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Abstract 

Colorectal cancer (CRC) is a disease with complex pathogenesis, it is prone to metastasis, and its development 
involves abnormalities in multiple signaling pathways. Surgery, chemotherapy, radiotherapy, target therapy, and 
immunotherapy remain the main treatments for CRC, but improvement in the overall survival rate and quality of life 
is urgently needed. Traditional Chinese medicine (TCM) has a long history of preventing and treating CRC. It could 
affect CRC cell proliferation, apoptosis, cell cycle, migration, invasion, autophagy, epithelial–mesenchymal transi‑
tion, angiogenesis, and chemoresistance by regulating multiple signaling pathways, such as PI3K/Akt, NF‑κB, MAPK, 
Wnt/β‑catenin, epidermal growth factor receptors, p53, TGF‑β, mTOR, Hedgehog, and immunomodulatory signaling 
pathways. In this paper, the main signaling pathways and potential targets of TCM and its active ingredients in the 
treatment of CRC were systematically summarized, providing a theoretical basis for treating CRC with TCM and new 
ideas for further exploring the pathogenesis of CRC and developing new anti‑CRC drugs.
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Introduction
Colorectal cancer (CRC) is the third most common 
malignancy worldwide, with morbidity and mortality 
rates of 10% and 9.4%, respectively [1]. In the past dec-
ade, the incidence of CRC in people under 50 years of age 
has been increasing year by year [2]. The incidence rate of 
CRC is estimated to increase by about 80% worldwide by 
2035 [3]. Besides, it is the second most common tumor 
diagnosed in women and the third in men. It is worth 
mentioning that the incidence and mortality rate of CRC 

in women are approximately 25% lower than those in 
men [4]. CRC has become one of the risk factors threat-
ening public health [5]. The clinical symptoms of CRC 
are intestinal dysfunction, mainly including abdominal 
pain, abdominal distension, increased frequency of bowel 
movements, bowel discomfort, and rectal bleeding [6]. 
Since the early stage of clinical symptoms are not obvi-
ous, most patients are often in the advanced stage after 
diagnosis. Patients with advanced CRC may develop 
intestinal obstruction and other systemic symptoms 
(such as weight loss and anemia), and even metastasis 
to lymph nodes, liver, lung, bone and other sites, which 
eventually  leads to death [7]. Therefore, the study for 
effective treatment has become a research hotspot.

The pathogenesis of CRC is complex and diverse, and 
it is influenced by the interaction and influence of risk 
factors, such as genetics, diet, lifestyle, and inflamma-
tory bowel disease (IBD) [8–10]. A long-term diet rich in 
red meat and lacking in fruits and vegetables may cause 
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an increased incidence of CRC [11]. Most CRCs arise 
from cancer stem cells (CSC) within the colonic epithe-
lium, accumulating progressive genetic and epigenetic 
alterations. These alterations result in impaired gene 
expression or function, thus favoring the activation of 
oncogenes and the downregulation of tumor suppres-
sor genes [12]. The pathological features of CRC involve 
regional lymph node and distant metastasis, accompa-
nied by molecular markers, such as BRAF, Kirsten rat sar-
coma (K-Ras), microsatellite-unstable/instability (MSI) 
and caudal-related homeobox 2 (CDX2) [13]. BRAF, as a 
proto-oncogene, is involved in encoding serine/threonine 
protein kinases of the mitogen-activated protein kinase 
(MAPK) pathway; it acts as a direct effector of RAS; and 
it is involved in promoting tumor growth and survival 
[14]. Many studies have shown that BRAF mutations 
(BRAF-mt) are associated with prognosis and metasta-
sis in CRC and may be influenced by MSI status [15–18]. 
K-Ras protein, encoded by the proto-oncogene k-RAS, 
is an important component of the MAPK pathway [19]. 
K-RAS mutation (KRAS-mt) confers tumor cell growth 
at lower glucose concentrations than those required by 
normal cells and strongly promotes tumor cell growth 
[20]. CDX2 encodes transcription factors involved in reg-
ulating intestinal differentiation and development [21]. It 
also acts as a tumor suppressor, and it is associated with 
the pathogenesis of distal colon tumors [22, 23].

Currently, surgery, radiotherapy, chemotherapy, immu-
notherapy, and targeted therapy are the main treatments 
for CRC, but problems, such as surgical sequelae, chem-
otherapy resistance, toxic side effects, high metastasis, 
and recurrence rates, seriously affect the quality of life of 
patients [24, 25]. Traditional Chinese medicine (TCM), 
as a predominant source of natural medicines and herbal 
products, are essential sources for exploiting anti-CRC 
drugs [26]. As one of the effective means to treat CRC, 
TCM could exert anti-CRC effects in multiple targets and 
pathways while ameliorating the toxic side effects elicited 
by surgery chemotherapy, radiotherapy, target therapy, 
and immunotherapy and prolonging patients’ survival 
time [27, 28]. Experimental studies have shown that TCM 
and its components could effectively inhibit CRC cell 
proliferation, induce apoptosis, block cell cycle, promote 
cell autophagy, and inhibit angiogenesis; it also plays an 
anti-CRC role in cooperation radiotherapy and chemo-
therapy [29–32]. Regulating signaling pathways is one of 
the important mechanisms for CRC treatment. Exploring 
the mechanism of CRC-related signaling pathways could 
help further clarify the anti-CRC targets of TCM. There-
fore, in this study, the research progress of the regulation 
of CRC-related signaling pathways by TCM and its active 
ingredients was systematically summarized, providing a 

reference for further studies on the prevention and treat-
ment of CRC by TCM.

Phosphatidylinositol 3‑kinase/protein kinase‑B (PI3K/Akt) 
signaling pathway
The PI3K/Akt signaling pathway is one of the impor-
tant intracellular signaling pathways and a major effec-
tor downstream of receptor tyrosine kinases (RTKs) 
and G protein coupled receptors [33, 34]. This pathway 
is stimulated by various oncogenes and growth factor 
receptors, including platelet-derived growth factor recep-
tors, insulin like growth factor receptors, and epidermal 
growth factor receptors (EGFRs) [35]. The main proteins 
of this signaling pathway are PI3K and Akt [36]. Activa-
tion of PI3K promotes signal transduction cascades for 
tumor cell growth, survival, and metabolism [37]. Akt, 
as a serine-threonine kinase, is a major downstream tar-
get of PI3K, and it could directly respond to PI3K activa-
tion [38]. Akt/PKB kinase has three highly homologous 
isoforms: Akt1/PKBa, Akt2/PKBb, and Akt3/PKBg. Akt1 
is involved in the regulation of tumor growth, tumor cell 
invasion, and chemoresistance, and it is the main isoform 
found in various cancers. Alterations in Akt2 could be 
observed in breast cancer, ovarian cancer, pancreatic can-
cer, and CRC, and it is associated with tumor cell inva-
sion, metastasis, and survival. Akt3 is mainly expressed 
in melanoma, glioma, and some breast cancers, affecting 
tumor growth and drug resistance [39]. Several studies 
have demonstrated that the PI3K/Akt signaling path-
way is aberrantly activated in many cancers, and that it 
is closely related to tumor cell proliferation, apoptosis, 
invasion, epithelial–mesenchymal transition (EMT), 
stem cell-like phenotype, and tumor drug resistance [40], 
in addition to being involved in tumor angiogenesis [41]. 
Therefore, targeting the PI3K/Akt signaling pathway 
could contribute to anti-CRC therapy (Fig. 1).

Wogonin (WOG) is a flavonoid compound found in 
Scutellaria baicalensis Georgi (Huang Qin), which has 
been proven to inhibit tumor cell growth and induce 
apoptosis [42, 43]. The expression of light chain 3-II 
(LC3II); Beclin-1; caspase-3, -8, and -9; and Bcl-2-as-
sociated X (Bax) protein was upregulated, whereas that 
of B-cell lymphoma-2 (Bcl-2) was downregulated in 
WOG-treated SW48 cells. Cell cycle was also arrested in 
the G2/M phase. In addition, the expression of p-PI3K, 
p-Akt, phosphorylated signal transducer and activa-
tor of transcription 3 (p-STAT3) in SW48 cells showed 
a concentration-dependent decrease while the expres-
sion of total PI3K, Akt and STAT3 was not significantly 
affected. The above results suggested that WOG may 
induce apoptosis and arrest cell cycle in SW48 cells 
through PI3K/Akt pathway[44]. Coptisine (COP), the 
main active ingredient in Rhizoma coptidis (Huang Lian), 
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has antitumor activity [45, 46]. Huang et  al. [47] found 
that COP initiated extrinsic apoptotic pathways in vitro 
by inhibiting the PI3K/Akt signaling pathway and thus 
upregulation of cleaved caspase-8 and  -3. Meanwhile, the 
expression levels of Cyclin D1 and Cyclin E were down-
regulated, thus inducing G0/G1 phase cell cycle arrest. In 
HCT-116 CRC xenograft mice model, COP was found to 
inhibit tumor growth and effectively reverse the elevated 
serum markers carcinoembryonic antigen, carbohydrate 
antigen 19-9, and cytokeratin fragment antigen 21-1 in 
BALB/c nude mice. Emodin (EMD) is the main compo-
nent of Rheum palmatum (Da Huang), which has been 
widely used in the treatment of various diseases [48]. Dai 
et  al. [49] found that EMD inhibited the expression of 
VEGFR2, PI3K and p-Akt in HCT-116 cells and tumor-
bearing mice, suggesting that EMD may inhibit human 
CRC cell growth, adhesion and migration by suppress-
ing VEGFR2/PI3K/Akt signaling pathway. In addition, 
Liu et  al. [50] showed that triptolide (TP), an extract of 
Tripterygium wilfordii Hook F. (Lei Gong Teng), could 
reduce the phosphorylation of p-Akt (Thr308) in HT29 
cells and p-Akt (Ser473) in SW480 cells and exert anti-
proliferative effects through the Akt signaling pathway 
Platycodin D (PD) is a triterpenoid saponin-like ingredi-
ent from the Chinese herb Platycodon grandiflorum (Jie 
Geng) with multiple biological effects [51–53]. Liu et al. 
[54] found that the combination of PD and cetuximab 

downregulated the phosphorylation of PI3K and Akt in 
HCT116 and LoVo cells both in  vivo and in  vitro, and 
increased the cytotoxic effect of cetuximab. The syn-
ergistic effect between PD and cetuximab was attenu-
ated after application of Akt activator SC-79. The results 
mentioned above implied that PD may cause CRC cells 
to become more sensitive to cetuximab by inhibiting the 
PI3K/Akt signaling pathway. (Fig. 1).

Li et  al. [55] found that Gegen Qinlian Decoction 
(GQD) could inhibit CT-26 CRC growth accompa-
nied by upregulation of p-PI3K, p-Akt, phosphorylated 
forkhead box transcription factor O1 (p-FOXO1), and 
ankyrin repeat and BTB/POZ domain containing protein 
1 (ABTB1). Fang et al. [56] found that Tounong powder 
extracts (TNSEs) induced LoVo cell growth inhibition 
in a dose- and time-dependent manner; significantly 
downregulated the expression of PI3K, p-AKT, phos-
phorylated mechanistic target of rapamycin (p-mTOR), 
and p-p70s6k1; and upregulated the expression of 
cleaved caspase-9 and -3. These findings suggested that 
TNSEs may inhibit LoVo cells through the PI3K/Akt 
signaling pathway. Sun et al. [57] found that the expres-
sion of hypoxia-inducible factor-1α (HIF-1α), PI3K, 
Akt/p-Akt, hexokinase II, and glucose transporter type 1 
(GLUT1) was downregulated and that of caspase-3 and 
-9 was upregulated in 5-FU-resistant human CRC cells 
(HCT-8/5-FU) after the intervention of Jiedu Sangen 

Fig. 1     The active compounds of TCM and the Chinese herb formula act on the PI3K/Akt signaling pathway.GOD gegen qinlian decoction, 
TNSEs tounong powder, JSD, jiedu sangen    decoction. The figure was created by Figdraw (https:// www. figdr aw. com/ static/ index. html#/)

https://www.figdraw.com/static/index.html#/
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decoction (JSD). HIF-1α silencing showed a significant 
decrease in the expression levels of PI3K, Akt, and p-Akt, 
accompanied by an upregulation of caspase-6 and -7 
expression. This finding suggested that JSD inhibits glyc-
olysis through the PI3K/Akt/HIF-1α signaling pathway to 
reverse 5-FU resistance and induce apoptosis to enhance 
antitumor activity (Fig. 1).

Nuclear factor kappa‑beta (NF‑κB) signaling pathway
NF-κB is a ubiquitous transcription factor that could 
directly participate in mediating cyclotomic/neutral sign-
aling and regulate the expression of various cytokines 
and cell adhesion molecules involved in inflammation 
and immune responses [58, 59]. The activation of NF-κB 
correlates with apoptosis, cell cycle, proliferation, differ-
entiation, migration, and resistance to radiation/chemo-
therapy in tumor cells [60]. The five currently known 
members of the NF-κB family are as follows: p50/p105 
(NF-κB1), p52/p100 (NF-κB2), c-Rel, RelB, and p65 
(RelA); each protein has its Rel homologous structural 
domain that controls DNA binding, dimerization, and 
interaction with the repressor IκB [61]. In most quiescent 
cells, the IκB in the cytoplasm binds to NF-κB and inac-
tivates it by overriding the nuclear localization sequence 
to block DNA binding and nuclear uptake [58]. The 
IκB kinase (IKK) complex contains a regulatory subu-
nit IKKγ (NEMO), catalytic subunits IKKα and IKKβ, 

which are upregulated by the interaction of cell surface 
receptors, such as Toll-like receptor, T/B cell receptor, 
and tumor necrosis factor receptor with specific ligands 
[62]. IKK could cause IκB phosphorylation via ubiquitin-
proteasome pathway degradation to activate NF-κB and 
cause nuclear translocation [63]. In the nucleus, NF-κB 
binds to the enhancer elements of the immunoglobulin 
kappa light chain (κB sites) in activated B cells, trigger-
ing the expression of downstream genes that lead to the 
progression of inflammation or cancer [64, 65]. In human 
CRC adenocarcinoma, NF-κB expression is proportional 
to the abnormal activity of K-Ras [66]. The activation of 
NF-κB was found to be decreased in SW620 cells after 
K-Ras knockdown, possibly through the Ras/extracellu-
lar signal-regulated kinase (ERK)/IκBα signaling pathway 
[67] (Fig. 2).

Oridonin (ORI) is a bioactive ingredient extracted from 
Rabdosia rubescens   (Dong Ling Cao) [68]. It has been 
shown to have a therapeutic effect on various malignan-
cies, including liver cancer, skin carcinoma, and osteoma 
[69, 70]. Jin et al. [71] found that the expression of HECT 
and RCC1-containing protein 5 was upregulated in LoVo 
and SW480 cells, whereas activating protein-1 (AP-1), 
NF-κB, and p38 were downregulated after ORI treat-
ment. In-vivo studies confirmed that ORI first inhib-
ited the expression of AP-1 and then downregulated the 
expression of p38 and NF-κB, suggesting that ORI may 

Fig. 2     The active compounds of TCM and the Chinese herb formula act on the NF/κB signaling pathway.WMW Wu Mei Wan, ZJW Zuo Jin Wan. 
The figure was created by Figdraw (https:// www. figdr aw. com/ static/ index. html#/)

https://www.figdraw.com/static/index.html#/
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exert anti-CRC effects through the NF-κB signaling path-
way and P38-dependent MAPK signaling pathway. Bai-
calein (BE) is one of the four major flavonoids found in 
Scutellaria baicalensis Georgi (Huang Qin), which has 
anti-inflammatory and anti-cancer effects [72]. Kim et al. 
[73] found that BE could inhibit the NF-κB signaling 
pathway and regulate apoptosis, migration, invasion, and 
inflammatory response in CRC cells through activation 
of peroxisome proliferator-activated receptor γ. Berber-
ine (BBR) is a compound widely found in Chinese herbs, 
such as Coptidis Rhizoma (Huang Lian), Phelloden-
dron chinense Schneid. (Huang Bai), and Berberis silva-
taroucana Schneid. (Xiao Bo). Chen et  al. [74] found 
that BBR reversed the upregulated protein expression of 
Ki-67 and β-catenin; downregulated the expression of 
interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), 
NF-κB, matrix metallopeptidase 9 (MMP9), Ereg, and 
Muc16 in AMO/DSS model mice; and regulated cell pro-
liferation, angiogenesis, and invasion through the NF-κB 
signaling pathway by exerting anti-CRC effects. Cur-
cumin, the major component of Curcuma longa L. (Jiang 
Huang), can inhibit the proliferation of CRC cell lines 
and enhance capecitabine-induced apoptosis in  vitro. 
It also inhibited the expression of NF-κB and its regu-
lated gene products cyclo-oxygenase-2 (COX2), Cyclin 
D1, c-Myc, MMP-9, intercellular adhesion molecule-1 
(ICAM-1), C-X-C motif chemokine receptor 4 (CXCR4), 
Survivin, Bcl-2 and vascular endothelial growth factor 
(VEGF). In vivo studies showed that curcumin was able 
to inhibit the growth and distal metastasis of HCT-116 
CRC, and this inhibition was enhanced when combined 
with capecitabine. According to the aforementioned find-
ings, curcumin may increase capecitabine’s anti-prolifer-
ative, invasive, metastatic, angiogenic, and pro-apoptotic 
actions on CRC via suppressing the NF-κB signaling 
pathway [75]. (Fig. 2).

In addition, herbal compounds may exert anti-CRC 
effects through the NF-κB pathway. Wu Mei Wan 
(WMW) is a herbal compound commonly used in clini-
cal practice for the treatment of febrile diseases and other 
gastrointestinal related diseases [76]. Jiang et  al. [77] 
found that AOM/DSS-induced colitis-associated CRC 
(CAC) mice showed downregulation of p65 and p-STAT3 
expression in colonic tissues and downregulation of inter-
leukin 6 (IL-6), p65, and p-STAT3 expression in serum 
after WMW intervention. This finding suggested that 
WMW inhibited tumor cell proliferation and improved 
CAC symptoms in model mice through downregulation 
of the NF-κB/IL-6/STAT pathway. Zuo Jin Wan (ZJW) 
consists of Coptidis Rhizoma (Huang Lian) and Evodia 
rutaecarpa   (Juss.) Benth. (Wu Zhu Wu) in a 6:1 ratio. 
Sui et  al. [78] found that ZJW could downregulate the 
phosphorylation of Akt (Ser473) and NF-κB expression 

in HCT-116/L-OHP cells. Moreover, the above down-
regulation was attenuated after treatment with PI3K/Akt 
activator, suggesting that ZJW reverses drug resistance in 
human CRC cells by blocking the PI3K/Akt/NF-κB sign-
aling pathway and enhances the anti-apoptotic effect of 
oxaliplatin (Fig. 2).

Mitogen‑activated protein kinase (MAPK) signaling 
pathway
MAPKs are serine-threonine kinases that could link 
extracellular signals to regulate cellular activities, such 
as cell proliferation, differentiation, migration, and apop-
tosis [79, 80]. The mammalian MAPK family includes 
ERK1/2; ERK3/4; ERK5; ERK7/8; Jun N-terminal kinase 
(JNK)1/2/3; and p38-α, -β, -γ, and -δ [81]. Each signal 
transduction axis of MAPK contains three components: 
MAPK, MAPK kinase (MAP2K), and MAPK kinase-
kinase (MAP3K), which are named in accordance with 
their proximity to the nucleus [82]. Activation of MAPK 
could regulate transcription factors, such as ETS like-1 
protein, c-Jun, transcription factor 2 (ATF2), and p53 
[83]. The activation of MAPK pathway is the result of 
interactions between the kinase components [84]. In 
the MAPK/ERK pathway, phosphorylation of Raf (Raf-
1, B-Raf, and A-Raf) activates MEK1/2, which leads to 
phosphorylation of ERK1/2 [79]. ERK1/2 shuttles from 
the cytoplasm to the nucleus and regulates gene expres-
sion by phosphorylating many transcription factors; 
the microtubule-associated proteins (MAP1, MAP2, 
and MAP4) in the cytoplasm are also targets of ERK1/2 
kinases [85]. MEK and ERK1/2 are involved in cell sur-
vival, proliferation, and differentiation depending on 
their phosphorylated targets [86]. Activation of ERK/
MAPK signaling pathway could promote tumor cell 
invasion and metastasis through upregulation of MMP 
expression [87]. JNK and p38 signaling pathways are acti-
vated by pro-inflammatory cytokines, such as TNF-α and 
IL-1β, or are involved in response to cellular stress [88]. 
MKK4 and MKK7, as representatives of MAP2K kinases, 
are JNK sub-pathways that are activated when MAP2K is 
triggered. Phosphorylation of these components activates 
JNK, which, in turn, phosphorylates AP-1 transcription 
factors, such as c-Jun, Fos, and Fos-related antigen1/2 
(FRA1/2) [85]. AP-1 is associated with cell proliferation, 
survival, differentiation, inflammation, migration, and 
metastatic activities. Other downstream targets of JNK 
include the mitochondrial apoptosis regulator Bcl-2 fam-
ily (Bcl-2, Bcl-xl, Bad, Bim, and Bax) and tumor suppres-
sor p53, which are involved in the pro-apoptotic function 
of JNK [89]. In addition, JNK could promote cancer 
invasion and metastasis by promoting the expression of 
MMP7 and MMP9 [90]. The MAPK signaling pathway is 
an important regulator of tumor cell response to internal 
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and external environmental stimuli. Therefore, modu-
lation of the MAPK signaling pathway could help treat 
CRC (Fig. 3).

Ginsenoside Rh1 (Rh1), a compound of Panax ginseng 
C.A. Mey (Ren Shen)., has significant antitumor activity 
against human hepatocellular carcinoma, THP-1 acute 
monocytic leukemia cells, and astroglioma [91–93]. Lyu 
et al. [94] found that the expression of MMP1 and MMP3 
was downregulated; the expression of tissue inhibitor of 
metalloproteinase 3 was upregulated; and the ratios of 
p-P38/P38, p-ERK1/2/ERK1-2, and p-JNK/JNK were 
decreased in SW620 cells after Rh1 intervention. They 
also showed the same trend in xenograft tumor-bearing 
mice, suggesting that Rh1 could exert anti-CRC effects 
through the MAPK signaling pathway. Diterpenoid C is 
an ingredient of Curcuma longa L. (Jiang Huang) [95]. 
Shen et  al. [96] found that diterpenoid C inhibited the 
phosphorylation of ERK, JNK, and p38 MAPK and pro-
moted the cleavage of caspase-3 in SW620 cells, sug-
gesting that diterpenoid C exerts antiproliferative and 
pro-apoptotic effects through the MAPK signaling 
pathway. Podophyllotoxin (PT) is an active ingredient 
extracted from Podophyllum peltatum (Gui Jiu), which 
is highly cytotoxic to various cancer cells [97–99]. Lee 
et  al. [100] found that PT intervention increased the 
level of reactive oxygen species (ROS), upregulated the 
expression of ER stress markers GRP78 and CHOP, and 

increased the phosphorylation of p38 MAPK in HCT-
116 cells, suggesting that PT could induce the p38 MAPK 
signaling pathway and ER stress-mediated apoptosis 
through upregulation of ROS in HCT-116 cells, accom-
panied by G2/M phase cell-cycle arrest (Fig. 3).

In addition, Deng et  al. [101] found that the Chinese 
herbal formula Yi-Qi-Fu-Sheng (YQFS) exerted anti-CRC 
effects in  vivo and in  vitro. In  vivo, YQFS significantly 
inhibited tumor growth by downregulating the expres-
sion of MMP2 and MMP9 through inhibiting the ERK 
pathway. In vitro, YQFS inhibited HCT-116 cell invasion 
and migration and induced apoptosis by targeting ERK 
phosphorylation to regulate the ERK/MAPK pathway 
and its downstream factors. Guo et  al. [102] found that 
Qizhen capsule (QZC), a commonly used clinical anti-
cancer agent, could upregulate the levels of cleaved cas-
pase-9 and -3, Bax, and nonsteroidal anti-inflammatory 
drug-activated gene-1/growth differentiation factor-15 
(NAG-1/GDF15) and the phosphorylated expression 
of mTOR, MAPK/ERK, AMP-activated protein kinase 
(AMPK), and p38 and downregulate the expression of 
Bcl-2. QZC could exert a pro-apoptotic effect on HCT-
116 cells by activating the MAPK/ERK signaling path-
way mediating the upregulation of NAG-1/GDF15. Lee 
et al. [103] found that the expression of p-JNK and p-p38 
MAPK was downregulated in HCT-116 cells after Geiji-
gajakyak decoction (GJD) intervention, suggesting that 

Fig. 3     The active compounds of TCM and the Chinese herb formula act on the MAPK signaling pathway.YQFS Yi‑Qi‑Fu‑Sheng, QZC Qizhen 
capsule, GJD Geijigajakyak    decoction. The figure was created by Figdraw (https:// www. figdr aw. com/ static/ index. html#/)

https://www.figdraw.com/static/index.html#/
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GJD plays a role in anti-CRC invasion through JNK and 
p38 MAPK signaling pathways (Fig. 3).

Wnt/β‑catenin signaling pathway
The Wnt signaling pathway could be divided into canoni-
cal (β-catenin-dependent activity) and non-canonical 
(β-catenin-independent activity) Wnt pathways [104]. 
The β-catenin-dependent signaling pathway is mainly 
involved in the regulation of cell proliferation, and the 
β-catenin-independent signaling pathway is associated 
with cell mobility and polarity [105, 106]. The canoni-
cal Wnt/β-catenin pathways involve several interacting 
proteins, including the serine/threonine kinases glyco-
gen synthase kinase 3beta (GSK3β) and casein kinase 1 
(CK1), the tumor suppressors Axin and adenomatous 
polyposis coli (APC), and the E3 ubiquitin ligase β-TrCP, 
together forming the destruction complex; Axin is the 
backbone of the complex, interacting with β-catenin, 
GSK3β, and CK1 [107]. Activation of canonical Wnt/β-
catenin pathways allows β-catenin to accumulate in the 
cytoplasm and further translocate to the nucleus as a 
transcriptional co-activator of T-cell transcription fac-
tor (TCF)/lymphoid enhancer factor (LEF) [108, 109]. 
The activity of Wnt/β-catenin signaling is related to the 
level of β-catenin in the nucleus, and regulation of the 
level of β-catenin is the basis of controlling the Wnt/β-
catenin signaling pathway [110]. β-catenin binds to its 

transcription factors and causes transcription of target 
genes, such as c-Myc, cyclin D1, and MMPs [111]. Aber-
rant activation of the Wnt/β-catenin signaling pathway 
contributes to cell proliferation, differentiation, and 
renewal of tumor stem cells [112]. In most CRCs, over-
expression of target genes in the Wnt/β-catenin signal-
ing pathway induces dysregulation of the CRC cell cycle, 
along with accelerated invasion and metastasis [113, 114]. 
Regulation of the Wnt/β-catenin signaling pathway con-
tributes to anti-CRC proliferation and metastasis effects 
(Fig. 4).

Several studies have confirmed that emodin induces 
apoptosis and inhibits the migration and invasion of 
colon cancer cells [115, 116]. Pooja et  al. [117] showed 
that emodin significantly inhibited the mRNA expression 
of CTNNB1 (β-catenin) and transcription factor-7-like-2 
(TCF7L2) and the expression of cyclin D1, c-Myc, snail, 
vimentin, MMP2, and MMP9, the downstream targets 
of Wnt signaling in human colon cancer cells. Further 
investigation of the inhibitory mechanism of emodin on 
Wnt signaling revealed that emodin downregulated coac-
tivator p300 and upregulated transcriptional repressor 
HBP1 at the mRNA and protein levels, suggesting that 
emodin exerts anti-CRC effects by inhibiting the Wnt 
signaling pathway. Ginkgolide C (GGC) is a diterpenoid 
lactone compound isolated from Ginkgo biloba L. (Yin 
Xing Ye) [118, 119]. Yang et  al. [120] found that GGC 

Fig. 4     The active compounds of TCM and the Chinese herb formula act on the Wnt/β‑catenin signaling pathway.WCA  Weichang’an, ZJW Zuo Jin 
Wan, PNS Pai‑Nong‑San. The figure was    created by Figdraw (https:// www. figdr aw. com/ static/ index. html#/)

https://www.figdraw.com/static/index.html#/
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downregulated the Wnt/β-catenin signaling cascade 
and the expression of MMP2, MMP9, Wnt3a, β-catenin, 
and β-catenin downstream signals (Axin-1, p-GSK3β, 
and β-TrCP) and their target genes (c-myc, cyclin D1, 
and survivin) in HT-29 cells, suggesting that GGC may 
play a role in the anti-proliferation, anti-invasion, anti-
migration and pro-apoptosis of CRC cells by targeting 
the Wnt/β-catenin signaling pathway. Curcumin, the 
main component of Curcuma longa L. (Jiang Huang), 
has also shown antitumor activity [121–123]. Jiang et al. 
[124] found that curcumin could significantly upregulate 
the expression of CDX2; downregulate the expression 
of Wnt3a and Wnt downstream signaling genes, such as 
c-Myc, surviving, and cyclin D1; and decrease the nuclear 
translocation of β-catenin in SW620 cells. After silencing 
the CDX2, the inhibitory effects of curcumin on c-Myc, 
surviving, and cyclin D1 were significantly reduced. 
These results suggested that curcumin inhibits the Wnt/
β-catenin signaling pathway by activating CDX2 and then 
exerts anti-proliferative and pro-apoptotic effects on 
SW620 cells. In addition, baicalein, the active ingredient 
in Scutellaria baicalensis Georgi, alleviates oxaliplatin-
induced peripheral neuropathy, possibly also through the 
Wnt/β-catenin signaling pathway [125] (Fig. 4).

Tao et al. [126] found that the Chinese herbal formula 
Weichang’an (WCA) dose-dependently upregulated rho 
GTPase activating protein 25 (ARHGAP25) expression 
in HCT-116 cells while downregulating the expression of 
MMP7, MMP9, zinc finger E-box binding homeobox  1 
(ZEB1), and β-catenin, suggesting that inhibition of the 
Wnt/β-catenin signaling pathway is the mechanism by 
which WCA exerts its anti-CRC migratory and invasive 
effects in  vitro. Pan et  al. [127] found that the expres-
sion of 5-hydroxytryptamine receptor D (5-HTR1D) and 
axin-1 was dose-dependently increased, whereas that 
of dishevelled 2 (Dvl2), p-GSK-3β, lymphoid enhancer-
binding factor 1 (LEF1), transcription factor 4 (TCF4), 
MMP2, MMP7, ICAM-1, and CXCR4 was dose-depend-
ently decreased in SW408 cells treated with Zuo Jin Wan 
(ZJW) extract. This finding indicated that the anti-CRC 
activity of ZJW extract could be achieved by inhibit-
ing the 5-HTR1D-Wnt/β-catenin signaling pathway. In 
addition, Zhang et  al. [128] found that Pai-Nong-San 
(PNS) was protective against AOM/DSS-induced colonic 
injury and able to downregulate p-GSK3β, β-catenin, and 
c-Myc while upregulating GSK3β and p-β-catenin. These 
results suggested that PNS could suppress inflammation, 
improve intestinal microbiota, and inhibit the Wnt sign-
aling pathway to inhibit CRC development (Fig. 4) .

EGFR signaling pathway
The EGFR family is composed of four related domains, 
namely, the extracellular ligand-binding domain, the 

hydrodynamic transmembrane region, the intracellular 
RTK domain, and the C-terminal domain, which could 
assist in participating in a series of physiological activi-
ties related to epithelial cells [129–133]. Multiple ligands, 
including EGF, bind to the receptor and induce its dimer-
ization, thereby activating tyrosine kinase (TK) and mul-
tiple downstream effectors [134]. Many ligands, such as 
am-phiregulin (AR), betacellulin, epidermal growth fac-
tor (EGF), heparin-binding EGF-like growth factor, and 
transforming growth factor α (TGF-α) could activate 
EGFR [134, 135]. The EGFR phosphorylation response is 
activated and then signals to downstream pathways, such 
as the Ras/MAPK pathway, the PI3K/Akt pathway, and 
the phospholipase C/protein kinase C signaling cascade, 
which ultimately participate in various cellular activi-
ties such as cell survival, proliferation, differentiation, 
motility, and apoptosis [136, 137]. EGFR and other fam-
ily members are overexpressed or amplified in cancer, 
causing uncontrolled proliferation of tumor cells. The 
receptors are internalized and disrupted upon activa-
tion, attenuating the signal or cycling to the outer mem-
brane, resulting in persistent signaling [132, 133]. EGFR 
is overexpressed in most solid tumors, such as non-small 
cell lung cancer, head and neck squamous cell carcinoma, 
CRC, and breast cancer [138–140]. Such tumors are 
aggressive, drug resistant, and rapidly growing. There-
fore, targeting EGFR is one of the directions to develop 
and design anti-cancer drugs. Currently, the EGFR inhib-
itors cetuximab and pantitumumab are clinically used to 
treat mCRC [141, 142] (Fig. 5).

8-Gingerol is one of the main active ingredients of Zin-
giber officinale Rosc (Sheng Jiang) [143]. Hu et  al. [144] 
found that the phosphorylation levels of EGFR and its 
downstream effectors STAT3 and ERK were reduced 
in HCT-166 and DLD1 cells after 8-gingerol treatment, 
which, in turn, led to the downregulation of the expres-
sion of target genes, cyclin D1, c-Myc, and MMP2. 
Meanwhile, the addition of EGF could restore the above 
phosphorylation levels and protein expression, suggest-
ing that 8-gingerol exerts its anti-proliferative and migra-
tory effects on CRC cells through the EGFR/STAT/ERK 
signaling pathway. Gambogic acid (GA) is an active com-
ponent extracted from Gamboge hanburyi (Teng Huang), 
which has been proven to have antitumor effects in many 
tumors [145–147]. Wei et al. [148] found that the expres-
sion of stemness-related genes, such as Nanog, octamer-
binding transcription factor 4, SRY-box transcription 
factor 2 (SOX2), aldehyde dehydrogenase 1, cluster of 
differentiation 133 (CD133), and B-lymphoma Mo-MLV 
insertion region 1 (Bmi-1), were significantly reduced 
in CRC cell lines after GA intervention. The protein 
expression of its downstream gene zinc-finger protein 36 
(ZFP36) was enhanced by inhibiting the phosphorylated 



Page 9 of 31Chen et al. Chinese Medicine           (2023) 18:14  

expression of EGFR and ERK. The findings suggested that 
GA could reduce stemness-related genes in CRC cells and 
exert inhibitory effects on CRC stem cells by suppress-
ing the activation of the EGFR/ERK/ZFP36 signaling 
pathway. Norcantharidin (NCTD) is an active ingredi-
ent isolated and demethylated from Mylabris phalerata 
Pall (Ban Mao), which has significant antitumor activity 
[149]. Qiu et  al. [150] found that NCTD inhibited the 
expression of EGFR, human epidermal growth factor 
receptor-2, and c-MET factor and their phosphoryla-
tion in HCT-116 and HT-29 cells in a dose-dependent 
manner; downregulated the expression of cycle-related 
proteins cyclinD1, Rb, and cyclin-dependent kinase 4; 
induced G2/M phase block; and promoted apoptosis. In 
addition, Shan et  al. [151] found that ursolic acid (UA), 
the active ingredient contained in Chinese herbs, such as 
Hedyotic diffusa (Bai Hua She She Cao) and Radix acti-
nidiae (Mi Hou Tao), also exerted anti-proliferative and 
pro-apoptotic effects on HT-29 cells by a mechanism 
related to activation of caspase-3 and -9; downregulation 
of Bcl-2 and Bcl-xL protein expression; and inhibition of 
phosphorylation of EGFR, RK1/2, p38 MAPK, and JNK 
expression. This finding suggested that UA may exert 
anti-CRC effects through inhibition of the EGFR/MAPK 
signaling pathway (Fig. 5).

p53 signaling pathway
The human p53 gene is located on chromosome 17p, and 
it consists of 11 exons and 10 introns [152]. As the “guard-
ian of the genome,” p53 could induce cell cycle arrest, 
apoptosis, or senescence in the presence of cellular stress, 
thus preventing tumor progression [153]. In normal 
stress-free cells, the level of p53 remains low. Once p53 is 
activated, MDM2, an E3 ubiquitin ligase, is upregulated, 
leading to ubiquitination of p53 and mediation of its deg-
radation, which forms an autoregulatory negative feed-
back loop [154, 155]. Activation of p53 triggers intrinsic 
(mitochondria) and extrinsic (death receptors) apoptotic 
pathways [156]. In the intrinsic pathway, p53 induces the 
expression of pro-apoptotic Bcl-2 family proteins, such 
as p53-upregulated modulator of apoptosis and Bax, 
and downregulates Bcl-2 to trigger permeabilization of 
the outer mitochondrial membrane. Subsequently, the 
cytochrome c in the mitochondria is released into the 
cytoplasm; binds to apoptotic protease activating factor 
1; induces activation of promoter caspase-9; and further 
activates the actuators caspase-3, -6, and -7 [157]. The 
exogenous pathway mediated by p53 is accompanied by 
the upregulation of death receptors, such as Fas (CD95/
APO-1), DR5 (TRAIL-R2), and p53-induced protein with 

Fig. 5     The active compounds of TCM act on the EGFR signaling pathway. The figure was created by Figdraw    (https:// www. figdr aw. com/ static/ 
index. html#/)

https://www.figdraw.com/static/index.html#/
https://www.figdraw.com/static/index.html#/
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a death domain, which, together with caspase-8, form a 
death-inducing signal transduction complex to further 
activate caspase-3 and induce apoptosis [158]. p53 is the 
most commonly mutated gene in human cancers [159]. 
Mutations or loss of function in the p53 gene have been 
reported in approximately 50–70% of CRC cases [160]. 
Mutations in p53 not only play a key role in the adenoma-
carcinoma transformation of tumors during pathogenesis 
but also contribute to the aggressiveness of CRC [153, 
161]. In addition, p53 interacts with cyclooxygenase-2 to 
promote inflammation and CRC cell proliferation [162]. 
Reactivation and restoration of p53 function have great 
potential in the treatment of CRC (Fig. 6).

Icariin is an active ingredient extracted from Herba 
epimedii (Yin Yang Huo), which has been shown to have 
antitumor activity against human malignancies [163, 
164]. Tian et al. [165] found that the levels of p21, p-p53, 
and Bax in HCT-116 cells treated with icariin increased, 
whereas those of Bcl-2 decreased. These results indicated 
that icariin could induce apoptosis of HCT-116 cells by 
activating the p53 pathway. Ligustrazine (LZ), the active 
ingredient in Ligusticum Chuanxiong Hort. (Chuan 
Xiong), has shown antitumor activity in vitro and in vivo, 
and it is capable of anti-angiogenesis and reversing drug 
resistance [166–168]. Bian et  al. [169] found that LZ 
could dose-dependently upregulate the levels of p53, Bax, 
cleaved caspase-3, cleaved caspase-9, and cleaved PARP 

and downregulate the level of Bcl-2 in SW480 and CT26 
cells. Moreover, the expression levels of these proteins 
were reversed after pretreatment with the p53 inhibitor 
PFT-α, suggesting that LZ-induced apoptosis of SW480 
and CT26 cells was mediated through the p53-dependent 
mitochondrial pathway. Scutellarin is a flavonoid isolated 
from Scutellaria barbata D. Don (Ban Zhi Lian). Yang 
et al. [170] found that the expression of Bcl-2, p-p53, and 
p21 was significantly decreased, whereas that of Bax was 
significantly increased in HCT-116 cells after scutellarin 
intervention. These results suggested that the p53 path-
way may be involved in scutellarin-induced apoptosis of 
HCT-116 cells. In addition, Ganoderma lucidum polysac-
charides (GLPs), which are isolated from spores, mycelia, 
and fruiting bodies of G. lucidum (Ling Zhi), showed 
anticancer effects [171, 172]. Jiang et al. [173] found that 
HCT-116 cells transfected with mutant p53R273H and 
p53248W showed upregulated expression of Bax and p21 
and underwent G1 phase cell-cycle arrest and apoptosis 
after combined treatment of GLPs and GLPs combined 
with 5-FU. These findings showed that GLPs exert their 
effects on inducing growth inhibition and apoptosis in 
CRC cells through reactivation of p53 (Fig. 6).

TGF‑β/Smad signaling pathway
The transforming growth factor-β (TGF-β) family pro-
teins include TGF-β1, -β2, and -β3; activins; nodal; bone 

Fig. 6     The active compounds of TCM act on the p53 signaling pathway. The figure was created by Figdraw (https:// www. figdr aw. com/ static/ 
index. html#/)

https://www.figdraw.com/static/index.html#/
https://www.figdraw.com/static/index.html#/


Page 11 of 31Chen et al. Chinese Medicine           (2023) 18:14  

morphogenetic proteins; and growth proteins and dif-
ferentiation factors [174]. As a multifunctional cytokine, 
TGF-β exerts pleiotropic effects on cell physiology, such 
as proliferation, survival, differentiation, and migration 
[175]. SMAD proteins are key intracellular signaling 
mediators and transcription factors for TGF-β superfam-
ily signaling [176]. TGF signaling is initiated by the TGF 
ligand binding to the type II TGF receptor (TGFBR2). 
Upon binding to the ligand, TGFBR2 recruits and phos-
phorylates the type I TGF-β receptor, which, in turn, 
initiates downstream signaling by phosphorylating the 
transcription factors SMAD2 and SMAD3 [177] (Fig. 7).

TGF-β plays a double-edged role in the progression 
of tumors. In normal epithelial cells and early tumor 
cells, TGF-β increased the expression of CDK inhibi-
tors p15INK4, p21CIP1, p27KIP1, and p57KIP2 via the 
canonical SMAD pathway to block cell cycle progres-
sion [178, 179]. However, in tumor cells, TGF-β pro-
motes tumor progression through mechanisms, such as 
induction of EMT [180, 181]. The core components of 
the TGF-β pathway exhibit high levels of loss-of-func-
tion mutations in gastrointestinal tumors. In CRC, this 
phenomenon was mainly manifested by mutations in 
TGFBR2, SMAD2, and SMAD4, which suppressed the 
tumor inhibitory ability of TFG-β [182, 183]. In addi-
tion, TGF-β receptor could induce other signaling, such 

as MAPK, PI3K/Akt, Janus kinase-signal transducer, and 
STAT [184] (Fig. 7).

Celatrol is an effective active ingredient in T. wilfordii 
Hook F.  (Lei Gong Teng), which has anti-inflammatory 
and anticancer effects [185]. Jiang et al. [186] found that 
celastrol treatment significantly inhibited the mRNA 
and protein levels of TGF-β1, TGF-βRI, and TGF-βRII 
in HCT-116 and SW620 cells. It also inhibited Smad 
signaling and decreased the expression of p-Smad2/3 
and Smad4. These results suggested that the TFG-β/
Smad signaling pathway is involved in celastrol-medi-
ated anti-CRC effects. Magnolol is an active ingredient 
extracted from the bark of Houpu magnolia (Magno-
lia officinalis)  (Hou Pu), and it has a wide range of bio-
logical activities [187–189]. Chei et  al. [190] discovered 
that in magnolol-treated HCT-116 cells, the expres-
sion of epithelial markers, such as E-cadherin, zona 
occludens 1 (ZO-1), and claudin, increased in a concen-
tration-dependent manner, whereas that of mesenchy-
mal markers, such as N-cadherin, TWIST1, Slug, and 
Snail, decreased in a concentration-dependent man-
ner. The expression of p-ERK, p-GSK3β, and p-Smad, 
the downstream proteins of TGF-β signaling pathway, 
decreased. These results suggested that magnolol inhib-
its TGF-β-induced EMT by blocking signal transduction 
downstream of TGF-β signaling. Oxymatrine (OM), the 

Fig. 7     The active compounds of TCM and the Chinese herb formula act on the TGF‑β/Smad signaling pathway.JPJD JianPi JieDu Recipe, 
MSD modified Shenlingbaizhu Decoction,PZH Pien Tze Huang. The figure was created by Figdraw (https:// www. figdr aw. com/ static/ index. html#/)

https://www.figdraw.com/static/index.html#/
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active ingredient in Sophora flavescens Alt. (Ku Shen), 
could inhibit the growth of various types of tumor cells 
[191, 192]. Wang et al. [193] found that the expression of 
E-cadherin was upregulated in RKO cells after OM inter-
vention. On the contrary, the expression of α-smooth 
muscle actin (α-SMA), fibronectin, TGF-β1, plasmino-
gen activator inhibitor-1 (PAI-1), Smad2/3/4, p-Smad2, 
and p38 was downregulated, implying that OM could 
inhibit the TGF-β pathway activation and EMT in CRC 
by reducing the p38-dependent increase in PAI-1 expres-
sion (Fig. 7).

Herbal compounds could also exert anti-CRC effects 
through the TGF-β/Smad pathway. Liu et  al. [194] 
demonstrated that Jianppi Jieu Recipe (JPJD) could 
downregulate the expression of p-Smad2/3 and Snail 
and upregulate the expression of E-cadherin in TGF-
β-stimulated Lovo cells in  vitro. In-vivo experiments 
showed that JPJD could upregulate the expression of 
E-cadherin and downregulate the levels of p-Smad2/3 
and Snail in orthotopic CRC tumor tissues in nude mice, 
suggesting that JPJD may inhibit TGF-β-induced EMT 
via the expression of Snali/E-cadherin mediated by the 
TGF-β/Smad2/3 signaling pathway, thus exerting anti-
CRC invasive and metastatic effects. Dai et  al. [195] 
found that modified Shenlingbaizhu Decoction (MSD) 
treatment downregulated the expression of TβRI, CD133, 
Vimentin, Oct-4  A, and SOX2 in mouse tumor tissues. 
After the use of TGF-β inhibitor, EMT signal transduc-
tion was inhibited, and the pluripotency of colorectal 
cancer stem cells (CSCs) was reduced. These results sug-
gested that MSD restrains the pluripotency of CSCs by 
suppressing TGF-β/Smad signaling-induced EMT in vivo 
while inhibiting the proliferation, migration, and invasion 
of CRC cells. In addition, Pien Tze Huang could reverse 
tumor drug resistance by inhibiting the phosphorylation 
of N-cadherin, TGF-β, Smas2/3, and Smad 4 in tumor 
tissues while promoting the expression of E-cadherin, 
thereby inhibiting the movement, invasion, and EMT of 
CRC cells [196] (Fig. 7).

mTOR signaling pathway
mTOR belongs to the PI3K-related kinase family, a 
289  kDa serine/threonine protein kinase containing 
2550 amino acids and encoded by 7650 nucleotides [197, 
198]. As a major regulator of cell growth and metabo-
lism, mTOR not only promotes the anabolic processes of 
ribosomes, proteins, nucleotides, fatty acids, and lipids 
but also inhibits catabolic processes, such as autophagy 
[199]. In mammals, mTOR contains two major pro-
tein complexes with different functions: mTOR com-
plex1 (mTORC1) and mTOR complex2 (mTORC2) 
[200]. mTORC1 contains mTOR, raptor, mLST8, and 

two negative regulators, PRAS40 and DEPTOR; it is 
sensitive to rapamycin [201–204]. mTORC2 consists of 
mTOR, rictor, mLST8, mSin1, and the newly identified 
components Protor, Hsp70, and DEPTOR; it is insensi-
tive to rapamycin treatment [205–208]. mTOR signaling 
has been reported to be overactivated in most human 
cancers, especially in relation to multiple biological pro-
cesses, such as cell proliferation, survival, autophagy, 
metabolism, and immunity [199, 209, 210] (Fig. 8).

The mTOR signaling pathway may have a direct effect 
on the carcinogenesis of CRC. Elevated RNA and protein 
levels of mTORA, raptor, and rictor could be observed in 
the tissues of patients with CRC, and a correlation was 
found between the degree of elevated levels of the above 
expression and the stage of malignancy [211, 212]. Ele-
vated mTORC1 and mTORC2 activities were also associ-
ated with EMT and RhoA and Rac1 signaling-mediated 
CRC metastasis, and it was related to chemoresist-
ance [213]. The anti-CRC effects of currently developed 
mTOR inhibitors have been demonstrated in in-vivo and 
-vitro assays [214, 215]. Therefore, targeting the mTOR 
signaling pathway could benefit CRC treatment (Fig. 8).

Salidroside, the active ingredient in Rhodiola rosea 
L. (Hong Jing Tian), has been reported to have sig-
nificant antitumor effects, exerting antiproliferative 
and pro-apoptotic effects on many types of malignant 
tumors [216–218]. Fan et  al. [219] found that LC3-II/
LC3-I and Beclin-1 expression were increased and 
Bcl-2/Bax, p-PI3K, p-AKT, and p-mTOR expressed 
were decreased in HT-29 cells after salidroside treat-
ment. The above changes were reversed after the use 
of autophagy inhibitor and PI3K inhibitor. The findings 
suggested that salidroside may exert its pro-apoptotic 
and autophagic effects on HT-29 cells by inhibiting the 
PI3K/Akt/mTOR signaling pathway. Curcumin is the 
active ingredient of R. Curcumae (Jiang Huang) [220]. 
Johnson et  al. [221] found that curcumin induced Akt 
phosphorylation in HCT-116 cells while decreasing the 
expression of mTOR, raptor, and rictor proteins, sug-
gesting that curcumin may exert its anti-proliferative 
effects on CRC cells through the Akt/mTOR signal-
ing pathway. In addition, andrographolide, the active 
ingredient in Andrographis paniculata (Chuan Xin 
Lian),  downregulated the expression of PI3K/p110, 
p-Akt, p-mTOR, and glycolysis-related proteins, such 
as phosphofructokinase 1, GLUT1, and hexokinase 
2, in HCT-116 cells, suggesting that andrographolide 
may enhance radiosensitivity by inhibiting glycolysis 
in HCT-116 cells via the PI3K/Akt/mTOR signaling 
pathway [222]. Nobiletin, an active ingredient in Citrus 
reticulata Blanco (Gan Ju), has biological effects such 
as anti-inflammatory, anti-cancer, and neuroprotective 
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effects [223, 224]. Li et  al. [225] found that nobiletin 
could enhance the inhibitory effect of oxaliplatin on the 
proliferation of HT29 and SW480 cells, while upregu-
lating the expression of pro-apoptotic proteins Bax and 
caspase3, and downregulating the expression of p-Akt, 
p-mTOR and anti-apoptotic protein Bcl-2 to promote 
oxaliplatin-induced apoptosis. The findings above sug-
gested that nobiletin may enhance CRC sensitivity to 
oxaliplatin by downregulating the PI3K/Akt/mTOR 
signaling pathway.(Fig. 8).

Zhu et  al. [226] found that the Chinese herbal for-
mulation Qingjie Fuzheng granule (QFG) could not 
only upregulate the expression of E-cadherin, LC3-II, 
and Beclin-1 but also downregulate the expression of 
N-cadherin, Vimentin, TWIST1, and p62 in HCT-116 
xenograft tumors. Moreover, the ratios of PI3K/PI3K, 
p-AKT/AKT, and p-mTOR/mTOR were significantly 
lower than those in the controls, suggesting that QFG 
may induce CRC autophagy and thus inhibit EMT pro-
gression through the mTOR signaling pathway. Peng 
et  al. [227] found that Jianpi Jiedu Decoction (JPJD) 
downregulated the expression of mTOR, HIF-1α, 
VEGF, phosphorylation ribosomal protein S6 kinase 
(p-p70S6K), and phosphorylation 4E binding protein 
1 (p-4E-BP1) in vivo and in vitro, indicating that JPJD 
regulates the mTOR/HIF-1α/VEGF signaling pathway 
to exert antitumor activity (Fig. 8).

Hedgehog signaling pathway
In mammals, three ligands of Hedgehog (HH) exist, 
namely Indian Hedgehog (IHH), Sonic Hedgehog (SHH) 
and Desert Hedgehog (DHH), capable of participating in 
the patterning and development of various tissues and 
organs [228, 229]. Both IHH and SHH can expressed in 
the gastrointestinal tract, whereas DHH appears to be 
expressed only in the nervous system and testis [230]. 
The major components of the HH pathway are located in 
the cell membrane [231]. The transduction response to 
HH ligands is mainly regulated and transmitted by two 
transmembrane proteins: patched (Ptc) and smoothened 
(Smo), and downstream transcription factors of the Gli 
family (Gli1, Gli2, and Gli3) [232]. In the absence of its 
ligand, the HH receptor patched 1 (PTCH1) inhibits Smo 
function by preventing Smo from entering primary cilia. 
When HH ligands bind to Ptc, this mutual inhibition is 
relieved and Smo signaling is activated [233, 234]. The 
Smo-repressing activity of Ptc is inhibited by binding 
to HH, thereby releasing Smo and exhibiting its signal-
ing activity within the cell. Smo, located in the primary 
cilia, signals intracellularly to mediate three Gli zinc fin-
ger transcription factors [235]. The transcription factors 
Gli1, Gli2, and Gli3 are the major downstream execu-
tors of HH activation and the key final outputs of HH. 
Gli1 is an HH-responsive gene product that acts only as 
a transcriptional activator and participates in a positive 

Fig. 8     The active compounds of TCM and the Chinese herb formula act on the mTOR signaling pathway. QFG Qingjie Fuzheng granule, 
JPJD Jianpi Jiedu Decoction. The figure was created by Figdraw (https:// www. figdr aw. com/ static/ index. html#/)

https://www.figdraw.com/static/index.html#/
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feedback loop during pathway activation, while Gli2 and 
Gli3 act as the main transcriptional activator and tran-
scriptional inhibitor, respectively [236]. Inappropriate 
activation of the Hedgehog signaling pathway is common 
in various tumors, such as pancreatic cancer, breast can-
cer and gastric cancer [237, 238] (Fig. 9).

Numerous studies have shown that the Hedgehog sign-
aling pathway is involved in CRC tumorigenesis. The 
SHH pathway has a facilitative role in angiogenesis, cell 
proliferation, and metastasis, while downregulation of 
IHH has been observed to be an early event in CRC for-
mation [239–241]. In addition, the coordination of Smo 
and Gli, the downstream components of the Hedgehog 
signaling pathway, plays the most important role in HH 
regulation of CRC [242]. Cyclopamine, an HH inhibi-
tor, has been demonstrated to anti-proliferation and 
pro-apoptosis effects in CRC cells [243, 244]. Therefore, 
regulating the Hedgehog signaling pathway also offers an 
approach to treating CRC (Fig. 9).

Toosendanin (TSN), an active component derived from 
MeLia toosendan Sieb. et Zucc. (Chuan Lian Zi), has 
anti-cancer properties in malignant tumors such pancre-
atic cancer, gastric cancer, and osteosarcoma [245–248]. 
Zhang et  al. [249] found that TSN could down-regulate 
the mRNA and protein levels of SHH, GLI1 and SMO in 
HT-29 cells in a concentration-dependent manner and 

inhibit the proliferation of HT-29 cells in  vitro. In  vivo, 
it was able to reduce the weight of HT-29 xenograft 
tumors, meanwhile the protein expression levels of SHH 
in TSN-treated tumor tissues were significantly lower 
than those in the control group. These findings implied 
that TSN may inhibit growth of CRC cells by inhibit-
ing the Hedgehog pathway, and the target of TSN may 
be SHH. Sun et  al. [250] discovered that following Ber-
berine (BBR) treatment, the expression of SHH, Ptch1, 
SMO, Gli1, and c-Myc was down-regulated while the 
expression of SUFU was up-regulated in HT-29 cells, 
suggesting that BBR exerts anti-CRC effects by decreas-
ing the Hedgehog signaling pathway activity. Khan et al. 
[251] found that andrographolide, the active ingredi-
ent in Andrographis paniculata (Chuan Xin Lian), had a 
strong cytotoxic effect on HCT-116 cells, induced G2/M 
phase block by downregulating the expression of CDK1 
and CyclinB1, downregulated the mRNA levels of Gli1 
and SMO, and had a high affinity for the Smo protein. 
These results indicated that andrographolide may exert 
anti-CRC effects by suppressing the Hedgehog signaling 
pathway. Furthermore, Qingjie Fuzheng Granule (QFG) 
could significantly reduce the protein expression of the 
Sonic Hedgehog pathway-related proteins SHH, Smo 
and Gli1 in HCT-116 xenograft mice tumor tissues. It 
also down-regulated the expression of pro-proliferative 

Fig. 9     The active compounds of TCM and the Chinese herb formula act on the Hedgehog signaling pathway. QFG Qingjie Fuzheng granule. The 
figure was created by Figdraw (https:// www. figdr aw. com/ static/ index. html#/)

https://www.figdraw.com/static/index.html#/
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survivin Ki-67, CyclinD1, CDK4, VEGF-A and VEGFR-2, 
and up-regulated the ratio of Bax/Bcl-2 and the expres-
sion of p21. These results suggested that QFG exerts anti-
CRC effects by inhibiting the Sonic Hedgehog pathway to 
prevent CRC cells from proliferation, promoting apopto-
sis and anti-tumor angiogenesis [252] (Fig. 9).

The immunomodulatory signaling pathways
The development of tumors is significantly influenced by 
the immune system. Tumor incidence rises as the host’s 
immune system performs worse. The tumor micro-
environment (TME), which is strongly associated to 
tumor invasion and metastasis and encourages tumor 
progression, is made up of tumor cells, immune cells, 
extracellular matrix, and interstitial tissue [253]. Can-
cer immunotherapy is one of the new options for cancer 
treatment. In contrast to standard treatments such as 
surgery, radiation and chemotherapy, immunotherapy 
could effectively overcome the specificity problems asso-
ciated with radiation and chemotherapy by using and 
manipulating the patient’s own immune system to fight 
and destroy tumor cells [254]. Cytokines such as inter-
leukin-2 (IL-2), interferon-γ (IFN-γ), interleukin-6 (IL-6), 
and TNF-α play an important role in regulating immune 
responses and anticancer defense systems [255, 256]. The 
suppression of immune function and the imbalance of 
cytokines are the key factors leading to the occurrence 
and development of cancer and the poor prognosis of 
patients. Furthermore, immune evasion is one of the hall-
marks of tumors. Although natural killer (NK) cells are 
able to recognize and kill tumor cells, tumor cells from 
TME are able to inhibit the activity of NK cells [257]. 
High levels of  CD8+ CTL, and  CD4+ helper T cells (Th 
cells) are favorable prognostic factors, while elevated 
levels of  CD4+Tregs indicate a poor prognosis [258]. 
M1 and M2 are the two main stages of macrophages. 
T helper (Th-1) cytokines could activate macrophage 
M1, while Th-2 cytokines such as IL-4 could selectively 
activate macrophage M2 [259]. Tumor-associated mac-
rophages (TAMs) with the M2 phenotype are important 
regulators in the occurrence and development of cancer, 
which can lead to a poor prognosis of cancer patients 
[260]. Studies have confirmed that immune checkpoint 
inhibitors (ICIs) can reactivate the immune system and 
kill tumor cells [261].

TCM has shown potential as ICIs in the treatment of 
malignant tumors. Unlike Western medicine, which 
mainly directly kills tumor cells, TCM can systematically 
regulate TME and exert anti-CRC effects through immu-
nomodulatory signaling pathways [262]. Ganoderma 
atrum polysaccharide (PSG-1) is a polysaccharide com-
ponent isolated from the Chinese herb G. lucidum (Ling 
Zhi) [263]. Zhang et  al. [264] found that PSG-1 had no 

anti-tumor activity in vitro, but was effective in activating 
peritoneal macrophages in CT26 tumor-bearing mice, 
enhancing the phagocytic capacity of macrophages and 
promoting the production of nitric oxide (NO), TNF-α 
and IL-1β in mice to enhance immune function. Fur-
thermore, it was discovered that PSG-1 acted on toll-
like recepetor 4 (TLR4) and then activated NF-κB via 
the p38 MAPK pathway, promoting TNF-α production, 
IκBα degradation, and p38 MAPK phosphorylation. The 
above results suggested that PSG-1 could activate mac-
rophages through TLR4-dependent signaling pathways 
to enhance immune function and inhibit tumor growth. 
Panax notoginseng saponins (PNS), the active ingredients 
extracted from Panax notoginseng (Burk) F.H.Chen (San 
Qi), have shown anti-tumor effects on CRC cells when 
used alone or in combination with chemotherapeutic 
drugs [265, 266]. Li et al. [267] found that PNS had sig-
nificant preventive and immunomodulatory effects on 
AOM/DSS-induced CAC mice, and was able to allevi-
ate the immunosuppression of Treg cells in the colonic 
tissue microenvironment of CAC mice by inhibiting 
signal transduction and direct mediation of indoleam-
ine 2,3-dioxygenase 1 (IDO1) expression by transcrip-
tion 1 (STAT1), reducing macrophage aggregation, and 
reshaping the CAC immune microenvironment. Genk-
wanin is the active ingredient in Daphne genkwa   Sieb. 
et Zucc. (Yuan Hua). Wang et  al. [268] found that gen-
kwanin effectively inhibited the proliferation of HT29 
and SW480 cells and the secretion of inflammatory fac-
tor IL-8 in  vitro, increased the spleen and thymus indi-
ces in  APCMin/+ mice in  vivo, and effectively reduced 
the levels of IL-1α, IL-1β, IL-8, G-CSF and GM-CSF in 
mouse colon tissues. These findings suggested that gen-
kwanin has antitumor activity, most likely by enhancing 
the immune response and decreasing the levels of inflam-
matory factors.

Conclusion
Intracellular signaling pathways are involved in vari-
ous biological processes, and they are closely associated 
with the progression of CRC. TCM has a long history of 
development and plays an important role in the preven-
tion and treatment of malignant tumors with its unique 
dialectical concept and holistic concept. In recent years, 
many basic experiments and clinical studies have con-
firmed that TCM has a good effect in the treatment of 
CRC, which can effectively improve the immune func-
tion of CRC patients, improve the quality of life, and 
prolong the survival time [269–271]. In this paper, the 
mechanisms by which TCM exert anti-CRC effects were 
summarized from the perspective of signaling pathways. 
TCM could regulate multiple signaling pathways related 
to CRC progression, including PI3K/Akt, NF-κB, MAPK, 
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Wnt/β-catenin, EGFR, p53, TGF-β, mTOR, Hedgehog, 
and immunomodulatory signaling pathways, thus affect-
ing biological processes, such as cell proliferation, apop-
tosis, cell cycle, migration, invasion, autophagy, EMT, 
angiogenesis, and chemoresistance and ultimately exert-
ing therapeutic effects on CRC (Tables  1 and 2). Given 
the complexity of CRC pathogenesis, TCM with multi-
ple components, targets, and effects is expected to be a 
breakthrough in the development of therapeutic CRC 
drugs. As study on the theory and practice of TCM con-
tinues to advance, the avenues and means by which TCM 
exerts its healing effects could be further elucidated.

In addition, signaling pathways such as Notch [272], 
is closely associated with CRC progression, and further 
in-depth studies are needed to prevent and treat CRC 
through these pathways. The existing reports have only 
discussed a single signaling pathway and related genes 
in the progression of CRC, without involving the inter-
action between signaling pathways. Most of the current 
studies have revealed the therapeutic effect of TCM on 
CRC. In  vitro cellular models should be combined with 
in  vivo animal models as much as possible, so that the 
two models can complement each other and jointly pro-
mote research on the pathogenesis of CRC and the pre-
vention and treatment of TCM. TCM contains a wealth 
of resources that should be thoroughly investigated to 
determine whether other Chinese medical methods 
such as acupuncture, moxibustion, and acupoint injec-
tion have an intervention effect on CRC-related signal-
ing pathways, providing more theoretical support for the 
use of TCM in malignant tumors. Dialectical analysis of 
the disease and a grasp of the holistic view of TCM and 
personalized medicine in the treatment of the disease are 
lacking. Future studies should pay further attention to 
the synergistic effect of multiple signaling pathways regu-
lated by TCM on anti-CRC and increase support for the 
clinical transformation of TCM to provide new ideas and 
references for the application of TCM in the prevention 
and treatment of CRC.
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CK1  Casein kinase 1
APC  Adenomatous polyposis coli
TCF  T‑cell transcription factor
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TGF‑β  Transforming growth factor‑β
TGFBR2  Type II TGF receptor
ZO‑1  Zona occludens 1
OM  Oxymatrine
α‑SMA  α‑smooth muscle actin
PAI‑1  Plasminogen activator inhibitor‑1
CSCs  Colorectal cancer stem cells
mTORC1  mTOR complex1
mTORC2  mTOR complex2
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TSN  Toosendanin
TME  Tumor microenvironment
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