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Abstract 

Background:  American ginseng (AG) is a valuable medicine widely consumed as a herbal remedy throughout the 
world. Huge price difference among AG with different growth years leads to intentional adulteration for higher profits. 
Thus, developing reliable approaches to authenticate the cultivation ages of AG products is of great use in preventing 
age falsification.

Methods:  A total of 106 batches of AG samples along with their 9 physicochemical features were collected and 
measured from experiments, which was then split into a training set and two test sets (test set 1 and 2) according to 
the cultivation regions. Principle component analysis (PCA) was carried out to examine the distribution of the three 
data sets. Four machine learning (ML) algorithms, namely elastic net, k-nearest neighbors, support vector machine 
and multi-layer perception (MLP) were employed to construct predictive models using the features as inputs and 
their growth years as outputs. In addition, a similarity-based applicability domain (AD) was defined for these models 
to ensure the reliability of the predictive results for AG samples produced in different regions.

Results:  A positive correlation was observed between the several features and the growth years. PCA revealed 
diverse distributions among different cultivation regions. The most accurate model derived from MLP shows good 
prediction power for the fivefold cross validation and the test set 1 with mean square error (MSE) of 0.017 and 0.016 
respectively, but a higher MSE value of 1.260 for the test set 2. After applying the AD, all models showed much lower 
prediction errors for the test samples within AD (IDs) than those outside the AD (ODs). MLP remains the best predic-
tive model with an MSE value of 0.030 for the IDs.

Conclusion:  Cultivation years have a close relationship with bioactive components of AG. The constructed models 
and AD are also able to predict the cultivation years and discriminate samples that have inaccurate prediction results. 
The AD-equipped models used in this study provide useful tools for determining the age of AG in the market and are 
freely available at https://​github.​com/​dread​lesss/​Panax_​age_​predi​ctor.
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Background
Panax quinquefolium L., also known as American gin-
seng (AG), is a perennial herb native to Canada and the 
eastern United States. It is widely consumed as herbal 
medicine throughout the world for a variety of medici-
nal benefits including antioxidant [1], neuroprotective 
[2], anti-cancer [3], and improving neurocognitive func-
tion [4]. The biological activities are mainly derived from 
the ginsenosides constituents in AG among other active 
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ingredients like polysaccharides and peptides. AG has 
a higher content of ginsenosides compared to its family 
member Panax ginseng (PG), another major cultivar of 
ginseng [5]. AG also features a calm effect, or “yin” prop-
erty according to traditional Chinese medicine theory 
[6, 7], and thus is applicable to much wider populations 
than PG, which contains a stimulant and has a “warm” or 
“heat” property [8, 9]. These properties lead to the preva-
lence of AG products like herbal teas and AG wines in 
China, as well as the usage of AG as a major ingredient in 
some Chinese patent medicines, such as Xinyue capsule 
and Fufang Zaofan Pill recorded in the official Chinese 
Pharmacopoeia [10].

Owing to a growing demand for health products and 
tonics, AG was introduced to China early in 1975, and 
now are extensively cultivated in Beijing, Jilin, Liaoning, 
and many other areas. It has long been a problem to fairly 
evaluate the grade of AG products and to determine 
their prices in the commercial market [11]. Usually, the 
prices of AG in the market are decided in an empirical 
and subjective manner according to their morphologi-
cal properties, growing regions, cultivation ages, etc. [8, 
12]. Among these factors, the cultivation age is one of the 
most convincing judging criterion for grades and prices 
determination as it largely affects the accumulation of 
bioactive compounds. As a result, the market price var-
ies widely among AG with different cultivation years [11, 
13]. This leads to the sellers pass off younger AG with a 
cheaper price as an older AG for higher profits. There-
fore, it is crucial to develop a reliable method to authen-
ticate the growth year of AG to combat age falsification.

Traditionally, AG can be aged through the number of 
prongs or the number of stem vestiges before harvest 
[14], but it is not applicable to AG products in the mar-
ket that usually lose these morphological characteristics. 
Modern analytical techniques (e.g., NMR, HPLC) have 
enabled quantitative analysis of active ingredients in 
medicinal herbs. By establishing a relationship between 
metabolite fingerprints and the growth year statistically, 
predictive models can be built to help estimate the age of 
plants [12]. For example, an NMR-based metabolomics 
technique was used to determine NMR spectrum of 
70 ginseng root samples of 2-, 3-, 4-, and 5/6-years old, 
then partial least squares (PLS) model was employed 
and trained, achieving a root mean square error of pre-
diction (RMSEP) value of 0.2 on the test set [13]. Simi-
lar models for rhizome age prediction were developed 
using IR spectroscopy combined with PLS regression, 
and the RMSEP value can be as low as 0.036 [15]. Other 
statistical analysis methods including principal compo-
nent analysis (PCA), hierarchical cluster analysis, and 
linear discriminant analysis could also discriminate the 
growth years of ginseng roots by their chemical profiles 

measured by other analytical methods [16–18]. However, 
most of the statistical analyses implemented in the above 
studies are linear in nature, which are unable to fully cap-
ture the intrinsic relationships between physicochemical 
profiles and growth year, and would easily fail for com-
plex prediction tasks (we will compare the performance 
of linear and non-linear models later). Moreover, due to 
the relatively small datasets employed and a lack of appli-
cability domain (AD) definition, it is hard to evaluate to 
what extent the predictive results on new samples would 
be statistically sound and reliable.

Machine learning (ML) is a well-developed discipline 
that has been used in numerous fields, such as ADMET 
prediction [19], ligand-based virtual screening [20], as 
well as the plant science [21]. It can identify an inherent 
pattern from the existing data through diverse algorithms 
and predict the new data with high portability. In this 
study, we explore how ML methods can be employed to 
accurately predict the growth year of AG using physico-
chemical profiles collected from experiments on a large 
data set containing 106 samples. We also seek to reduce 
the uncertainty in prediction by developing AD for the 
models. Ultimately, we will show that ML models regu-
lated by AD have a satisfactory predictive power. These 
methods and results provide useful guidance for the 
identification of AG ages in the market.

Materials and methods
Materials
Five ginsenoside standards were purchased from 
National Institutes for Food and Drug Control (Beijing, 
China). HPLC-grade acetonitrile was purchased from 
Fisher (USA). Purified water was prepared using a Milli-
Q purification system (Millipore, USA). Other chemicals 
were of analytical purity.

A total of 106 cultivated AG samples with ages ranging 
from 2 to 4 years were purchased from Kangmei Pharma-
ceutical Co., Ltd., which originated from 5 different areas 
of Jilin, Liaoning, Shandong, Beijing, and Shanxi prov-
inces. These samples were harvested from the planting 
bases, rinsed in water and air-dried locally according to 
the Good Manufacturing Practice (GMP). The cultivation 
ages were provided by the planting bases and the reliabil-
ity of the cultivation age could be guaranteed. All herbal 
medicines were authenticated by Professor Hua Yan. The 
voucher was deposited in the Institute for Control of 
Chinese Traditional Medicine and Ethnic Medicine (Bei-
jing, China).

Preparation of standard and sample solutions
Each sample was levigated into powder and sieved 
through a 60-mesh screens. One gram of the pulver-
ized AG and 25  ml methanol was weighed accurately 
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and transferred to a 50 ml conical flask. The suspension 
was maintained for 1  h followed by ultrasound-assisted 
extraction for 30  min at room temperature. After addi-
tional methanol was added to restore its original weight, 
the extract was fully blended and the supernatant was fil-
tered through a 0.45 μm membrane filter, which will be 
used later as test solution. 20  μl of the filtrate was sub-
jected to HPLC for analysis.

Ginsenoside standards Rg1, Re, Rb1, Rd and pseudo 
F11 were prepared separately in a similar way to yield 
stock solution of 0.5  mg/ml in methanol. 2  ml of each 
reference solution were combined and diluted to 25 ml, 
which was then filtered through a 0.45  mm filter mem-
brane for retention time analysis.

HPLC conditions
HPLC was performed on a Waters 2695–2996 instru-
ment equipped with a diode-array detector, automatic 
injector, thermostatically controlled column compart-
ment, an online degasser, and an Alltech ES2000 evapo-
rative light scattering detector (ELSD). Separation was 
accomplished using a Grace Vydac 208TP C8 column 
(250 × 4.6 mm, 5 μm) at 30 °C. The detection wavelength 
of the UV absorption spectrum was set to 203 nm. The 
mobile phase was composed of CH3CN (A) and H2O (B). 
The gradient elution program with 1  ml/min flow rate 
was used as follows: 0–10 min, 20% A; 10–11 min, 25% A; 
11–33 min, 33% A; 33–38 min, 46% A; 38–40 min, 80% 
A; 40–45  min, 100% A; 45–55  min returned to 20% A. 
The drift tube temperature and the nitrogen gas flow rate 
of ELSD were set to 110 °C and 2.5 l/min, respectively.

Calibration curve of ginsenoside standards
A series of reference mixtures containing Rg1, Re, Rb1, 
Rd, and pseudo F11 were obtained by diluting the stock 
solutions and injected in triplicate into HPLC. The stand-
ard curves of Rg1, Re, Rb1 and Rd were constructed 
based on the areas of the UV absorption peak in the 
chromatograph (dependent variable) and the corre-
sponding amounts of the analyte (independent variable), 
while the calibration curve of pseudo F11 was built using 
the area values in the ELSD chromatograph. The content 
of five saponins in the sample was calculated using the 
corresponding calibration curves.

Determination of ethanol and aqueous extractives
The weight percent of ethanol extractives was deter-
mined by hot extraction method. The content of aqueous 
extractives was calculated using cool extraction method. 
Both the two methods are performed according to the 
Chinese Pharmacopoeia [10].

Data preparation
To conduct a comprehensive assessment of ML mod-
els, the 106 AG samples were divided into a training 
set and two external test sets based on their cultiva-
tion regions. The training set was used to optimize the 
hyperparameters of the models and consisted of 64 
samples (2–4  years old) collected from Jilin, Liaoning, 
and Shandong provinces. The two external test sets 
were used to evaluate the performance and generaliz-
ability of the trained models, and were made up of 42 
samples (4 years old) originating from Beijing (test set 
1, 25 samples) and Shanxi (test set 2, 17 samples) prov-
ince, respectively.

A total of nine features were used to represent each 
sample. Seven of them were chemical properties includ-
ing the content of five saponins (Rg1, Re, Rb1, Rd and 
F11) and the content of alcohol and aqueous extrac-
tives as described above. The other two features were 
the length and weight of each sample that represent 
the physical profile, where the lengths of the AG were 
approximate values since the tap root and the fiber root 
in most of the samples were truncated. All data used in 
this study are available in Additional file 1: Table S1.

Feature distribution of the collected data sets
PCA was carried out to compare the distribution of the 
training set and two external test sets. All features were 
first standardized by subtracting the mean value and 
divided by the standard deviation. After dimensional-
ity reduction, most of the information in the original 
descriptors was compressed into the first three princi-
pal components (PCs), which were plotted as scatters in 
a three-dimensional (3D) space and projected into three 
two-dimensional (2D) planes to compare the diversity of 
the three data sets intuitively.

Model building
To obtain a robust and effective model, four machine 
learning algorithms including elastic net (EN), k-nearest 
neighbors (KNN), support vector machine (SVM), and 
multi-layer perceptron (MLP) were selected and to con-
struct predictive models. Hyperparameter optimization 
was performed for all models by using a grid search strat-
egy with fivefold cross-validation. The implementation 
was conducted using Python (ver. 3.8.10) and the scikit-
learn library (ver. 0.24.1).

EN is a regulated linear regression model. As opposed 
to multivariate linear regression, two penalty terms, L1 
and L2, were added to the loss function of EN to reduce 
model complexity. These penalties were tuned by alpha 
(λ1 + λ2) and l1_ratio [λ1/(λ1 + λ2)] in the ElasticNet 
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function, where λ1 and λ2 are the weights of L1 and L2 
regularization, respectively.

KNN regression is a conceptually simple yet useful 
method based on feature similarity [22]. Two steps are 
required to predict the label of a query sample. First, the 
distances between the query sample and the samples in 
the training set are computed to determine its k nearest 
neighbors. Then the mean or median value of the labels 
of these neighbors was taken to be the final prediction.

Support vector regression (SVR) is a branch of the 
SVM. Unlike most regression algorithms that aim to 
minimize the prediction error, the goal of SVR is to mini-
mize the generalization error bound which is determined 
by a subset of training data called support vectors. In 
addition, kernel technique can be applied to handle non-
linear tasks. Herein, radial basis function (RBF) was used 
as the kernel function. Two parameters, the regulariza-
tion parameter C and the kernel coefficient gamma, were 
tuned to obtain the optimal model [23].

MLP is a class of feedforward neural networks com-
posed of three types of layers: an input layer, one or more 
hidden layers, and an output layer [24]. Each layer pos-
sesses several neurons and is connected with each other 
through layers of nodes. The neurons in the hidden layer 
are activation functions applied to the sum of weighted 
inputs and propagate the results to nodes in the next 
layer. The training process was to update the connection 
weights iteratively by backpropagation. In this work, the 
neurons in the hidden layers adopted tanh as the activa-
tion function. The regularization term alpha, size of the 
hidden layer, and learning rate were optimized for better 
model performance.

Model performance evaluation
Two statistical metrics, coefficient of determination (R2, 
Eq. 1) and mean squared error (MSE, Eq. 2), were com-
puted to evaluate and compare the performance of the 
four regression models:

where ypredi  , ytruei  , ytrue mean
i  are predicted, actual, and 

mean value of the growth years of AG, respectively. R2 
measures the proportion of the total variance in depend-
ent variable (Y) that is explained by the independent 
variable (X), and was used in cross-validation and model 
optimization. MSE was used to evaluate the average of 
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the square of the error between actual and estimated val-
ues, and was used for model evaluation on the test sets.

Determination of applicability domain
Usually, the training set only represents a small sub-
set of the whole feature space because of the limitation 
of the training samples. For samples that differ substan-
tially from the samples in the training set, the prediction 
results would be highly unreliable and thus should be 
excluded. In this regard, applicability domain of a model 
can be defined to estimate whether a new sample is simi-
lar enough to the training samples. TAD (Eq. 3) was used 
here as the threshold of AD:

where dki is the average of Euclidean distances between 
the training data i and its k nearest neighbors in the 
training set, σ is the standard deviation of the average dis-
tances aforementioned, Z is an empirical parameter [22, 
25, 26]. When a query sample j comes in, the threshold 
of sample (TS, Eq. 4) can be computed and compared to 
TAD to decide whether the query is within the AD:

where dkj is similar with the dki expect for using query 
data j instead of training data i. If TS > TAD, i.e., the 
sample was far from the k nearest neighbor points, the 
predictive result may be marked as unreliable, and vice 
versa. The k and Z values determine how strict the AD 
is defined. For example, as Z decreases, the TAD value 
declines and the AD shrinks, meaning fewer data points 
are expected to be reliable. The impact of k and Z were 
investigated by estimating prediction errors of test sam-
ples within the AD. Z values were increased from 0.5 to 3 
with step 0.2 and k varied from 1 to 12.

Results
Ginsenoside profiles of the AG samples
Five saponins in the HPLC chromatograms were assigned 
unambiguously by comparing with the reference stand-
ards and their retention time. Standard curves were built 
and their correlation coefficient values (R2) were calcu-
lated from the concentrations and peak areas for each 
sample. All calibration curves shown a good linearity 
with R2 > 0.99 (Additional file 1: Table S2). The contents 
of the 5 saponin monomers in the 106 AG samples were 
calculated using the standard curves. The nine physico-
chemical features are listed in Additional file 1: Table S1.

In general, the physicochemical features are largely 
affected by the growth year and cultivation regions. 
For the samples in the training set, most of the features 

(3)TAD =
1

n

n
∑

i=1

dki + Zσ ,

(4)TSj = dkj ,



Page 5 of 10Hu et al. Chin Med          (2021) 16:100 	

positively correlated with growth years (Fig.  1). Espe-
cially the weight and the major constituent Rb1 varied 
remarkably in different ages. The contents of ginsenoside 
Rd, Re and the weight percent of alcohol extractives also 
increased with the growth year. While other properties 
fluctuated slightly within a certain range.

Cultivation region also greatly affects the physicochem-
ical profiles, as most features including length, weight, 

contents of alcohol and water extractives are different for 
samples that are of the same age but from different pro-
ducing areas (Additional file  1: Figure S1). The content 
of aqueous and alcohol extractives in the AG samples 
from Shanxi is the highest, followed by Jilin, and Beijing. 
Reversely, the morphological features of samples from 
Shanxi are the lowest while the largest AG was cultivated 
in Jilin with the average weight of 15.2 g and 11.0 cm in 

Fig. 1  The correlation between cultivation age and 9 physicochemical features for the samples in the training set. Data are expressed as 
mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, by two tailed Student’s t test
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length. Furthermore, the samples from Beijing yield the 
highest level of Rg1 and the lowest level of Rb1, result-
ing in a lowest Rb1/Rg1 ratio among the three regions, 
almost two times lower than those from Jilin and Shanxi. 
The variation in saponins content may result in differ-
ent bioactivities of the final AG product as demonstrated 
by the previous studies [7]. The dependence of ginseno-
side contents in AG on either growth year or producing 
region we observed here is consistent with previous find-
ings [9, 15, 27, 28].

Feature distributions of the training set and the test sets
PCA scores plot was used to visualize and rationalize 
spatial distribution of the training set and the test sets. 
After feature decomposition, the first three PCs account 
for 77.3% of the total variance. The distributions of the 
training set and two test sets on the three PCs are dis-
played in Fig. 2.

The feature space of test set 1 is partially overlapped 
with that of the training set, and tends to gather toward 
the edge of the feature space of the training data, whereas 
test set 2 lies even further from the training set than test 
set 1. The data points in the training set are mostly dis-
tributed between − 3 to 2 on PC2, while the features of 
test set 2 are chiefly distributed between 2 to 4 on PC2 as 
an isolated cluster. The feature distributions of the train-
ing set and test set 1 shares some similarities in general, 
indicating that the samples from Beijing province are 
suitable for the evaluation of the constructed models. 
In contrast, the feature space of test set 2 (samples col-
lected from Shanxi) differs distinctly from that of the 
other two data sets, and thus it is expected that the pre-
diction results of test set 2 would be inaccurate. Although 
the two test sets show varying distribution compared to 
the training set, these test sets are helpful to establish an 

appropriate AD for the predictive models, which will be 
described in the next sections.

Cross‑validation and performance evaluation of the four 
regression models
Four regression models (EN, KNN, SVM, MLP) were 
trained and optimized on the training set consisting 
of 64 samples with fivefold cross validation. The gen-
eralizability of the models to independent data set 
was measured on two test sets consisting of 25 and 

Fig. 2  Spatial distributions of the training set (red dots), test set 1 
(green dots) and test set 2 (blue dots) after applying PCA. A Scatter 
plot in 3D space; B projection on three 2D planes. Feature space of 
test set 1 partially overlaps with that of the training set, whereas most 
samples in test set 2 fall outside the feature space of the training set

Table 1  Performance of the four regression models on the 
training set and the two test sets

Method Fivefold cross 
validation

Test set 1 Test set 2

R2 MSE MSE MSE

EN 0.912 0.042 0.243 1.370

KNN 0.954 0.022 0.070 0.956

SVM 0.963 0.019 0.070 1.180

MLP 0.965 0.017 0.016 1.260

Fig. 3  Scatter plot of the true ages and predicted ages of four 
ML algorithms. The regression line is colored in gray. The red dots 
represent the predicted results of fivefold cross validation of the 
training set. The green and blue dots represent the predicted values 
of the test set 1 and test set 2, respectively
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17 samples, respectively. Results were summarized in 
Table 1 and depicted in Fig. 3.

For the cross-validation, all of the four ML algo-
rithms, especially MLP, achieve good fitness with 
R2 > 0.9. MLP outperforms the other four models with 
the highest R2 value of 0.965 and the lowest MSE value 
of 0.017, closely followed by SVM and KNN with an 
R2 value of 0.963 and 0.954, and an MSE value of 0.019 
and 0.022, respectively. EN has a slightly higher MSE of 
0.042 and a lower R2 of 0.912, but is fairly acceptable.

The feature importance was measured by calculat-
ing the permutation importance of four ML models 
(Additional file 1: Table S2). The weight of the samples 
shows the highest importance for all of the models, 
followed by the ethanol-soluble extractives, aqueous 
soluble extractives, and the length of AG. Whereas the 
importance level of five saponin monomers was lower 
compared to other parameters. These results suggest 
that chemical features based solely on the saponin 
monomers are insufficient for the statistical models. 
More representative features such as ethanol-soluble 
extractives that can reflect the overall characteristics 
are essential to improve the precision of ML models.

Similar trends are observed on the test set 1. MLP 
shows good prediction accuracy on test set 1 with MSE 
values of 0.016. SVM and KNN also have a moderate 
MSE value of ~ 0.070, whereas EN has the largest MSE 
value of 0.243. A larger overall prediction error on the 
test set 1 can be expected since the feature space of 
test set 1 is not fully covered by that of the training set 
(Fig.  2). In such case, MLP still presents similar MSE 
values with the cross-validation ones, showing better 
generalizability. As expected, all the models fail to cor-
rectly predict the cultivation ages of AG samples in the 
test set 2 due to the distinct data distributions of the 
training set and test set 2 shown by the PCA results.

In summary, for the training set and test set 1, MLP 
achieves superior performance and generalizability 
than SVM, KNN, and especially EN, indicating that lin-
ear models might not be adequate for accurate predic-
tion of AG cultivation years built on physicochemical 
features. As a result of a unique feature distribution, 
these models fail to predict the growth years accu-
rately on the test set 2. But this reminds us that when 
the models are applied to samples whose producing 
regions are unknown, it is crucial to assess whether the 
samples are within the definition of the models instead 
of blindly accepting the prediction results. We will 
define ADs for our models to help provide confidence 
for the prediction results in the next section.

Applicability domain definition
An AD based on feature similarity is defined for the four 
regression models. Optimal k and Z values for an appro-
priate AD definition are obtained by balancing predic-
tion accuracy and the size of applicability range, which 
are monitored by the MSE value and the number of test 
set samples within the AD as a function of k and Z (see 
Fig. 4).

Figure 4A shows that the value of TAD increases with 
k and Z, and Z has a larger influence on TAD than k. At 
a small TAD, all models have very high accuracy, since 
very few test samples that closely resemble the training 
set are included. As the TAD becomes larger, the accu-
racy of the EN, KNN and SVM models decreases sharply 
then plateaus out, while the MLP model continues to 
have relatively smaller MSE (Fig.  4B–E). This plateau 
region is considered ideal for models to make stable and 
reliable predictions. When k and Z values are very large, 
much more samples are allowed for prediction, but the 
MSE significantly increases and the results are no longer 
trustable.

Finally, k = 6 and Z = 1.6 (black dots as shown in Fig. 4) 
were selected to define an AD that ensures higher con-
fidence at the expense of a more restricted TAD. In this 
regime, 80% of the samples in test set 1 pass the TAD 
criterion, while only 1 out of the 17 samples in test set 
2 is within the AD. Table  2 updates the MSE results in 
Table 1 by separating samples that are inside or outside of 
the AD (referred to as ID and OD, respectively). Among 
the four models, MLP exhibits an outstanding predic-
tive power with an MSE value of 0.030. MLP, KNN, and 
SVM have a better performance on the ID samples than 
the EN, consistent with the trend in Table 1. Overall, the 
prediction errors of the OD samples are way above those 
of ID samples, showing that the AD established here can 
discriminate samples that are expected to have very inac-
curate prediction results.

Discussion
AG has wide applications in pharmaceutical, nutraceuti-
cal, food, and cosmetic industries owing to its bioactive 
compounds such as ginsenosides and polysaccharides 
[29]. Commercial AG is priced mainly depending on the 
cultivation age, which is an important factor for the accu-
mulation of bioactive compounds. Thus, the develop-
ment of a convincing method to authenticate the growth 
year of AG is of great importance to prevent adulteration.

To this end, 106 batches of AG samples were collected 
as a data set. A preliminary analysis of 9 physicochemi-
cal features measured experimentally revealed that most 
features positively correlated with the growth year. That 
is, variation in cultivation age has a huge impact on the 
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constituents, which may result in different bioactivi-
ties of the final AG product. However, intrinsic relations 
between cultivation age and chemical profiles can be a 
good pointcut for the construction of the model. Apart 
from the growth year, producing region is another fac-
tor that affects the content of active ingredients in AG, 
and should be paid special attention in the future when 
evaluating and using predictive models for cultivation 
age estimation.

Then the whole data set was split according to their 
cultivation regions for training and validation. The rea-
soning for choosing test sets based on cultivation regions 
instead of data distributions is as follows. Typically, 

stratified sampling and random sampling methods are 
adopted for train-test split to obtain a test set that has a 
similar data distribution to that of the training set. This 
works well when the distribution of the training/test set 
represents the real-world scenarios [30]. In our case, 
however, it is highly possible that the predictive models 
will be applied for AG products from cultivation areas 
that are very different from what we have included in the 
training set. Therefore, the generalizability of our models 
needs to be properly evaluated by using test sets that are 
collected from varied regions and have different feature 
distributions. These heterogeneous data were also useful 
for the rigorous construction of AD.

Fig. 4  3D surface plots of A the number of samples in the test sets that fall within the AD (IDs) as a function of k and Z; and B–E the negative value 
of MSE predicted by the four ML models for the test samples within the AD as a function of k and Z. k = 6 and Z = 1.6 (black dot in each figure) are 
chosen to define the AD for all models

Table 2  Performance of the models on test samples that fall inside (ID) and outside (OD) the AD defined by k = 6 and Z = 1.6

The number of ID or OD samples is given in parentheses

Models MSE of the test set 1 MSE of the test set 2 MSE of the two test sets

ID (20) OD (5) ID (1) OD (16) ID (21) OD (21)

EN 0.288 0.063 0.658 1.414 0.306 1.093

KNN 0.087 0.000 0.246 1.000 0.095 0.762

SVM 0.082 0.020 0.288 1.236 0.092 0.946

MLP 0.020 0.000 0.233 1.324 0.030 1.009
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After optimization of the model, MLP shows the high-
est performance both in the training set and the test set 
1 with MSE values lower than 0.018. While the EN has 
the least predictive ability. The poor prediction power of 
EN indicates that the relationship between the contents 
of active ingredients in AG and the cultivation ages is 
far from linear, and non-linear models should be consid-
ered in an attempt to improve the accuracy of predictive 
models on AG cultivation ages. Comparatively, MLP is 
more robust by having neurons with non-linear activa-
tion functions and high connectivity between layers, and 
would be more suitable for such complex problems.

Concerning the test set 2 (produced in Shanxi), all the 
models had high prediction bias, probably owing to the 
different feature patterns of AG samples in the test set 
2. Therefore, an AD was customized to the models, and 
the defined AD could rule out the samples with higher 
errors. The results highlight the necessity for a rigorous 
definition of AD in the predictive model to ensure the 
reliability for the prediction of unknown AG samples. 
Besides, more representative samples originated from 
major cultivation regions need to be collected in the 
follow-up research for model construction in order to be 
more broadly applicable.

Conclusion
In the present study, in silico models derived from four 
ML algorithms (EN, KNN, SVM, MLP) were constructed 
to predict the growth year of AG based on a curated data 
set consisting of 106 samples. Nine physicochemical fea-
tures including the length and weight of the sample, and 
the content of 7 chemical constituents of AG were meas-
ured by experiments and used as inputs of the predictive 
models. Two external test sets consisting of AG samples 
produced in different regions were used to evaluate the 
generalizability of the models. Furthermore, a method-
ology based on Euclidean Distance was developed and 
proved to be feasible to estimate the uncertainty of the 
predictive results for all models. Most models achieved 
good accuracy on AG age prediction, especially MLP 
with an MSE of 0.030 on the test data within the AD. 
These results indicate that the ML methods have great 
potential for the prevention of age falsification and regu-
lation of the Chinese medicine market.

In conclusion, we developed an effective approach for 
the accurate prediction of the AG cultivation ages. This 
is the first report on the AG cultivation age prediction by 
using AD-equipped ML methods. Particularly, all mod-
els and data used in this study are open access encour-
aging further analysis on the feature-label relationship 
and model training for tasks not limited to AG age 
authentication.
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