rides of TCMs may possess antioxidant activity [35, 36], 
anti-tumor activity [37], immunomodulatory effects [38], 
and hepatoprotective effect [39]. By adjusting the ethanol 
concentration in supernatant, polysaccharides with dif-
ferent molecular weight distributions can be obtained. 
The general rule is that higher ethanol concentration in 
supernatant results in the precipitation of polysaccha-
rides with smaller molecular weights. Therefore, EPP is 
also widely used in the grading of polysaccharides [40]. 
Alkaloids, flavonoids, organic acids, saponins, or other 
active components of TCMs are usually enriched in the 
supernatant after EPP. At most occasions, a mixture of 

these active components and other components is pre-
pared. Therefore, EPP is used to prepare the so-called 
“total alkaloids”, “total flavonoids”, “total phenolic acids”, 
or “total saponins”. EPP is also reported in the precipita-
tion of plant DNA [41], especially in the DNA barcoding 
identification of Chinese medicinal materials.

EP and TCM quality
In order to ensure the safety and effectiveness of TCMs, 
pharmacodynamic indices are widely used in the research 
of the manufacturing processes of TCMs. Compared with 
physical and chemical indices, pharmacodynamic indices 
can reflect the efficacy as a whole for TCMs. Some works 
on the relationship between EPP and pharmacodynamic 
indices are listed in Table  2. There are more than ten 
pharmacodynamic indices were reported in the evalua-
tion of EP products, such as analgesic effect, anti-hyper-
tensive effect, antipyretic, anti-inflammator, and so on.

Many researchers found that pharmacodynamic indi-
ces changed little after EPP. It indicated that EPP could 
probably reduce daily dosage of the preparation with-
out lowering its efficacy. Drug efficacy was significantly 
enhanced after EPP in some published works [50, 52, 54]. 
It means that active components were enriched after EPP. 
Some researchers found that pharmacodynamic indi-
ces remarkably improved when the apparent content of 
ethanol reached about 75% [50, 54]. However, Du et  al. 
observed that its effects of improving sleep are weakened 
after EPP [55]. The possible reason was that some active 
components lost in EPP because of precipitation, degra-
dation, or encapsulation. The active components lost in 
EPP may possess a direct or synergistic drug efficacy.

Table 2 Relationship between EPP and pharmacodynamic indices

Medicinal materials or compound preparations The pharmacodynamic index changes after EPP References

Wubie granule intermediates No significant difference [42]

Yanshuning compound No significant difference [43]

Zhuang Medicine Baijin granules No significant difference [44]

Dingtongning granules No significant difference [45]

Changkang granules No significant difference [46]

Eryan Huguo decoction No significant difference [47]

Xikebao decoction No significant difference [48]

Shenqi Sherong pills No significant difference [49]

Gualou-Xiebai extracts Antioxidant activity was enhanced [50]

Lidan Paidu prescription No significant difference [51]

Prunella vulgari Anti-hypertensive effect was enhanced [52]

Scutellariae radix extract After EP twice, antipyretic and anti-inflammatory effects were weakened 
compared with EP once

[53]

Chimonobambusa quadrangularis Antioxidant activity was enhanced [54]

Guizhi Zhumian capsule Sleep improvement function was reduced [55]
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Overall, most works showed that EPP can reduce daily 
dosage of TCM preparation without significantly lower 
drug efficacy. However, EPP is not suitable for some 
TCMs. Ethanol content in EP supernatant should be 
optimized for keeping or enhancing drug efficacy.

EP equipment
EPP is commonly carried out in an EP tank in the 
industry, and its schematic diagram is shown in Fig. 2. 
The concentrate and ethanol in the EP tank can be 
mixed either by mechanical agitation or air agita-
tion; the former is widely used [56]. The advantage of 
air agitation in an EP tank is that there are no moving 
parts in the tank, and the possibility of equipment fail-
ure is slight. The disadvantage is that the air will cause 
evaporation and loss of ethanol [57]. If the EP tank is 
provided with a jacket, it can be cooled by refrigerat-
ing with low-temperature liquid. If the EP tank is not 
provided with a jacket, it can be moved into a refrig-
erated room for refrigeration. After the EP supernatant 
is collected, the EP precipitation is discharged from the 
slag outlet.

At present, the main improvement directions of 
EP equipment are to improve the mixing effect of the 
concentrate and ethanol and to reduce the difficulty 
of slagging after EPP. The authors used a micromixer 
to continuously mix the concentrate and ethanol to 
achieve a continuous steady-state process during the 
ethanol addition process (Fig.  3) [58]. This method 
can be used to control the amount of ethanol addition 

by adjusting the flowrates of ethanol and concentrate. 
The encapsulation loss of active components were also 
effectively reduced [31]. In conventional equipment, 
ethanol is added slowly and stirred quickly to reduce 
encapsulation loss. For the micromixer, the faster 
the ethanol is added, the better the mixing effect, and 
time can be saved. Yu et  al. [59] used a pressure-type 
mechanical atomization device to atomize the concen-
trate and ethanol to improve mixing effect. Changing 
the position of the agitator or improving the structure 
of the paddle can also improve the mixing effect [60, 
61]. Adding a shear agitator and a slag outlet at the bot-
tom of the EP tank can reduce manually clean precipi-
tation and improve the efficiency of slag removal [62]. 
These improved EP equipment will be more widely 
used in the future.

Critical parameters and optimization methods 
of the EPP
Table  3 lists the experimental design methods, optimi-
zation goals, and critical factors, based on more than 
70 studies reported about the EPP in the past 10  years. 
Researchers mainly use single factor design, orthogonal 
design, fractional factorial design, and Plackett–Burman 
design to determine the critical factors of EPP. Compared 
with single factor design and orthogonal design, frac-
tional factorial design and Plackett–Burman design can 
use only a few experiments to explore the influence of 
many parameters.

The frequency of each critical factor in Table 3 is listed 
in Table 4. Several factors, such as the density, concentra-
tion ratio, concentration, water content, and solid content 
of the concentrate, can reflect the amount ratio between 
the solid and solvent in the concentrate. Lower solvent 
content of concentrate, higher amount of ethanol, and 
higher concentration of ethanol all lead to a higher etha-
nol content of the EP supernatant. The ethanol content of 
EP supernatant affects the solubility of the components 

a Material entrance. b Agitator. c Tank body. d Liquid outlet. e Rotary pipe. f Slag 

discharge port 

a

c
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f

b

Fig. 2 Schematic diagram of EP equipment with mechanical 
agitation

Fig. 3 The appearance of EP micromixer
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in the concentrate, so the above factors are often criti-
cal. The standing temperature is also often considered a 
critical parameter, mainly because temperature affects 
solubility. In a few pieces of literature, the stirring speed 
and ethanol flowrate are also considered critical param-
eters. From the above mechanism analysis, it can be seen 
that when the concentration of concentrate is high, it is 
difficult to mix the ethanol and concentrate completely. 
A high stirring speed or slow ethanol flow rate is favora-
ble for mixing, so it may also become a critical param-
eter. Many researchers have found that the standing time 
also has a significant effect on the effect of EPP, probably 
because the concentrate encapsulated in the precipitate 
can gradually dissolve after standing for a long time, 
thereby changing the composition of the supernatant.

According to the researches shown in Table 3, the Ishi-
kawa diagram of the EPP was sorted out, as shown in 
Fig. 4. This diagram involves many factors, such as etha-
nol, concentrate, ethanol addition, environment, equip-
ment, standing, and stirring.

Many studies have considered the density, water con-
tent, and solid content of the concentrate. However, the 
differences between different batches of concentrate are 
mainly reflected in the content of each component in 
the total solid and other physical and chemical proper-
ties except density. There are few studies on these factors. 
Zhang et al. [131] screened out the critical properties of 
the concentrate of the first EP of Danshen injection by 
stepwise regression and partial least square method. The 
results showed that the pH and caffeic acid content of 
the concentrate are the critical parameters affecting the 
phenolic acid content in the supernatant of the second 
EPP. Furthermore, Yan et al. [132] found that the reten-
tion rate of phenolic acids in the second EPP of Guanx-
inning injection was mainly affected by the contents 
of danshensu, caffeic acid, and salvianolic acid B in the 

concentrated supernatant of the first EPP. These research 
findings further indicate that the quality of the superna-
tant is affected by the properties of EP raw materials.

There are many process parameters or concentrate 
properties that may affect EP results. However, the 
parameters of EPP are usually limited in narrow ranges 
in industry. Therefore, the quality control of concentrates 
is very important to keep batch-to-batch consistency of 
supernatants. By improving the quality control of decoc-
tion pieces and upstream processes of EPP, the quality of 
concentrate can be controlled within a proper range to 
promote the quality of the EPP.

Modeling and calculation of the EPP
Semimechanical modeling
Assuming that the concentrate is composed of water and 
total solids, there is no water in EP precipitation, and the 
mass fraction (φ) of ethanol in the supernatant solvent is 
defined in Eq. (1) [73]:

where ECe refers to the mass fraction of ethanol used 
in EPP, ECR refers to the mass ratio of ethanol and the 
concentrate, and WCc refers to the water content of the 
concentrate. The content of saturated components in the 
supernatant is also their solubility (S), which is defined in 
Eq. (2) [32]:

where Sw refers to the solubility of the component in pure 
water, and α refers to the parameter to be fitted.

Organic acids may exist in EP systems in molecular 
form and salt form. If precipitation loss occurs, it may 
be because the organic acid salts are saturated in the 
supernatant. The relationship between the pKa value, 
the solubility of the organic acid salt (SA), the pH of the 
supernatant, the total concentration (CA) of the organic 
acid and organic acid salts in the supernatant is shown in 
Eq. (3), which can also be used to calibrate the pKa value 
of phenolic acid and solubility of phenolic acid salts [32].

Till now, the mechanism research of EPP is not in-
depth. Accordingly, the current semimechanical models 
are relatively simple. There are no reports on mechanism 
model of EPP.

Statistical modeling
Single factor design, orthogonal design, central compos-
ite design, and Box–Behnken design are often used to 

(1)φ =
ECe × ECR

WCc + ECR

(2)S = Sw × (1− φ)α

(3)
CA

SA
= 10

(pKa−pH)
+ 1

Table 4 The frequency of critical factors

No. Critical factors Research frequency

1 Φ 36

2 ρ 31

3 t 16

4 DE 12

5 Ce 9

6 T 8

7 Cc 5

8 CR 4

9 SS 4

10 WCc 4

11 SCc 3

12 Others 6
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optimize the parameters of the EPP. Compared with sin-
gle factor design, response surface design can consider 
the interaction between factors. With the same number 
of factors, response surface design has more experiments 
than orthogonal design. Still, after modeling, response 
surface design can obtain the optimal global condition in 
the research scope. Central composite design and Box–
Behnken design usually adopt polynomial modeling after 
obtaining the experimental data. The form is as follows 
Eq. (4):

where Y refers to the evaluation index of the EPP, b0 
refers to a constant term, bi, bii, and bij refer to regression 
coefficients, and m refers to the number of factors in the 
experimental design. The quality of the EPP can be evalu-
ated by the index component content, component reten-
tion rate, impurity removal rate, total solid removal rate, 
and pharmacodynamic index [102]. Modeling can be 
simplified by using methods such as stepwise regression. 
Polynomial models are easy to build and explain. How-
ever, the models are difficult to be extended to another 
EP equipment or another batch of concentrate.

Parameter optimization calculation
The largest multi-index comprehensive score, largest sat-
isfaction function value, and all indexes falling within the 
preset ranges are commonly used optimization objec-
tives. The multi-index comprehensive scoring method 
and the satisfaction function can be used to address dif-
ferent dimensions of process evaluation indicators, but 
the subjectivity is large when determining weights. When 
there is a strong correlation between the evaluation 
indexes of the EPP, the use of the satisfaction function 
should be carefully performed [133]. A group of optimal 
parameter combinations is often obtained to maximize 
the comprehensive score of multiple indicators or the 
satisfaction function. Nevertheless, this approach is not 
conducive to flexible adjustment of process parameters in 
the actual production of multiple batches.

When using all the indexes that fall into the preset 
ranges as the parameter optimization target, the opti-
mized process parameter ranges can be calculated gener-
ally. This research method is in line with the design space 
concept of quality by design (QbD) [134]. The parameter 
variation within the design space is not considered as a 
process change, so the approach is beneficial to pharma-
ceutical companies not only to increase production flex-
ibility but also to reduce unnecessary supervision. The 
optimal parameter range can be obtained by using the 

(4)

Y = b0 +
∑m

i=1
biXi +

∑m

i=1
biiX

2

i

+

∑m−1

i=1

∑m

i=i+1
bijXiXj

overlapping method and the probability-based method 
[135]. The probability-based method quantifies the assur-
ance of EPP quality with probability values in the opti-
mization of parameter ranges. The probability values 
calculated by the experimental error simulation method 
[135] and the parameter disturbance simulation method 
[136] are more accurate.

Yan et  al. established a mathematical model between 
the contents of active components in concentrates, the 
process parameters, and the properties of supernatant by 
adopting a feedforward control strategy. Then, according 
to the contents of active components in the concentrate, 
the parameters of the EPP of Danhong injection were 
adjusted. This method can improve the consistency of 
the active component contents in the supernatant [70]. 
The authors noticed that the refrigeration temperature 
for EP in the production of pharmaceutical companies 
is affected by the season. Therefore, it is proposed to set 
the refrigeration temperature as the noise parameter and 
optimize the range of other easily controlled parameters 
to reduce the impact of noise parameter fluctuation [74].

Operating process parameters with design space, vary-
ing process parameters according to the change of con-
centrate quality, or adjusting controllable parameters to 
lower the effects of noise parameters can all improve the 
batch-to-batch consistency of supernatant quality after 
EPP.

The monitoring method of the EPP
In the production of TCM, an ethanol meter is widely 
used to detect the apparent ethanol content of the super-
natants on the spot. This method is simple and practi-
cal, but only the density information of the liquid can be 
obtained.

The monitoring technology and indicators of EPP in 
the literature are listed in Table 5. At present, near-infra-
red spectroscopy (NIR) is widely used due to its simple 
sample preprocessing, fast speed, losslessness, large 
amount of information collected, etc. In general, partial 
least square regression and other methods can be used 
to correlate the NIR information with the contents of 
index components/major components in the superna-
tant. Spectral preprocessing methods have a great influ-
ence on the modeling results. Common preprocessing 
methods include standard normal variate, multiplicative 
scatter correction, Savitzky-Golay smoothing, Norris-
Williams smoothing, first derivative, second derivative, 
etc. By establishing a multivariate statistical process con-
trol model, the control limit of the process operation 
statistics (such as Hotelling  T2, squared prediction error, 
and principal component score) is set up, and the process 
trajectory diagram is drawn. The multivariate statistical 
process control model can monitor the EPP in real-time 
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and sensitively judge the normal operation state of the 
process. The establishment of a multivariate statistical 
process control model is helpful further to implement the 
feedback control of the EPP.

In general, spectrum of EP system is rich in informa-
tion. The process monitoring method based on spectrum 
can not only judge the process state, but also quantify the 
concentrations of specific components in combination 
with chemometrics.

Conclusions and perspective
Based on the extensive review, great progress has been 
made in the study of process parameters, optimiza-
tion methods, and process monitoring methods of EP 
of TCM. Problems still exist in industrial EP, including 

the loss of active components, the long time necessary 
for refrigeration, the quality difference between batches 
of EP supernatants, etc. In the future, EP technology 
research can be carried out from the following directions:

Further study on the mechanism of EP
The difference in concentrates between batches is mainly 
reflected in the fluctuation of the content of the com-
ponents. At present, there have been reports about the 
influence of ethanol content in the supernatant on the 
solubility of Chinese herbal medicinal components. Nev-
ertheless, there is no study on the influence of the con-
tent of Chinese herbal medicinal components on the 
solubility of other components. Therefore, it is not yet 
possible to describe the effect of the composition change 
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Fig. 4 Ishikawa diagram analysis for EPP

Table 5 The monitoring technology and process indicators of EP

Medicinal materials 
or compound preparations

Detection 
technology

Monitoring indexes References

Danshen NIR The concentration of danshensu and protocatechualdehyde, and total solid content [137]

Danshen NIR The concentration of six active components such as danshensu, solid content, scores of 
the first principal component, Hotelling  T2, squared prediction error

[138]

Rukuaxiaopian NIR The concentration of danshensu and hesperidin [139]

Danshen NIR Tannin concentration [140]

Danshen NIR Scores of the first principal component, Hotelling  T2, squared prediction error [141]

Cinobufacini NIR Indole alkaloids concentration [142]

Lonicerae Japonicae NIR Hotelling  T2, squared prediction error [143]

Lonicerae Japonicae NIR Chlorogenic acid concentration [144]

Lonicerae Japonicae NIR Chlorogenic acid concentration [145]

Danhong Injection NIR Solid content and concentration of five active components such as danshensu [146]

Reduning Injection NIR The concentration of four active components such as neochlorogenic acid [147]

Reduning Injection NIR The concentration of chlorogenic acid and solid content [148]

Shenzhiling Oral Solution NIR The concentration of six active components such as paeoniflorin [149]

Dangshen NIR The concentration of lobetyolin, total flavonoids, pigments, and total solid contents [150]

Astragali Radix NIR Scores of the first principal component, Hotelling  T2, squared prediction error, the con-
centration of six active components, and total solid content

[151]

Danshen NIR The concentration of glucose, fructose, and sucrose [152]
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of concentrate on the effect of EP. It is also difficult to 
accurately predict the material transfer and drug delivery 
rule of EPP.

Further study on the effects of EP on TCM quality
EPP is widely used in TCM industry from the last cen-
tury. However, the quantitative effects of EPP on TCM 
quality are still unclear. The relationship between TCM 
substances and its quality is generally nonlinear. There-
fore, some newly developed artificial intelligence tech-
nology can probably be used for the investigation of EPP 
and TCM quality. For example, as a typical algorithm of 
deep learning, convolutional neural network (CNN) can 
be a useful tool to deal with nonlinear quantitative prob-
lems [153, 154].

Establish a stricter quality control method for concentrates
At present, the concentrate quality in the industry is 
mostly controlled by density or volume. However, less 
attention has been paid to the chemical composition of 
the concentrate. It is recommended that the concentrate 
be used as one of the critical intermediates, and the qual-
ity standard of its composition should be set. Yan et  al. 
used the quantitative model of process parameters, raw 
material properties, and EP evaluation index to back-
calculate the quality standard of a concentrate [155]. This 
work provides a scientifically based method to set the 
quality standard of the concentrates. Where permitted by 
regulations, it can be considered that EP can be carried 
out after a mixed concentrate is prepared with different 
batch concentrates, which will help to improve the con-
sistency of the components of the supernatant.

Enrich the detection technology of the EPP
NIR combined with multivariate statistical analysis is 
used to detect indicators/major components or to detect 
process trajectories. NIR has many advantages, but the 
equipment cost is high, and the renewal and maintenance 
of the multivariate statistical model require professionals. 
In addition, there is still no means to detect the amount 
of encapsulation loss. Therefore, it is still necessary to 
develop simpler and easier-to-use detection technology.

Develop high‑efficiency digital ethanol precipitation 
equipment
At present, the structure of EP equipment is simple, 
and process control relies heavily on manual work. The 
energy and material consumption are still high. There-
fore, a complete set of intelligent EP equipment should 
be developed based on multidisciplinary technology. This 
equipment should be able to improve the efficiency of 

heat and mass transfer, quickly collect and analyze pro-
cess data, and realize the automatic control of EPP.
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