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Abstract 

Background: Based on therapy with syndrome differentiation and clinical studies on Xiaochaihu decoction (XCHD), 
we hypothesize that Modified Xiaochaihu Decoction (MXD) has an ability to ameliorate non-alcoholic fatty liver dis-
ease (NAFLD). This study aims to elucidate the pharmacological efficacy of MXD and its mechanism in the treatment 
of NAFLD by network pharmacology and experimental validation.

Methods: The active ingredients in MXD and their potential targets were identified using network analysis followed 
by experimental validation. First, we used data on the ingredients and targets obtained from professional database 
and related literature to do PPI network analysis, GO functional analysis, and KEGG pathway enrichment analysis. Core 
targets identified by network pharmacology were then tested in natural ageing female rats model. Indexes of lipid 
and glucose homeostasis were determined enzymatically and/or histologically. Gene expression was analyzed by real-
time PCR and/or Western blot (WB).

Results: In total, 4009 NAFLD-related targets and 1953 chemical ingredients of MXD were obtained. In-depth net-
work analysis of 140 common targets indicated that MXD played a critical role in anti-NAFLD via multiple targets and 
pathways. Based on the data of PPI analysis, GO functional enrichment analysis, KEGG pathway enrichment analysis, 
and literatures on the mechanism of NAFLD, we chose the core targets related to lipid metabolism (SREBP-1c, ChREBP, 
FASN, PPARα, and ACACA) and inflammation (IL-6 and NF-κB) to do further study. Significantly, in further animal verifi-
cation experiment we using naturally ageing rats with NAFLD as a model, we found that MXD administration amelio-
rated age-related NAFLD and mechanistically down-regulated the mRNA/protein expression of core targets in lipid 
metabolism and inflammation related pathways such as FASN, ACACA, IL-6, and NF-κB. In addition, 12 of 24 potential 
ingredients acting on verified targets came from BC, and 11 of 24 potential ingredients acting on verified targets were 
derived from SM, implying that both BC and SM served as the key role in MXD against NAFLD.
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Background
Increased human longevity has led to a global burden of 
chronic diseases, such as cardiovascular disease, neuro-
degenerative diseases, metabolic syndromes, and most 
cancers [1, 2]. Current data strongly indicates that ageing 
leads to non-alcoholic fatty liver disease (NAFLD), which 
is a consequence of metabolic syndrome [3]. The sum 
effect of age-related changes can contribute to an incre-
mental increase in the susceptibility to development of 
NAFLD [4]. However, there is no available clinical drug 
approved [5], which underscores the pressing need for 
pharmacotherapy.

Xiaochaihu Decoction (XCHD) is a famous prescrip-
tion first recorded in Shang Han Za Bing Lun [6]. From 
its origin in China to its spread into Japan and southeast 
Asia [7], there is a long history for XCHD as a traditional 
Chinese medicine to treat influenza, fever, and hepati-
tis [8]. It is composed of Pinellia ternate (Thunb.) Breit. 
(PT), Panax ginseng C. A. Mey. (PG), Glycyrrhiza uralen-
sis Fisch. (GU), Scutellaria baicalensis Georgi. (SB), Zin-
giber officinale Rose. (ZOR), Ziziphus jujube Mill. (ZJ), 
and Bupleurum chinense DC. (BC) (Table 1). XCHD has 
been reported to achieve substantial curative effects in 
treating NAFLD in both clinical trials and animal stud-
ies. A clinical trial has demonstrated that XCHD sup-
plementation results in a significant reduction in hepatic 
steatosis grade, total cholesterol (TC), triglyceride (TG), 
low-density lipoprotein cholesterol (LDL), alanine 
transaminase (ALT), and aspartate transaminase (AST) 
in patients with NAFLD [9]. Another clinical study on 84 
cases reported an increased plasma adiponectin concen-
tration and decreased body mass index (BMI), TC, TG, 
and controlled attenuation parameters (CAP) in NAFLD 
patients who received XCHD combined with lifestyle 
intervention [10, 11]. XCHD can ameliorate high-fat diet-
induced fatty liver and suppress hepatic de novo lipo-
genesis in db/db mice [7, 12]. However, these studies still 
focused on “single target and single pathway.” A holistic 
“multiple compounds, multiple targets, and multiple 
pathways” study is necessary to clarify how XCHD pro-
duces liver-protective effect on NAFLD.

Several studies have demonstrated the protective effect 
of XCHD against NAFLD [9–12]. However, in tradi-
tional Chinese medicine (TCM) theory, the patients with 
NAFLD show many different kinds of syndromes. There-
fore, Modified Xiaochaihu Decoction (MXD) has been 

extensively used in treating NAFLD in animal experi-
ments and clinical trials [13–16]. Given that most of the 
patients with NAFLD experience the syndrome of spleen 
afflicted with sputum dampness, liver-qi stagnation, and 
turbid stasis obstructing collaterals, our research team 
made MXD by adding Salvia miltiorrhiza Bge. (SM), 
Artemisia scoparia Waldst. Et Kit (AS), and Curcuma 
wenyujin Y. H. Chen et C. Ling (CW) on the basis of 
XCHD (Table  1). SM is a kind of blood-activating and 
stasis-resolving medicine. It can potentially be beneficial 
to enhance the descending turbid effects of XCHD. SM 
has been used for centuries to treat liver diseases [17]. 
Several in vivo studies have indicated that SM alleviates 
hepatic inflammation, fatty degeneration, and hepatic 
fibrogenesis in NAFLD models [18]. The medicinal prop-
erties of AS are bitter, pungent and slightly cold. The 
function of CW in the perspective of TCM is to activate 
blood, relieve pain, promote qi, disperse the stagnated qi, 
clear heart, cool blood, excrete bile, and disperse jaun-
dice. AS can boost the effects of XCHD on soothing the 
liver and strengthening the spleen in Herbal Prescrip-
tion Science. AS extract attenuates NAFLD in mice with 
diet-induced obesity by intensifying hepatic insulin and 
MAPK signalling pathway [19]. CW can promote liver-qi, 
disperse stagnated qi, excrete bile, and disperse jaundice. 
It is added in XCHD to magnify the efficacy of soothing 
the liver, descending turbid, and resolving phlegm. CW 
has a hepatoprotective and combinatory preventive effect 
with silymarin on methionine choline deficient-diet-
induced NAFLD in C57BL/6J mice [20]. As a matter of 
fact, XCHD still plays a major role in MXD, while the 
other three herbs may enhance the treatment effect of 
XCHD on soothing the liver, strengthening the spleen, 
descending turbid, and resolving phlegm. Our clinical 
trials for many years have shown that it is appropriate 
for most patients with NAFLD. Here, we investigate the 
therapeutic effects of MXD by network pharmacology 
and experimental validation.

Network pharmacology has been proved to be an effec-
tive method to explore potential targets and pathways 
of TCM by analyzing network of biological systems. 
The systematism of the strategy resonates well with the 
holistic view of TCM, as well as the mechanism of multi-
ingredient, multi-pathway, and multi-target synergy in 
TCM formulas [21]. Many studies have demonstrated 
that TCM network pharmacology approach provides 

Conclusion: The bioinformatics data and in vivo experimental results suggest that the MXD-induced amelioration of 
NAFLD may be predominantly related to modulation of lipid metabolism and inflammation. Both BC and SM serve as 
the key role in MXD against NAFLD. These results may provide novel evidence for clinical implication of MXD.
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a new research paradigm for translating TCM from an 
experience-based medicine system to an evidence-based 
medicine system, which will accelerate TCM drug dis-
covery and improve current drug discovery strategies 
[22–24]. In this study, we first predicted the potential 
targets of MXD involved in NAFLD. Then, ageing rats 
were used as an appropriate animal model to verify the 
improvement effects of MXD on ageing-related NAFLD, 
to validate some of the potential targets, and to distin-
guish the auxiliary and major herbs of MXD (Fig. 1).

Methods
Data preparation
A catalogue of chemical ingredients of ten herbs in MXD 
was generated from related literature and the Traditional 
Chinese Medicines systems pharmacology database 
(TCMSP, https ://lsp.nwu.edu.cn/tcmsp .php). TCMSP 
is a system pharmacology platform for users to compre-
hensively study TCM via the screening of drug targets, 
including identification of active components and gen-
eration of compounds-targets-diseases networks. The 
targets of candidate molecules were also collected from 
the TCMSP database. To be specific, they were col-
lected from the Related Targets of ingredients section in 
TCMSP (https ://tcmsp w.com/tcmsp .php).

Data on the NAFLD-related targets were obtained 
from three database: (1) Gene Cards (Gene Cards®: The 
Human Gene Database, https ://www.genec ards.org/) 
is a human gene database that provides comprehensive, 
user-friendly information on annotated and predicted 
human genes. (2) Online Mendelian Inheritance in Man 
(OMIM, https ://omim.org/) is an authoritative, compre-
hensive compendium of human genes and genetic phe-
notypes. (3) Genetic Association Database (GAD, https ://
genet icass ociat iondb .nih.gov/) is a human gene database 
which provides genes associated with complex diseases 
and disorders. We searched these databases with the key-
words “non-alcoholic fatty liver disease” and “NAFLD”.

Data pretreatment
The active ingredients of BC, PT, PG, GU, SB, ZJ, ZOR, 
SM, AS, and CW were screened out with the standards 
of OB ≥ 20% and DL ≥ 0.1 provided by numerous litera-
tures [25]. Potential targets corresponding to all ingredi-
ents were collected first, then the targets corresponding 
to active ingredients of each herb were screened out.

Network construction
Interaction of potential NAFLD targets with the targets 
corresponding to active ingredients of MXD was pre-
sented by VENN diagram. The graphical interactions 
were visualized using Cytoscape software (https ://cytos 
cape.org/, ver.3.6.0).

Protein–protein interaction (PPI) network analysis, 
pathway and functional enrichment analysis
PPI network analysis is a network structure that presents 
the relationship of proteins work with other molecules, 
such as other proteins, lipids, and nucleic acids. The data 
source came from STRING 11.0 (https ://strin g-db.org/
cgi/input .pl?taskI d=_notas k&sessi onId=Uj9LD 8q5bY 
kw). Data was analyzed by EXCEL software (Microsoft 
Office Professional Plus 2016). Each node in the PPI net-
work analysis was assessed with its eight typical attrib-
utes in STRING: text mining, co-expression, protein 
homology, gene neighborhood, gene fusions, gene co-
occurrence, from curated databases, and experimentally 
determined. The minimum required interaction scores 
of edges in PPI network is 0.4 (which is medium confi-
dence). The research species was defined as “Homo sapi-
ens”. The rest of the parameters were set to the default in 
STRING. Data of Gene Ontology (GO) functional enrich-
ment analysis was obtained from the Database for Anno-
tation Visualization and Integrated Discovery (DAVID 
6.8, https ://david .nicif crf.gov/). Kyoto Encyclopedia of 
Genes and Genomes (KEGG) Pathway enrichment analy-
sis was performed based on the R clusterProfiler package 
[26].

Animals, diet, and experimental design
Female young (3-month) and old (20-month) Wistar rats 
were purchased from Laboratory Animal Centre of the 
Army Medical University, China. Then, rats were main-
tained in the Laboratory Animal Centre of Chongqing 
Medical University, China. All experimental procedures 
were carried out according to internationally accepted 
principles for laboratory animal use and care and were 
approved by the Animal Ethics Committee, Chong-
qing Medical University, China. The rats were kept in a 
thermostatic-control facility at 21 ± 1  ℃, 55 ± 5% rela-
tive humidity under a 12 h light/dark cycle. All rats were 
acclimated for 1 week prior to beginning the experiment.

Sixteen ageing rats were divided initially into two 
groups (n = 8 per group): the natural ageing group (age-
ing) and the group (MXD) supplemented with MXD 
at 10.8  g/kg. Eight young female rats were randomly 
selected as the young normal group (NC, n = 8). All rats 
had free access to water and standard chow diet. Rats in 
the MXD-treated groups received 10.8  g/kg MXD (sus-
pended in 5% Gum Arabic solution and provided by oral 
gavage once daily) for 5 weeks. The rats in the ageing and 
NC groups received vehicle (5% Gum Arabic) alone. At 
the end of week 4, blood samples were collected via ret-
roorbital venous puncture under isoflurane anesthesia 
after an overnight fast (14 h) to measure plasma TG, TC, 
glucose, and insulin concentration. At the end of week 5, 
the rats were deprived of chow, but still had free access 

https://lsp.nwu.edu.cn/tcmsp.php
https://tcmspw.com/tcmsp.php
https://www.genecards.org/
https://omim.org/
https://geneticassociationdb.nih.gov/
https://geneticassociationdb.nih.gov/
https://cytoscape.org/
https://cytoscape.org/
https://string-db.org/cgi/input.pl?taskId=_notask&sessionId=Uj9LD8q5bYkw
https://string-db.org/cgi/input.pl?taskId=_notask&sessionId=Uj9LD8q5bYkw
https://string-db.org/cgi/input.pl?taskId=_notask&sessionId=Uj9LD8q5bYkw
https://david.nicifcrf.gov/
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Fig. 1 Study design
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to water overnight (14  h). Then, the rats were weighed, 
deeply anaesthetized with isoflurane, and sacrificed by 
prompt cervical dislocation. The livers were removed, 
weighed, immediately frozen in liquid nitrogen, and 
stored at − 80 °C until use.

Blood and liver biochemical analysis
Fasting plasma TG, TC, glucose, ALT, and AST were esti-
mated using commercially available kits and based on 
the manufacturer’s instructions (kits A110-1-1, A111-1-
1, F006-1-1, C009-2-1, and C010-2-1, respectively; Nan-
jing Jiancheng Bioengineering institute, Nanjing, China). 
One hundred mg of liver homogenate was extracted with 
2 mL isopropanol. After centrifugation at 3000 rpm, the 
contents of triglyceride and total cholesterol in superna-
tant were estimated by enzymatic method (A110-1-1 and 
A111-1-1 kits, respectively; Nanjing Jiancheng Bioengi-
neering Institute, Nanjing, China).

Histological examination
A portion of liver was fixed with 10% formalin and 
embedded in paraffin. Four-micron sections were cut and 
stained with hematoxylin and eosin (HE) for examination 
of liver histology.

Appropriate size liver was fixed with 10% paraformal-
dehyde and embedded in OCT embedding medium. Oil 
red O staining was performed on six-micron frozen sec-
tions with a freezing microtome. The Oil Red O-stained 
area as well as the total tissue area in each field were 
measured using ImageJ software (Version 1.52t 30 Janu-
ary 2020 upgrade). The ratio of the Oil Red O-stained 
area to the total tissue area was calculated (%).

Real‑time PCR
Total RNA was extracted from the livers using TRIzol 
(Takara, Dalian, China) following the manufacturers pro-
cedure. cDNA was synthesized by employing an M-MLV 
R-Tase cDNA Synthesis Kit (Cat# RR037A; Takara, 
Dalian, China). Real-time PCR was performed with a 
CFX 96 Real-time PCR Detection System (Bio Rad Labo-
ratories Inc., Hercules, CA, USA) using the SYBR® Pre-
mix Ex Taq™ II (Takara, Dalian, China).

Western blots analysis
Frozen liver tissues were homogenized in radio-immu-
noprecipitation assay (RIPA) buffer with 1% PMSF to 
produce a total extract. Proteins were separated via SDS-
PAGE and were transferred to a polyvinylidene difluoride 
(PVDF) membrane (Millipore Corporation, Billerica, 
USA) by electro-blotting. The membranes were blocked 
with 5% skim milk for 90 min at room temperature and 
then incubated with the primary antibodies overnight 
at 4  ℃. After incubation with appropriate secondary 

antibodies, detection of signals was performed using 
ECL Western blot detection kit (Pierce Biotechnology, 
Rockford, IL, USA). The density was evaluated using the 
Image Lab software (version 5.2.1, Bio-Rad Laboratories, 
California, HE, USA). The amount of protein expression 
was normalized to the amount of β-actin in the same 
sample.

Immunohistochemistry
Four micron serial paraffin sections were processed for 
immunohistochemical staining with a monoclonal anti-
body against NF-κB (Cat# ab216409; dilution 1:1000, 
Abcam, Cambridge, MA, USA) and IL-6 (Cat# ab6672; 
dilution 1:1000, Abcam, Cambridge, MA, USA). Sec-
tions were incubated with goat anti-rabbit and goat 
anti-mouse secondary antibody, respectively. Next, 
the samples were submitted to two-step assay kit (Cat# 
PV-9002; Zhongshan Golden Bridge Biotechnology, Bei-
jing, China), followed by incubation with DAB kit (Cat# 
ZLI-9018; Zhongshan Golden Bridge Biotechnology, Bei-
jing, China) [27]. The images of the sections from each 
group were acquired with a light microscope at a magni-
fication of 400×.

Data analysis
All results were expressed as means ± SEM. Data were 
analyzed by ANOVA using the GraphPad Prism 8 soft-
ware, followed by The Student–Newman–Keuls test to 
determine the differences between groups. P < 0.05 was 
considered statistically significant.

Results
Potential ingredients and targets in MXD
A total of 1953 chemical ingredients of MXD were 
obtained from the TCMSP database (Fig. 2a) and related 
literature (Fig. 2b) in 10 herbs: BC, PT, PG, GU, SB, ZOR, 
ZJ, SM, AS, and CW. The ingredients were screened 
according to the criteria of OB ≥ 20% and DL ≥ 0.1. 
Among the 1953 chemical ingredients in MXD, 1350 
(69.12%) met the requirement of OB ≥ 20% and 617 
(31.59%) met the requirements of OB ≥ 20% and DL 
index ≥ 0.1. Of these 617 bioactive ingredients, 30 (4.86%) 
from PT, 66 (10.70%) from PG, 125 (20.26%) from GU, 
56 (9.08%) from SB, 39 (6.32%) from ZOR, 52 (8.43%) 
from ZJ, 56 (9.08%) from BC, 97 (15.72%) from SM, 17 
(2.76%) from AS, and 79 (12.80%) from CW (Fig. 2c). The 
details of these ingredients are shown in Additional file 1: 
Table S1. A total of 177 potential pathophysiological tar-
gets of these chemical ingredients were collected from 
the TCMSP database. To further understand the MXD 
component-targets network from a holistic and system-
atic point-of-view, we built a network map (Fig.  2d). It 
contains 804 nodes (617 for bioactive ingredients, 10 for 
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herbs in MXD, and 177 for potential targets). The edges 
represent the interaction between the active ingredients 
and potential targets or the herbs in MXD and active 
ingredients. Detailed information on the active ingredi-
ents and potential pathophysiological targets is presented 
in Additional file 2: Table S2.

NAFLD‑related target network
We obtained 259 NAFLD-related targets from OMIM, 
989 NAFLD-related targets from GAD and 3763 NAFLD-
related targets from GeneCards (Fig.  3a). The details of 
these NAFLD-related targets are shown in Additional 
file  3: Table  S3. After removing duplicates, total 4009 
NAFLD-related targets were collected (Fig.  3b). Among 
this, MXD shared 140 common targets with NAFLD 
(Fig. 3c). To gain insights into the pharmacological mech-
anisms of MXD on NAFLD, we constructed a common 
target network (Fig. 3d).

PPI network analyses
To further investigate the core pharmacological mecha-
nisms of the effects of MXD in treating NAFLD, we 
applied a topological method to evaluate the core net-
work. PPI network analysis is beneficial to understanding 
the role of various protein in the complex pathological 
mechanisms of NAFLD. Therefore, we established an 
interactive PPI network of MXD and NAFLD (Fig.  4a). 
In the network, 138 targets can have protein interaction 
(Two targets do not have protein interaction). 1775 edges 
represent the interaction between proteins. The num-
ber of edges between targets means the degree of nodes. 
After statistical analysis of the PPI network of MXD 
and NAFLD, we choose 30 core targets based on degree 
(Fig.  4b), including serum albumin (ALB), Interleukin-6 
(IL-6), vascular endothelial growth factor A (VEGFA), 
epidermal growth factor receptor (Egfr), Caspase-9 
(Casp3), Sterol regulatory element-binding protein 1 

Fig. 2 MXD component-targets network. Two broad categories database: a natural product databases. b Biomedical literatures. c Distributions of 
different herbs d Construction of MXD bioactive component-putative targets visual network, containing 804 nodes and 15,468 edges. The blue 
dots represent putative bioactive components of MXD. The purple diamond nodes represent herbs. The green elliptic nodes represent potential 
targets related to putative bioactive components of MXD
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(SREBP-1c), peroxisome proliferators-activated recep-
tor alpha (PPARα), Mitogen-activated protein kinase 8 
(MAPK8), RELA Proto-Oncogene ( RelA, also known as 
Nuclear factor kappa-β Subunit, NF-κβ P65, and NF-κβ), 
Fatty acid synthase (FASN), and other targets. It is specu-
lated that these targets may be the key targets for MXD 
in the treatment of MXD.

GO functional enrichment analyses
GO functional (including molecular functions, biological 
process, and cellular component) enrichment analysis are 
the common methods used to describe the characteris-
tics of candidate targets. The detailed GO function infor-
mation are shown in Additional file  4: Table  S4. There 
were respectively 112 biological process, 23 cellular com-
ponent, and 32 molecular function terms in total, which 
met the requirements of count ≥ 2 and P-value ≤ 0.05. 
The top 20 significantly enriched terms in molecular 
functions, biological process, and cellular component 
categories were shown in Fig. 4c. The top 20 terms with 
the largest number of targets in molecular functions, bio-
logical process, and cellular component were shown in 
Fig. 4d.

Among them, we found triglyceride metabolic pro-
cess (GO:0006641), fatty acid biosynthetic process 
(GO:0006633), cholesterol homeostasis (GO:0042632), 
cholesterol metabolic process (GO:0008203), ster-
oid binding (GO:0005496), steroid hormone recep-
tor activity (GO:0003707), lipid transporter activity 
(GO:0005319), chromatin binding (GO:0003682), fatty 
acid binding (GO:0005504), and triglyceride homeo-
stasis (GO:0070328) are closely related to lipid metabo-
lism. Likewise, inflammatory response (GO:0006954), 
positive regulation of interleukin-12 biosynthetic pro-
cess (GO:0045084), positive regulation of I-kappaB 
kinase/NF-kappaB signaling (GO:0043123), and positive 
regulation of NF-kappaB transcription factor activity 
(GO:0051092) are related to inflammation. Notably, con-
sistent with this result, numerous targets appear in the 
PPI analysis also involved in lipid metabolism (such as 
SREBP-1c, FASN, PPARα, and ACACA) and inflamma-
tion (such as IL-6 and NF-κB).

Fig. 3 NAFLD-related targets network. a Three disease gene target 
databases. b NAFLD-target network, containing 4008 nodes and 
4007 edges. The purple nodes represent targets related to NAFLD. 
The yellow node represents NAFLD. c 140 common targets between 
NAFLD and MXD. d Common target network, containing 453 nodes 
and 2877 edges. Red dots represent common targets of MXD and 
NAFLD. Blue square nodes represent putative bioactive components 
of MXD. Purple node represents the prescription (MXD) we use. 
Orange node represents the disease (NAFLD). Edges stand for the 
interactions among putative bioactive components of MXD, NAFLD, 
targets and MXD

▸
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KEGG pathway enrichment analysis
To clarify the underlying mechanisms of the action of 
MXD for treatment of NAFLD, a pathway enrichment 
analysis was performed based on KEGG database. We 
fed the clusterprofile R package [26] a list of major gene 
targets to generate relevant pathways that might have 
an important influence on the amelioration by MXD of 
NAFLD. Only pathways with P-value < 0.05 were con-
sidered as significant ones. The detailed information on 
the KEGG pathway enrichment analysis is presented 
in Additional file  5: Table  S5. The results demonstrated 
that 140 targets were mapped into 131 KEGG pathways, 
included in prostate cancer, fluid shear stress and ath-
erosclerosis, and hepatitis B. We analyzed the data and 
relevant biological processes, selected top 20 signifi-
cant pathways according to the GeneRatio (Fig.  5a) and 
P-value (Fig. 5b).

To further characterize the molecular mechanism by 
which MXD alleviated NAFLD, a target-pathway network 
was performed based on all involved proteins and their 
corresponding significant signalling pathways (Fig.  5c). 
This network included 253 nodes (122 for proteins and 
131 for pathways). The edges represent the interactions 
between targets and pathways. The number of edges 
between targets means the degree of nodes. Among these 
potential targets, RelA (NF-κB), IL-6, MAPK10, SREBF1, 
PPARα, RAF1, MYC, MAPK8, IKBKG, CCND-1, and 
CASP3 were identified as relatively high-degree targets.

Consolidated researches indicate that lipid metabolism, 
oxidative stress, and inflammation may play a critical role 
in the development of NAFLD [28]. Evidence has been 
found that the progression of NAFLD has been associ-
ated with marked alterations in hepatocyte histology 
and a shift in marker expression of healthy hepatocytes 
including inflammation and lipid metabolism [29].

Taken together, based on the results of PPI analysis, GO 
functional enrichment analysis, KEGG pathway enrich-
ment analysis, and current research on the mechanism 
of NAFLD, we plan to examine the effect of MXD on the 
improvement of ageing-related NAFLD and to mecha-
nistically verify the change of core targets related to lipid 
metabolism (SREBP-1c, PPARα, FASN, and ACACA) and 
inflammation (IL-6 and NF-κB).

In addition, we found that many diseases such as 
Alzheimer disease, measles, atherosclerosis, hepati-
tis, cancer, and other related biological molecules such 

as prolactin, thyroid hormone, and insulin could also 
indirectly affect the development of NAFLD, providing 
strong evidence for our hypothesis that MXD could treat 
NAFLD through a “multiple compounds, multiple tar-
gets, and multiple pathways” way.

MXD ameliorated plasma TG and hepatic steatosis 
in ageing female rats
Ageing rats had significantly higher body weight (Fig. 6a) 
and liver weight than young rats (Fig. 6b), but tended to 
have a decreased chow intake (Fig. 6c). MXD treatment 
did not affect these parameters (Fig. 6a–c).

Compared with Young group, plasma concentrations 
of TG (Fig.  6d), AST (Fig.  6e), and ALT (Fig.  6f ) were 
elevated in Ageing group. Significantly, MXD treatment 
reversed these changes. However, there was no change 
in the plasma TC (Fig.  6g) and glucose concentration 
(Fig. 6h) among the groups.

Hepatic TG content was obviously increased (Fig. 6i) in 
ageing rats. However, there was no change in the hepatic 
TC content among groups (Fig. 6j). Consistent with this 
finding, the increase in vacuolization (Fig.  6l) and the 
ratio of Oil Red O-stained area (Fig. 6k, m) to total tissue 
area was evident on histological examination of liver sec-
tions from ageing rats compared with young rats, which 
was indicative of excess lipid droplet accumulation. MXD 
treatment significantly decreased hepatic TG content 
(Fig.  6i), vacuolization (Fig.  6l), and Oil Red O staining 
area (Fig. 6 k, m).

Molecular mechanism of MXD in alleviating hepatic 
steatosis in ageing female rat
Using the preliminary data analyses as a guide, we further 
explored the molecular mechanism of MXD alleviating 
hepatic steatosis in ageing female rats. First, we exam-
ined IL-6 and NF-κβ. Both of them are important tar-
gets in the preliminary network pharmacology analysis. 
As predicted, ingestion of MXD significantly decreased 
mRNA/protein expression of IL-6 (Figs.  7a, 8a,f ) and 
NF-κB (Figs. 7b, 8a, e). Then we examined Interleukin-1β 
(IL-1β) and Tumor necrosis factor alpha (TNFα). They 
are key mediators of the inflammatory response and 
closely related to NF-κB, ingestion of MXD significantly 
decreased protein expression of IL-1β (Fig.  8d) and 
TNF-α (Fig. 8d).

(See figure on next page.)
Fig. 4 Construction of MXD-NAFLD PPI network. a Interactive PPI network of MXD and NAFLD, containing 138 nodes and 1775 edges. The node 
size is proportional to the target degree in the network. The node color changes from orange to blue reflect the degree value changes from low 
to high in the network. b Thirty core targets in PPI network arranged in order of degree. c GO functional analysis: the top 20 significantly enriched 
GO terms in molecular functions, biological process, and cellular component. d The top 20 terms with the largest number of targets in molecular 
functions, biological process, and cellular component
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Fig. 5 Top 20 putative signalling pathway in KEGG pathway enrichment analysis by a GeneRatio and b P-value. c The target-pathway network for 
MXD on NAFLD, containing 253 nodes and 1328 edges. The blue nodes represent targets and the green nodes represent pathways. The edges 
represent the interactions between them and node size is proportional to their degree
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Furthermore, regarding the pathway involved in 
hepatic de novo lipogenesis, MXD decreased the level 
of gene and protein expressions of Acetyl-CoA carboxy-
lase 1 (ACACA) (Figs. 7e and 8b) and Fatty acid synthase 
(FASN) (Figs.  7d and 8b), while mRNA/protein expres-
sion of Sterol regulatory element-binding protein 1c 
(SREBP-1c) (Figs. 7c and 8c).and carbohydrate response 
element binding protein (ChREBP) was changeless 
(Fig. 7f ).

Moreover, MXD upregulated the expression of PPARα 
mRNA (Fig. 7G) and AMPK mRNA (Fig. 7H), which are 
the master regulator of fat oxidation and energy homeo-
stasis, respectively.

Distinguish the auxiliary and major herbs of MXD
Every herb in the formula has specific ingredients 
(Fig.  9a). Twelve of 24 potential ingredients acting on 
verified targets (IL-6, NF-κB, FASN, and ACACA) come 
from BC while eleven of 24 potential ingredients acting 
on verified targets come from SM (Fig. 9b), implying that 
both BC and SM serve as the key role in treating NAFLD.

There are 4 bioactive components (ursolic acid, querce-
tin, apigenin, and tanshinone iia) activating targets 
related to both lipid metabolism and inflammation path-
ways (Additional file 6: Table S6). Four herbs (BC, ZJ, GU, 
and SM) in the formula have share the common ingredi-
ents acting on both lipid metabolism and inflammation 
related pathways (Fig. 9c). This combination probably has 
a broader effect at a lower concentration, and is evidently 
safer than a single drug.

Discussion
NAFLD is increasing rapidly owing to increased human 
longevity [1]. It is strongly associated with dyslipidemia, 
T2DM, obesity, and hypertension [30]. However, there 
are no effective drugs for treating NAFLD available in 
the clinic [5, 30]. TCM plays an essential role in comple-
mentary and alternative medicine, and has markedly con-
tributed to the therapeutic action of metabolic diseases 
[31, 32]. Several hundred years of clinical practice have 
confirmed the efficacy of TCM. XCHD is a classic pre-
scription with a long history of clinical applications [33]. 
MXD, containing seven commonly used herbs (BC, PT, 
PG, GU, SB, ZOR, and ZJ), is formulated using the TCM 
formulation of XCHD with the addition of another three 
herbal plants (SM, AS, and CW). Based on therapy with 
syndrome differentiation and the results of several Tradi-
tional Chinese medicine (TCM) Clinical studies [9–11], 
we preliminarily hypothesized the protective effect of 
MXD against NAFLD.

After the verification by pharmacology network analy-
sis, we further recognized that MXD played a positive 
role in NAFLD and then predicted its active ingredients 

and potential mechanism. This provided clues to trans-
late the ancient constructs of therapy into those used in 
modern medicine. Our study utilized naturally ageing 
female rats as a model demonstrating that MXD treat-
ment can ameliorate ageing-related NAFLD.

The bioinformatics data elucidate that anti-NAFLD 
pharmacological activities of MXD may be predomi-
nantly related to the modulation of lipid metabolism 
and inflammation related signalling pathways. Specifi-
cally, IL-6 and NF-κB are core targets in related signifi-
cant pathways associated with inflammation. SREBP-1c, 
PPARα, ACACA, FASN are core targets in related signifi-
cant lipid metabolism pathways. Correspondingly, in vivo 
animal experimental results showed that MXD admin-
istration ameliorated age-related NAFLD and mechani-
cally down-regulated the mRNA/protein expression of 
core targets in lipid metabolism and inflammation related 
pathways such as FASN, ACACA, IL-6, NF-κB, IL-1β and 
TNFα.

It has been demonstrated that de novo hepatic lipo-
genesis is mediated by two important transcription pro-
teins, ChREBP and SREBP-1c [34–36]. SREBPs transport 
from the endoplasmic reticulum to the Golgi apparatus, 
where the active nuclear isoform of SREBPs is cleaved 
by specific proteases, then translocate into the nucleus 
and become nSREBPs [37]. Therefore, the nSREBP-1c 
may regulate some of the key enzymes in fatty acid syn-
thesis such as FASN and ACACA. Similarly, the locali-
zation of ChREBP in the nucleus is a key determinant 
for its functional activity [38]. In our present study, the 
mRNA and total protein expression of SREBP-1c and 
ChREBP mRNA in liver did not change significantly, but 
their downstream genes FASN and ACACA [37], did 
have a reduced expression induced by MXD, we suspect 
that MXD might affect SREBP-1c and/or ChREBP trans-
location from cytoplasm to nucleus to regulate down-
stream genes. Therefore, the expression of nSREBP-1c 
and nChREBP remain to be further clarified. Moreover, 
our research also found that MXD treatment increased 
mRNA level of AMPK and PPARα in naturally ageing 
rat models, which indicates that MXD may ameliorate 
ageing-related NAFLD through regulating intracellular 
energy metabolism and fatty acid oxidation.

After confirming the improvement effect of MXD on 
NAFLD and preliminarily exploring the potential molec-
ular mechanism based on network pharmacology, we 
further speculated the role of different herbs in contribu-
tion to the achievement of MXD.

The results indicate that both BC and SM share the 
most bioactive components related to lipid metabolism 
and inflammation related pathways of the ten herbs in 
MXD, while the other eight herbs share less. Further 
integrated network shows that BC and SM represent 
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Fig. 6 Modification by MXD of NAFLD in ageing female rats. a Body weight. b Liver weight. c Daily chow intake. d Concentrations of TG in serum. 
e Activity units of AST. f Activity units of ALT. g Concentrations of TC in serum. h Concentrations of GLU in serum. i Concentrations of TG in liver 
homogenate. j Concentrations of TC in liver homogenate. k The ratio of Oil Red O staining area to total tissue area. l Representative images of liver 
sections, stained with H-E (original magnification, ×200. Scale bar = 50 μm). m Representative images of liver sections, stained with Oil Red O 
staining (original magnification, ×200. Scale bar = 50 μm) #P < 0.05 compared to the control. *P < 0.05 compared to the model
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the principal herb for the treatment of ageing-related 
NAFLD in female rats, and the other eight herbs serve as 
adjuvant ones to assist the effects of the principal com-
ponent, likely with synergistic actions. In the 20 potential 
ingredients related to IL-6, NF-κB, FASN, and ACACA 
(Additional file 6: Table S6), particularly quercetin, lute-
olin, puerarin, apigenin, and rutin can alleviate NAFLD. 
Emerging evidence has revealed that quercetin is effec-
tive in reversing the symptoms of NAFLD by lowering 
lipid accumulation and ameliorating the lipidemic pro-
file in  vivo and in  vitro [39–41]. Quercetin decreases 
hepatic TG content by 39%, with a 1.5-fold increase in 
VLDL, and upregulates spliced X-box binding protein 1 
(XBP1s) expression in Male Sprague–Dawley rats [39]. 
Quercetin can be used as a therapeutic approach for high 
fat diet (HFD) induced NAFLD due to its anti-inflam-
matory, antioxidant and prebiotic integrative response 
in C57BL/6J mice [42]. Previous reports indicate that 
luteolin decreases the adiposity and dyslipidemia by 
decreasing lipogenesis and increasing fatty acid oxida-
tion [43, 44] and anti-inflammatory [45], which contrib-
utes to protection against NAFLD. Puerarin could be a 

promising and practical therapeutic strategy for NAFLD 
by modulating PARP-1/PI3K/AKT signalling pathway 
[46], and by activation of AMPK and its downstream 
effectors involved in lipid metabolism [47, 48] and JAK2/
STAT3 signalling pathways in hepatocytes [48, 49]. Api-
genin attenuates HFD-induced NAFLD by regulating 
hepatocyte lipid metabolism and oxidative stress via acti-
vation of Nrf2 [50], XO/NLRP3 pathways [51], and PI3K/
AKT signalling pathway [52]. Administration of rutin 
significantly curtails inflammation, fibrosis, and hepatic 
hyperplasia in a nitrosodiethylamine (NDEA) model of 
hepatocarcinogenesis in rats [53]. Rutin exhibits hepato-
protective effects in HFD-induced NAFLD by reducing 
hepatic lipid levels and mitigating lipid-induced oxidative 
injuries in male C57BL/6 mice [54].

Furthermore, 4 herbs (BC, SM, ZJ, and GU) in the for-
mula share common ingredients (ursolic acid, querce-
tin, apigenin, and tanshinone iia) acting on both lipid 
metabolism and inflammatory-related pathways. Every 
herb in the formula has specific ingredients affecting key 
factors. The efficacy of the three additional herbs affected 
the improvement of MXD in NAFLD in different aspects. 

Fig. 7 Effect of MXD against NAFLD on the mRNA expression of inflammatory and metabolic genes in ageing female rats. a–h The mRNA 
expression of IL-6, NF-κB, SREBP-1c, FASN, ACACA, ChREBP, PPARα, and AMPK were determined by RT-PCR analyses. β-actin was as the internal 
reference. #P < 0.05 compared to the control. *P < 0.05 comped to the model
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Notably, in our study, SM, one of the additional herbs, 
ranked second only to BC in contributing to the modu-
lation of lipid metabolism and inflammation, suggesting 
the important role of additional herbs in MXD against 
NAFLD. This combination probably generates a wider 
efficacy at a low concentration, and is apparently safer 
than a single drug. Therefore, it suggests that TCM offers 
bright prospects for the control of complex disease in a 
synergistic manner.

However, there are some limitations for the use of 
network pharmacology in our research. First, the active 
ingredients screened might be different than the ingre-
dients actually absorbed in the blood of patients with 
NAFLD. Second, the predicted results might be impacted 
by possible biases to highly studied pathways/targets. In 
the future, we will endeavour to do more work to verify 
the potential mechanisms of MXD protection against 
NAFLD.

Conclusion
Taken together, our work generated a map detailing the 
effects of MXD against NAFLD by network pharmacol-
ogy analysis. The work preliminarily confirmed that the 
inhibition of fatty acid synthesis and promotion of anti-
inflammatory properties underlie MXD-based protec-
tion. Based on the experimental finding, we further 
speculate the role of different herbs in contribution to 
the achievement of MXD and the results are BC and SM 
represents the principal herb for the treatment of age-
ing-related NAFLD in female rats, and other eight herbs 
serve as adjuvants to assist the principal component. To 
our knowledge, for the first time, we distinguished the 
auxiliary and major herbs of a formula based on network 
pharmacology and experimental verification, which pro-
vides a clue to the development of novel drugs and TCM 
modernization. As a result, our research may provide 
more evidence for the clinic application of MXD against 
NAFLD.

Fig. 8 Effect of MXD against NAFLD on the protein expression of inflammation and lipid metabolism-related factors in ageing female rats. a-d The 
protein expression of IL-6, NF-κB, FASN, ACACA, SREBP-1c, IL-1β, and TNFα was determined by western blot. e–f The protein expression of IL-6 and 
NF-κB was determined by immunohistochemistry. Positive staining is brown. #P < 0.05 compared to the control. *P < 0.05 compared to the model
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Fig. 9 The quantity of bioactive components related to verified targets (L-6, NF-κB, FASN, and ACACA) in each herb. a Construction of bioactive 
components of MXD related to IL-6, NF-κB, FASN, and ACACA network, containing 38 nodes and 74 edges. The blue nodes represent the biological 
ingredients. The green nodes represent herbs in MXD. The red nodes represent the verified targets. b The number of bioactive ingredients related to 
the corresponding verified target. c The number of bioactive ingredients related to all the verified targets
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