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Abstract 

Background Non‑alcoholic fatty liver (NAFLD) and its related metabolic syndrome have become major threats to 
human health, but there is still a need for effective and safe drugs to treat these conditions. Here we aimed to identify 
potential drug candidates for NAFLD and the underlying molecular mechanisms.

Methods A drug repositioning strategy was used to screen an FDA‑approved drug library with approximately 3000 
compounds in an in vitro hepatocyte model of lipid accumulation, with honokiol identified as an effective anti‑NAFLD 
candidate. We systematically examined the therapeutic effect of honokiol in NAFLD and metabolic syndrome in 
multiple in vitro and in vivo models. Transcriptomic examination and biotin‑streptavidin binding assays were used to 
explore the underlying molecular mechanisms, confirmed by rescue experiments.

Results Honokiol significantly inhibited metabolic syndrome and NAFLD progression as evidenced by improved 
hepatic steatosis, liver fibrosis, adipose inflammation, and insulin resistance. Mechanistically, the beneficial effects of 
honokiol were largely through AMPK activation. Rather than acting on the classical upstream regulators of AMPK, 
honokiol directly bound to the AMPKγ1 subunit to robustly activate AMPK signaling. Mutation of honokiol‑binding 
sites of AMPKγ1 largely abolished the protective capacity of honokiol against NAFLD.

Conclusion These findings clearly demonstrate the beneficial effects of honokiol in multiple models and reveal a 
previously unappreciated signaling mechanism of honokiol in NAFLD and metabolic syndrome. This study also pro‑
vides new insights into metabolic disease treatment by targeting AMPKγ1 subunit‑mediated signaling activation.
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Background
Non-alcoholic fatty liver disease (NAFLD) is a collec-
tion of liver disorders ranging from simple steatosis 
(fatty liver) to non-alcoholic steatohepatitis (NASH) with 
necroinflammation and progressive fibrosis [1]. NAFLD 
is now an established and increasing cause of mortal-
ity and morbidity from liver disease, with in silico mod-
eling predicting a significant increase in disease (and 
consequently economic) burden over the next decade, 
especially as the prevalence of obesity grows worldwide 
[2–5]. NAFLD can also have other, non-liver-related neg-
ative impacts, especially on cardiovascular health [6, 7]. 
However, there are still no clinically-approved drugs for 
NASH and discrepancies in the results from animal mod-
els and safety concerns limit the translation of laboratory 
findings to the clinic. Therefore, there is an urgent need 
for drug development in this area.

AMP-activated protein kinase (AMPK) is a sensor of 
cellular energy status, nutrient availability, and cellular 
injury implicated in the pathogenesis of cardiovascular 
disease, chronic metabolic disease, and cancer [8]. The 
AMPK complex is formed of mandatory heterotrim-
ers consisting of the catalytic α subunit, the scaffold β 
subunit, and the regulatory γ subunit. Different subunit 
isoforms have specific spatiotemporal tissue and cellular 
expression patterns, so the pathophysiological regula-
tion of AMPK is highly complex [9]. Activating AMPK 
has been shown to protect against NAFLD and metabolic 
syndrome, but chronic activation might also have serious 
adverse sequelae in the form of cardiac hypertrophy and 
cancer [10]. These effects may in part be due to AMPK 
activators mainly targeting the AMPK α and β subu-
nits that possess non-substitutable capacity in regulat-
ing pathophysiological behaviors. However, AMPKγ is 
well conserved in eukaryotes and archaea [11], so it may 
be a good translational target. Encouragingly, a recent 
study reported that liver gain-of-function mutations in 
the AMPKγ1 subunit protected against hepatic steato-
sis [12]. However, there have been relatively few studies 
of AMPKγ1-targeting drugs, and their development and 
testing in NAFLD and metabolic syndrome requires fur-
ther study.

FDA-approved drug libraries include drugs that have 
been shown to be clinically effective and drugs with 
known pharmacological activity included in pharmaco-
poeias [13]. Importantly, these drugs have been shown 
to be safe in the clinical setting. In our pharmacological 
screening, honokiol, an active ingredient found in the tra-
ditional Chinese herb magnolia [14], was one of the most 
effective drug candidates for NASH therapy. Honokiol 
belongs to a class of neolignan biphenols, and it has 
been shown to have anti-inflammatory, anti-infection, 
anti-oxidative, and anti-tumor effects [15–18]. Indeed, 

natural polyphenol is also reported to show antioxidative 
effect in liver [19]. Honokiol is also relatively non-toxic 
in experimental contexts, and several food safety authori-
ties have evaluated honokiol as safe [20]. Previous reports 
have suggested that honokiol is beneficial in hepatocyte 
lipotoxicity and macrophage polarization [21–24], but it 
remains unclear whether honokiol could be a drug can-
didate for treating the spectrum of NASH and related 
metabolic syndrome diseases. Moreover, the molecular 
mechanisms underpinning honokiol’s protective effect 
are still not fully understood.

The aim of this study was to screen for effective drugs 
targeting NASH and establish the underlying molecular 
mechanisms. To do so, we combined in vitro and in vivo 
modeling to systematically examine the protective effects 
of honokiol in NASH and the accompanying metabolic 
features. First, we screened an FDA-approved drug 
library in an in vitro hepatocyte model of lipid accumu-
lation, in which honokiol exerted significant efficacy. To 
further evaluate the underlying therapeutic mechanisms, 
we administered honokiol to murine models of NAFLD 
induced by a high-fat diet (HFD) and NASH induced by 
choline-deficient, L-amino acid-defined (CDA)HFD or 
methionine-choline deficient (MCD) diets. Transcrip-
tomic analysis revealed a role for AMPK activation in 
honokiol’s mechanism of action, which was further vali-
dated using pharmacological and genetic approaches. 
While classical regulators of AMPK activation did not 
appear to be implicated in its honokiol-mediated regu-
lation, docking analysis predicted that honokiol could 
directly bind to AMPKγ1, which was subsequently con-
firmed experimentally. We therefore show that honokiol 
exerts its protective effects through AMPK activation via 
a new activating mechanism. These findings represent a 
significant step towards the discovery of a new class of 
drugs that target AMPK to manage NAFLD and NASH.

Methods and materials
Cell lines and primary hepatocytes
Cell lines of L02 and HEK293T were obtained from the 
Chinese Academy of Sciences in Shanghai, China. L02 
and HEK293T cells were cultivated in a Dulbecco’s modi-
fied Eagle medium (DMEM) enriched with 10% FBS and 
1% penicillin/streptomycin.

Two-step collagenase perfusion was used to acquire 
primary hepatocytes from 6- to 8-week male C57BL/6 J 
mice. Briefly, mice were sedated with 3% pentobarbital 
sodium (90  mg/kg, #P3761, Sigma-Aldrich, St. Louis, 
MO). The anesthetized mice were sequentially per-
fused via the portal vein with Liver Perfusion Medium 
(#17701038, Thermo Fisher Scientific, Waltham, MA) 
and Liver Digestion Medium (#17701034, Thermo Fisher 
Scientific). The livers were then removed, chopped into 



Page 3 of 24Tian et al. Chinese Medicine           (2023) 18:30  

small pieces, and passed through a 100  µm steel mesh. 
After two centrifugations at 50 × g for a duration of one-
minute, primary mouse hepatocytes were isolated from a 
mixture of liver cells.

To recreate lipid accumulation in  vitro, L02 cells or 
primary hepatocytes were cultured with a medium com-
posed of 500  μM palmitic acid (PA) and 1  mM oleic 
acid (OA) and treated with honokiol (10 μM) or DMSO. 
500  μM PA was used to construct a model of hepato-
cytes inflammation. To serve as a control, a 0.5% BSA was 
employed. 10 μM compound C (CC) was used to inhibit 
AMPK phosphorylation.
PRKAA1/PRKAA2-deficient cell lines were generated 

using the CRISPR/Cas9 system as described in our previ-
ous work [25]. AMPKγ1 knockdown cell lines were gen-
erated by cloning a short hairpin sequence (GTC TTG 
TCC TCT AGG CAT GCT) targeting human PRKAG1 
into the pLKO.1 plasmid (#10878, Addgene, Water-
town, MA). The hairpin sequence targeting PRKAG1 was 
designed using an online tool (http:// rnaid esign er. therm 
ofish er. com/ rnaie xpress/ design. do). The short hairpin 
RNA-expressing plasmid was combined with the pack-
aging plasmids pMD2.G (#12259, Addgene) and psPAX2 
(#12260, Addgene) at a ratio of 2:1:1 and co-transfected 
into HEK293T cells. Following transfection, the super-
natants were harvested after 48 h and filtered through a 
0.45  µm filter. L02 hepatocytes were then infected with 
the collected supernatants with the help of polybrene 
(2 mg/mL). To screen positive candidates, infected cells 
were killed with puromycin (1 μM).

High‑content screening from FDA‑approved drug library
To identify potential effective drugs from the FDA-
approved drug library (#L1300, Selleckchem, USA), 
we employed the human hepatocyte cell line L02. The 
FDA-approved drugs library was procured from Selleck. 
10,000 hepatocytes were seeded per well in a 96-well 
plate. The day following plating, we exposed the cells 
to 0.5  mM/1  M PA/OA for 18  h while simultaneously 
administering the drugs. The drugs were administered at 
a concentration of 20 μM. Bodipy staining was employed 
to assess lipid accumulation, and the fluorescence inten-
sity was then quantified using a high-content machine.

Animal experiments
The male C57BL/6  J mice were provided free access to 
food and water in a temperature-controlled environ-
ment (23 ± 2 °C). C57BL/6 J mice were fed a high-fat diet 
(HFD) (#MD12032, Medicience, Jiangsu, China) start-
ing at 8  weeks age to establish a NAFLD model. After 
HFD feeding for 12  weeks, mice were divided evenly 
into two groups, one of which received vehicle (1% car-
boxymethylcellulose sodium (CMC-NA), # 419273, 

Sigma-Aldrich) or 100  mg/kg honokiol (#BD8971-25  g, 
Bidepharm, Shanghai, China. The chemical purity was 
98%) dissolved in 1% b-CMC-NA by gavage every day. 
At 24 weeks after HFD feeding, mice were sacrificed and 
blood, liver, and white adipose tissues (WAT) samples 
were collected for further study.

To create a NASH model, C57BL/6  J mice were given 
a choline-deficient, L-amino acid-defined (CDA)HFD 
(A06071302, Research Diets, Inc., New Brunswick, NJ) 
or methionine-choline deficient (MCD) diet (TP3005G, 
Trophic Animal Feed High-Tech Co, Nantong, China) 
beginning at the age of 8 weeks. After feeding CDAHFD 
or MCD for 1  week, mice were separated evenly into 
two groups, which respectively received 1% CMC-NA or 
100  mg/kg honokiol dissolved in 1% CMC-NA by gav-
age every day. After feeding 4 weeks for indicated diets, 
animals were sacrificed and their blood and liver samples 
were collected for further analysis.

To demonstrate the in  vivo requirement for AMPK 
activation-mediated honokiol protection against NASH, 
C57BL/6 J mice were fed a CDAHFD for 1 week, and then 
assigned randomly to two groups, and treated with PBS 
or AMPK inhibitor compound C (CC, 10  mg/kg/every 
two days) in combination with 1% CMC-NA or honokiol 
(100 mg/kg/every day) for another 3 weeks. After being 
fed for four weeks, mice were sacrificed and their blood 
and liver samples were taken for further analysis.

Glucose and insulin tolerance tests
Glucose tolerance tests (GTT) were performed in mice 
after 22  weeks of HFD feeding or after 3  weeks of the 
CDAHFD diet. Following an 18 h fast, mice were intra-
peritoneally (i.p.) injected with 1  g/kg glucose. Subse-
quently, blood glucose levels were monitored at 0, 15-, 
30-, 60-, and 120-min post-injection.

Following 23 weeks of high-fat diet feeding, insulin tol-
erance tests (ITT) were performed on the mice. 0.75 IU/
kg insulin was injected intraperitoneally after a six-hour 
fast and their blood glucose levels were measured at 
intervals of 0, 15-, 30-, 60-, and 120-min post-injection.

Serum biochemical analysis
Serum alanine transaminase (ALT), aspartate transami-
nase (AST), total cholesterol (TC), and triglycerides (TG) 
were detected to evaluate liver function and serum con-
centrations of lipids using an automatic biochemical ana-
lyzer (HITACHI 3110, Tokyo, Japan).

Western blotting
Proteins were extracted from cells or mouse liver tissues 
using RIPA lysis buffer, which contained 50  mM Tris–
HCl pH 8.0, 150  mM NaCl, 1  mM EDTA, 1% NP-40, 
0.5% sodium deoxycholate and 0.1% SDS. The extraction 
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process included the use of complete protease inhibitor 
cocktail tablets (#04693132001, Roche, Basel, Switzer-
land) and phosphatase inhibitor (#4906837001, Roche). 
The concentration of samples was then determined with 
a BCA Protein Assay Kit (#23225, Thermo Fisher Sci-
entific). Protein samples were fractionated via sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) and then transferred to 0.45  µm PVDF mem-
branes. Following the blocking the membranes with 5% 
skimmed milk, primary antibodies were incubated over-
night at 4℃, followed by 1 h incubation with secondary 
horseradish peroxidase (HRP)-conjugated antibodies at 
room temperature. Finally, the protein expression signals 
were detected in a ChemiDoc MP Imaging System (Bio-
Rad, Hercules, CA). β-actin was used as an internal con-
trol for loading.

Antibodies
Primary antibodies targeting ACC (#3676), p-ACC 
(#3661), AMPKα (#5832), p-AMPKα (#50081), mTOR 
(#2983), p-mTOR (#2971), CaMKK2 (#16,810), 
p-CaMKK2 (#12818), TAK1 (#4505), p-TAK1 (#4508), 
LKB1 (#3050), and p-LKB1 (#3055) were procured from 
Cell Signaling Technology (Danvers, MA). Primary anti-
bodies targeting PP2C (#ab211660) were procured from 
Abcam (Cambridge, UK). Antibodies targeting actin were 
obtained from ABclonal (AC026, 1:3000; Wuhan, China). 
Antibodies targeting Flag (M185-3L) were obtained from 
MBL (Nagoya, Japan). Unless otherwise specified, the 
dilution of all primary antibodies was 1:1000. The sec-
ondary antibodies peroxidase AffiniPure goat anti-rab-
bit IgG (H + L) (111–035-003) and goat anti-mouse IgG 
(H + L) (115–035-003) were obtained from the Jackson 
Laboratory (Bar Harbor, ME). A 1:5000 dilution was used 
for secondary antibodies.

Lipid droplet staining and detection
Cellular lipid droplets were measured by BODIPY 
(D3922, Thermo Fisher Scientific) staining. L02 or pri-
mary hepatocytes were fixed with 4% paraformaldehyde 
for 20 min at room temperature after challenge with PA/
OA for 12 h. Following a PBS wash, cells were subjected 
to BODIPY staining at room temperature for 15  min. 
Cellular nuclei were stained with 4’,6-diamidino-2-phe-
nylindole (DAPI) (S36939, Invitrogen, Waltham, MA). A 
confocal laser scanning microscope (TCS SP8X, Leica, 
Wetzlar, Germany) was used to acquire images.

Cell viability determination
Primary hepatocytes were seeded in 96-well plates at 
5000 cells per well and incubated with 10 μM of honok-
iol for 24 h. Next, 10 μL of Cell Counting Kit-8 reagent 
(Beyotime, China) was added to each well and incubated 

for an additional 4 h at 37 ℃. Absorbance at 450 nm was 
measured for each well to calculate cell viability.

Detection of ATP, ADP, and AMP
After honokiol (100  mg/kg) administration 4  h, mice 
were anesthetized and their livers were quickly frozen 
and clamped to quantify AMP, ADP, and ATP levels. Uti-
lizing 50 mg liver tissue from each mouse, ATP, ADP, and 
AMP were extracted and the detection parameters were 
previously specified [26].

TG or TC detection
To determine hepatic lipid contents, cellular lipid was 
extracted from 50  mg of liver tissue using the Folch 
method as previously described [27]. The liver was tested 
for triglycerides (TG), total cholesterol (TC), and non-
esterified fatty acids (NEFA) using Wako kits (Tokyo, 
Japan) as per the manufacturer’s instructions (#290–
63701 for TG, #294–65801 for TC, #294–63601 for 
NEFA).

Cellular respiration evaluation
The effect of honokiol on cellular respiration was 
assessed in primary mouse hepatocytes. Single cell sus-
pensions of 0.1  M primary hepatocytes were prepared 
in DMEM with honokiol (10 μM) or DMSO. The oxygen 
consumption rate was documented after the successive 
administration of oligomycin (2.5 mM), FCCP (0.5 mM), 
rotenone (0.5 mM) and antimycin A (2.5 mM).

Histopathological analysis
For histopathological analysis, HE staining (hematoxy-
lin, G1004, Servicebio, Wuhan, China; eosin, BA-4024, 
Baso, Zhuhai, China) was examined on liver, heart or adi-
pose tissues (AT). Liver lipid droplets were observed by 
oil red O (O0625, Sigma-Aldrich) staining using frozen 
liver tissues embedded in Tissue-Tek OCT Compound 
(4583, Sakura, Torrance, CA). Liver fibrosis was observed 
with picro-sirius red (26357–02, Hedebiotechnology, 
Beijing, China) staining. Histopathological images were 
acquired with a light microscope (ECLIPSE 80i, Nikon). 
The NAFLD activity scoring (NAS) system was used to 
quantify NAFLD in HE-stained liver sections [28]. Other 
histological images were quantified using Image-J.

Immunohistochemistry
Immunohistochemistry staining of liver CD11b 
(BM3925, 1:12000 dilution; Boster; Wuhan, China) 
and WAT F4/80 (GB11027, 1:1600 dilution, Servicebio, 
Wuhan, China) were performed on paraffin embedded 
sections. To retrieve antigens, samples were boiled in a 
pressure cooker for 20 min in pH 9.0 EDTA buffer. After 
cooling, samples were placed in 3%  H2O2 for 20 min to 
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quench endogenous peroxide activity. Following a wash 
with PBS, slides were blocked with 10% BSA for 1  h at 
37  ℃. Sections were incubated with the indicated pri-
mary antibodies overnight at 4℃. The next day, the sec-
tions were successively washed with PBS buffer for 5 min, 
followed by incubation with enhanced enzyme-labeled 
goat anti-rabbit IgG (Beijing ZSGB Biotech) at 37 degrees 
Celsius for one hour. Immunohistochemical staining 
was performed using the 3,30-diaminobenzidine (DAB) 
substrate kit (Beijing ZSGB Biotech) and counterstained 
with hematoxylin. The images were then taken with a 
light microscope. Histological images were quantified 
using Image-J.

Synthesis of biotin‑linked honokiol

A mixture of honokiol (270  mg, 1  eq) in dichlorometh-
ane (DCM) (5 mL) was added to biotin (378 mg, 1.5 eq), 
4-dimethylaminopyridine (DMAP) (126  mg, 1  eq), 
and N, N’-dicyclohexylcarbodiimide (DCC) (522.9  mg, 
2.5 eq). The reaction mixture was stirred at 25 °C for 12 h. 
LCMS showed a new peak of the desired mass. The mix-
ture was poured into water (20  mL), extracted with EA 
(15 mL × 3), washed with saline (20 mL × 2), and concen-
trated under high vacuum to produce a residue. The resi-
due was purified with a flash C18 column (20–63% ACN, 
0.1% TFA) and lyophilization to produce biotin-linked 
honokiol (80 mg, 95% purity) as a white solid.

Biotin‑avidin binding assay
Plasmids expressing AMPKγ1, AMPKγ2, and the 
AMPKγ1-3A mutant were cloned into phage vectors. 
Cloned sequences were confirmed by Sanger sequenc-
ing. 293 T cells were seeded in 10 cm cell culture dishes. 
At 70% confluence, 293  T cells were transfected with 
the indicated plasmids (12 μg). After 24 h, biotin-linked 
honokiol (40 μM) or biotin was added and incubated for 
another 4  h. The dish was washed with precooled PBS, 
and 1  ml immunoprecipitation buffer containing pro-
tease inhibitor cocktail tablets and phosphatase inhibitor 
tablets were added to lysis. To remove cellular debris, the 
lysates were centrifuged at 12,000 × g for 15 min at 4℃. 

Supernatants were incubated with Streptavidin Agarose 
Resins (#20353, Thermo Fisher Scientific) at 4 °C for 4 h 
followed by washing 5 times in cold immunoprecipita-
tion wash buffer. The protein complex pull-down was 
degenerated in SDS loading buffer and subjected to west-
ern blot analysis using the indicated primary and corre-
sponding secondary antibodies as described above.

RNA‑sequencing
The quality of extracted RNA samples was evalu-
ated using the RNA 6000 Nano kit (#5067–1511, Agi-
lent, Santa Clara, CA) after extraction with TRIzol 
reagent (#T9424, Sigma-Aldrich). In order to prepare the 

libraries, we used the MGIEasy RNA Library Prep Kit 
(#1000006384, MGI Tech Co., Ltd, Shenzhen, China).

For data analysis, sequences from cleaned reads were 
aligned to the Ensembl GRCm38 mouse genome with 
HISAT2, and SAMtools was used to sort and convert the 
mapped reads to BAM format. RAW counts and reads 
per kilobase per million (RPKM) values were calculated 
for each gene with StringTie. Normalized counts and dif-
ferential expression between conditions were calculated 
with DESeq2 (v1.32.0). Differentially expressed genes 
(DEGs) were identified as those with |log2 (fold change) 
|≥ log2(1.5) and an adjusted P-value < 0.05. GSVA was 
carried out using the GSVA R package (v1.40.1) to assess 
pathway activity variation under different conditions. 
Gene sets with P-values < 0.05 were considered statisti-
cally significant.

Statistical analysis
All data were analyzed using SPSS v26 and are expressed 
as the means ± SEM. For parametric data between two 
groups, a Student’s t-test was used to analyze differences. 
For parametric data for multiple comparisons, a one-
way ANOVA was performed. Bonferroni’s post hoc test 
was employed to analyze data that demonstrated signifi-
cant results, while Tamhane’s T2 (M) post hoc test was 
used for heteroscedastic data. For datasets with a skewed 
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lipid droplets after treatment with different concentrations of honokiol. n = 3 replicates. Student’s t‑test was applied for statistical analysis. Scale bar 
10 μm. F Triglyceride (TG) and total cholesterol (TC) in primary hepatocytes challenged with PO stimulation for 12 h. n = 6 mice. Student’s t‑test was 
applied for statistical analysis. G Relative cell viability of primary hepatocytes after treatment with 10μM honokiol for 24 h. n = 3 replicates. Student’s 
t‑test was applied for statistical analysis. H GSVA enrichment of differentially regulated pathways involved in cell growth, lipid degradation, and 
immune responses in primary hepatocytes after treatment with PO for 12 h. K Heatmaps of gene expression associated with inflammation, and 
lipid degradation in primary hepatocytes after treatment with PO for 12 h
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distribution, the Mann–Whitney U test and Kruskal–
Wallis test were utilized for two and multiple group com-
parisons, respectively. P-values < 0.05 were considered 
significant.

Results
Screening of an FDA‑approved drug library reveals 
honokiol is a candidate inhibitor of NAFLD
To effectively screen for drugs to prevent or treat 
NAFLD, we screened an FDA-approved drug library 
using L02 human hepatocytes in  vitro. The therapeutic 
effect of drug candidate was further evaluated in multiple 
mice models (Fig.  1A). The cultured cells were exposed 
to palmitic/oil acid (PO) for 18 h to induce lipid accumu-
lation, and compounds in the library were added at the 
same time with PO challenge. A high-content instrument 
was used to evaluate the lipid-lowering effect of the FDA 
library, and the top 10 candidates were further compared 
in independent experiments (Fig. 1B, C). Finally, honok-
iol was identified as an attractive potential candidate 
through a series of screenings of ~ 3000 drugs (Fig. 1D). 
Using a primary mouse hepatocyte model, we further 
confirmed the lipid-lowering and anti-inflammatory 
effects of honokiol with well-tolerable safety. BODIPY 
staining and TG and TC colorimetric assays showed that 
honokiol significantly decreased lipid droplet accumula-
tion in the presence of PO stimulation (Fig. 1E, F). Cell 
viability assays indicated that current working concen-
trations had little to no effect on cells (Fig. 1G). Further-
more, transcriptomic analysis of primary hepatocytes 
showed robust inhibition of pathways and genes associ-
ated with inflammatory responses, and upregulated path-
ways and genes related with and fatty acid degradation ( 
Fig. 1H, I).

Honokiol ameliorates high‑fat diet (HFD)‑induced NAFLD
To explore the potential clinical relevance of these find-
ings, we evaluated the therapeutic effect of honokiol in 
HFD-fed mice. Mice were subjected to normal chow 
(NC) or a HFD for 12 weeks to initiate the NAFLD phe-
notype and were then treated with vehicle (carboxym-
ethylcellulose, 1% CMC) or honokiol (100 mg/kg/ every 
day) for an additional 12 weeks (Fig. 2A). The administra-
tion of honokiol significantly attenuated the increase in 
body weight, and there was a trend towards decreasing 
the liver weight gain induced by HFD (Fig. 2B, C). His-
topathological analysis of liver tissue stained for lipids 
showed that honokiol treatment significantly decreased 
the size and contents of hepatic lipid droplets compared 
with vehicle treatment. In addition, honokiol signifi-
cantly reduced the severity of fibrosis and inflammatory 
cell infiltration (Fig.  2D, E). The results of direct detec-
tion of liver TG, TC, and NEFA were consistent with 

the histological findings (Fig.  2F). Moreover, the liver 
injury markers (ALT and AST) and serum TC and TG 
were significantly reduced in the honokiol-treated group 
(Fig.  2G, H). There was no evidence of adverse effects 
on heart, kidney, or spleen function ( Fig.  2I, J). Global 
transcriptome analysis of HFD mouse livers showed sig-
nificant improvements in cell damage, inflammation, 
and lipid accumulation pathways in honokiol-treated 
mice (Fig.  2K, L). We conducted a further investigation 
into the lipid metabolism pathway impacted by honokiol 
treatment and discovered that honokiol usage signifi-
cantly curbed several lipid metabolism pathways (Addi-
tional file 1: Fig. S1A).

Honokiol ameliorates HFD‑induced obesity and insulin 
resistance
We further analyzed the effect of honokiol on HFD-
induced metabolic disorder. The white adipose tissue 
(WAT) and subcutaneous adipose tissue (SAT) weighed 
significantly less in honokiol-treated groups (Fig.  3A, 
B), with significantly decreased area and size of adipo-
cytes and inflammatory cell infiltration in the WAT of 
honokiol-treated mice than controls on histopathologi-
cal examination (Fig.  3C, D). Glucose tolerance testing 
(GTT) revealed a significant improvement after honokiol 
administration (Fig.  3E), as did insulin tolerance testing 
(ITT) (Fig.  3F). Furthermore, serum insulin concentra-
tions also markedly decreased in honokiol-treated mice 
(Fig.  3G). Systematic transcriptome analysis of HFD 
mouse white adipose tissue showed significant thera-
peutic effects of honokiol with respect to cell damage, 
inflammation, and lipid metabolism pathways and asso-
ciated gene expression (Fig. 3H, I). These results suggest 
that honokiol improves systemic metabolism.

Honokiol blocks severe inflammation and fibrosis in mouse 
NASH models
To further evaluate whether honokiol could block NASH 
progression, we applied a more severe NASH model 
induced by a choline-deficient, l-amino acid-defined 
high fat diet (CDAHFD). Compared with HFD models, 
CDAHFD-induced NASH models more closely resem-
ble human NASH pathology in terms of ballooning and 
fibrosis, making them especially suitable for pharma-
cological interventions [29]. To initiate NASH progres-
sion, mice were subjected to CDAHFD for one week, 
followed by oral gavage with honokiol at 100  mg/kg 
every day along with CDAHFD feeding for another three 
weeks (Fig.  4A). Honokiol administration significantly 
decreased body weight, liver weight, and liver to body 
weight (LW/BW) ratio in CDAHFD-fed mice but had 
negligible impact in NC-fed mice (Fig. 4B, C). Both GTT 
and fasting blood glucose levels significantly improved on 
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Fig. 2 Honokiol ameliorates high fat diet (HFD)‑induced non‑alcoholic fatty liver disease. A Schematic showing HFD‑induced NAFLD and 
evaluation of therapeutic effects of honokiol in vivo (100 mg/kg). B and C Body (B) and liver weight (C) of NC‑ or HFD‑fed mice treated with 
honokiol or vehicle after 12 weeks of their respective diets. n = 6 mice per group. One‑way ANOVA was used for statistical analysis. D Representative 
images of indicated mouse liver sections stained with hematoxylin and eosin (HE), oil red O (ORO), picrosirius red (PSR), and immunohistochemistry 
(IHC) of CD11b‑positive cells. n = 6 mice per group. Scale bar 50 μm. E Results of NAS (HE) and quantitative analysis of ORO, PSR, and CD11b shown 
in (D). n = 6 mice per group. Mann–Whitney U test was used for NAS, while Student’s t‑test was applied to ORO, PSR, and CD11b data. F TG, TC, 
and non‑esterified fatty acids (NEFA) in the livers of HFD‑fed mice treated with honokiol or vehicle after 12 weeks of their respective diets. n = 6 
mice per group. Student’s t‑test was applied for statistical analysis. G Serum ALT and AST activity in HFD‑fed mice treated with honokiol or vehicle 
after 12 weeks of their respective diets. n = 6 mice per group. Student’s t‑test was applied for statistical analysis. H Serum TC and TG concentrations 
in HFD‑fed mice treated with honokiol or vehicle after 12 weeks of their respective diets. n = 6 mice per group. Student’s t‑test was applied for 
statistical analysis. I Heart weights and heart histological staining of HFD‑fed mice treated with honokiol or vehicle after 12 weeks of their respective 
diets. n = 6 mice per group. Student’s t‑test was applied for statistical analysis. Scale bar 50 μm. J Kidney and spleen weights of HFD‑fed mice 
treated with honokiol or vehicle after 12 weeks of their respective diets. n = 6 mice per group. Student’s t‑test was applied for statistical analysis. K 
GSVA enrichment analysis related to inflammation, lipid metabolism, and fibrosis downregulated by honokiol treatment. n = 5 mice per group. L 
Heatmap of gene expression profiles involved in cell damage and death, inflammation, and lipid metabolism. n = 5 mice per group
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honokiol treatment (Fig. 4D, E). Moreover, hepatic lipid 
accumulation, fibrosis, and inflammatory cell infiltration 
were all significantly mitigated by honokiol administra-
tion (Fig. 4F–H). Consistent with the above effects, ALT, 
AST, and TG levels were all significantly lower in the 
honokiol-treated group (Fig. 4I).

To further clarify the beneficial effect of honokiol on 
averting NASH progression, we established the methio-
nine and choline deficient diet (MCD)-induced NASH 
model. In this NASH model, mice were subjected to 
MCD for one week followed by oral gavage of honokiol 
at 100  mg/kg every day along with MCD feeding for 
another three weeks (Fig. 4J). In MCD-fed NASH mice, 
liver lipid accumulation, fibrosis, and inflammatory cell 
infiltrates were all significantly improved by honokiol 

administration (Fig.  4K–M). Serum ALT and AST were 
consistently and significantly lower in the honokiol-
treated group (Fig.  4N). Global transcriptomic profiling 
of liver tissue revealed significant differences in cell dam-
age, inflammation, lipid metabolism, and fibrosis path-
ways between vehicle and honokiol-treated mice fed by 
CDAHFD  (Fig. 4O, P).

Honokiol significantly activates AMPK in vitro and in vivo
To explore the molecular mechanisms underlying the 
observed beneficial effects of honokiol, we interrogated 
the transcriptomic data obtained from our in  vitro and 
in  vivo models. Combined transcriptomic analysis sug-
gested that activated AMPK signaling was one of the 
common pathways upregulated by honokiol (Fig.  5A). 
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Fig. 2 continued

(See figure on next page.)
Fig. 3 Honokiol ameliorates high fat diet (HFD)‑induced obesity and insulin resistance. A and B Weights of white adipose tissue (WAT) (A) and 
subcutaneous adipose tissue (SAT) (B) from NC‑ or HFD‑fed mice treated with honokiol or vehicle after 12 weeks of their respective diets. n = 6 mice 
per group. One‑way ANOVA was used for statistical analysis. C Representative images and quantification of HE staining of WAT from HFD‑fed mice 
treated with honokiol or vehicle after 12 weeks of theirrespective diets. n = 6 mice per group. Student’s t‑test was applied for statistical analysis. 
Scale bar 50 μm. D Representative images and quantification of IHC staining of F4/80‑positive cells in WAT sections. CLS, crown‑like structure. n = 6 
mice per group. Student’s t‑test was applied for statistical analysis. Scale bar 50 μm. E Blood glucose concentrations during glucose tolerance 
testing (GTT) of HFD‑fed mice treated with honokiol or vehicle at 22 weeks. n = 6 mice per group at each time point. Student’s t‑test was applied 
for statistical analysis. Area under the GTT curve shown right. F Blood glucose concentrations during insulin tolerance testing (ITT) of HFD‑fed mice 
treated with honokiol or vehicle at 23 weeks. n = 6 mice per group at each time point. Student’s t‑test was applied for statistical analysis. Area under 
the ITT curve shown right. G Serum insulin concentration of HFD‑fed mice treated with honokiol or vehicle after 12 weeks of their respective diets. 
n = 6 mice per group. Student’s t‑test was applied for statistical analysis. H GSVA pathway enrichment analysis related to cell death, inflammation, 
and fatty acid degradation differentially regulated by honokiol treatment. n = 5 mice per group. I Heatmap of gene expression profiles involved in 
cell damage and death, inflammation, and fatty acid degradation
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Fig. 4 Honokiol protects against mouse NASH. A Schematic of the CDAHFD‑induced NASH model and evaluating the therapeutic effects of 
honokiol in vivo (100 mg/kg). B Body weights of NC‑ or CDAHFD‑fed mice treated with honokiol or vehicle three weeks after subjecting them to 
their respective diets for one week. n = 6 mice per group. One‑way ANOVA was used for statistical analysis. C Liver weights and ratio of liver weight 
to body weight (LW/BW) of NC‑ or CDAHFD‑fed mice treated with honokiol or CMC three weeks after subjecting them to their respective diets 
for one week. n = 6 mice per group. One‑way ANOVA assay was used for statistical analysis. D Blood glucose concentrations during GTT and the 
AUC of GTT of CDAHFD‑fed mice treated with vehicle or honokiol. E Fasting blood glucose (FBG) concentrations of CDAHFD‑fed mice treated with 
vehicle or honokiol. n = 6 mice per group. Student’s t‑test was applied for statistical analysis. F TG, TC and NEFA levels in the livers of CDAHFD‑fed 
mice treated with honokiol or vehicle. n = 6 mice per group. Student’s t‑test was applied for statistical analysis. G Representative images of indicated 
mouse liver sections stained with HE, ORO, PSR, and IHC for CD11b‑positive cells. n = 6 mice per group. Scale bar 50 μm. H Results of NAS (HE) and 
quantitative analysis of ORO, PSR, and CD11b shown in (G). n = 6 mice per group. The Mann–Whitney U test was used for NAS and Student’s t‑test 
was applied to ORO, PSR, and CD11b data. I Serum ALT and AST activity and serum TG concentrations in CDAHFD‑fed mice treated with honokiol or 
vehicles. n = 6 mice per group. Student’s t‑test was applied for statistical analysis. J Schematic of the MCD‑induced NASH model and evaluating the 
therapeutic effects of honokiol in vivo (100 mg/kg). K TG, TC. and NEFA levels in the livers of MCD‑fed mice treated with honokiol or vehicle. n = 6 
mice per group. Student’s t‑test was applied for statistical analysis. L Representative images of the indicated mouse liver sections stained with HE, 
ORO, PSR, and IHC for CD11b‑positive cells. n = 6 mice per group. Scale bar 50 μm. M Results of NAS (HE) and quantitative analysis of ORO, PSR, and 
CD11b data shown in (L). n = 6 mice per group. For statistical analysis, the Mann–Whitney U test was used for NAS and Student’s t‑test was applied 
to ORO, PSR, and CD11b. N Serum ALT and AST activity of MCD‑fed mice treated with honokiol or vehicle. n = 6 mice per group. Student’s t‑test was 
applied for statistical analysis. O GSVA pathway enrichment analysis related to cell damage and death, inflammation, lipid metabolism, and fibrosis 
differentially regulated by honokiol treatment. n = 5 mice per group. P Heatmaps of gene expression profiles involved in cell damage and death, 
lipid metabolism, inflammation, and fibrosis

(See figure on next page.)

Moreover, correlation analysis also indicated that AMPK 
signaling was negatively related to cell death, inflamma-
tory responses, and lipid metabolism in fatty liver settings 
(Fig.  5B). In line with the transcriptomics assay, West-
ern blotting revealed that honokiol treatment activated 
AMPK in vitro (Fig. 5C). Furthermore, honokiol consist-
ently activated AMPK and inhibited mTOR in both liver 
and WAT in the indicated mouse models (Fig.  5D–G). 
These results robustly demonstrate AMPK activation by 
honokiol and collectively point to AMPK activation as 
the molecular mechanism mediating its anti-NASH pro-
tective effects.

AMPK activation is essential for honokiol‑mediated liver 
protection
To further demonstrate whether AMPKα activation 
is essential for the protective effects of honokiol, we 
cotreated primary hepatocytes with the AMPK activa-
tion inhibitor compound C (CC) and honokiol. CC sig-
nificantly reduced the induction of AMPK activity and 
largely diminished the lipid-lowering effect by honokiol 
in primary hepatocytes (Fig. 6A–C). To further confirm 
the requirement of AMPK activation genetically, we 
generated PRKAA1 and PRKAA2 (expressing AMPKα1 
and AMPKα2) double knockout (DKO) hepatocytes 
(Fig. 6D). Of note, AMPKα-DKO completely abolished 
the lipid-lowering effect of honokiol in hepatocytes 
(Fig.  6E, F). Furthermore, transcriptomic profiling 
firmly validated the reversal of pathways nvolved in 
lipid metabolism and inflammation by CC treatment 
(Fig.  6G). The collective pharmacological and genetic 
evidence suggest that AMPK activation is a necessary 

component for honokiol to exert a protective effect 
in vitro.

We next explored whether AMPK activation is vital 
to honokiol-mediated protective effects in  vivo. We 
subjected CDAHFD-induced NASH mice to combined 
administration of CC (10  mg/kg/i.p. every other day) 
and honokiol (100 mg/kg every day, intragastric gavage) 
(Fig.  7A). CC effectively diminished honokiol-induced 
AMPK activation in the liver (Fig.  7B). CC treatment 
also abrogated the observed improvements in glu-
cose intolerance by honokiol (Fig.  7C). The beneficial 
effects of honokiol on liver lipid accumulation, fibro-
sis, and inflammatory cell infiltration were also signifi-
cantly reversed (Fig.  7D–F). CC treatment also reduced 
honokiol-induced improvements in serum markers of 
liver function and lipid metabolism (Fig. 7G, H). Finally, 
transcriptomic data systematically showed CC-induced 
reversal of the pathways and gene expression profiles 
involved in lipid metabolism, inflammation, fibrosis, and 
cell damage (Fig. 7I, J). All the evidence led to the con-
clusion that AMPK activation is critical component of 
honokiol-mediated hepatic protection.

Honokiol activates AMPK by directly binding to AMPKγ1 
and acts as an AMPK complex agonist
To further explore the exact molecular mechanisms 
underpinning honokiol’s activation of AMPK sign-
aling, we examined the impact of honokiol on well-
established upstream regulators of AMPK. However, 
honokiol showed negligible influence on the expression 
and phosphorylation of liver kinase B1 (LKB1), trans-
forming growth factor beta-activated kinase 1 (TAK1), 
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calcium/calmodulin-dependent protein kinase kinase 
2 (CAMKK2), and no decrease in the negative regula-
tor protein phosphatases 2C (PP2C) in hepatocytes or 
fatty livers compared with blank controls (Fig. 8A–D). As 
the AMPK complex directly senses cellular energy sta-
tus, we hypothesized that these negative findings might 
be related to the direct influence of honokiol on cellular 

respiration and subsequent changes in cellular ATP, ADP, 
and AMP. However, the oxygen consumption rate (OCR) 
of hepatocytes was not significantly altered upon treat-
ment with honokiol (Fig.  8E). Similarly, liver ATP, ADP, 
and AMP levels were not significantly altered by honok-
iol in fatty livers in diet-induced mouse models (Fig. 8F–
H). This evidence collectively suggests the possibility of a 
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previously unknown mechanism through which honokiol 
activates AMPK.

Docking analysis suggested that honokiol might 
directly bind to the AMPKγ1 subunit [30], potentially 
explaining how honokiol activates AMPK. To test this 
prediction, we chemically linked biotin to honokiol and 
constructed plasmids expressing AMPKγ1 (Fig.  9A). 
Since AMPKγ2 is predominantly expressed in the liver, 
we also created an AMPKγ2 plasmid (Fig.  9B). Strepta-
vidin–biotin binding assays showed that honokiol signifi-
cantly interacted with AMPKγ1 but not with AMPKγ2 
(Fig. 9C, D). Honokiol binds AMPKγ1 at histidine (151), 
arginine (152), and lysine (243), since mutation of these 
3 amino acid sites largely abolished the interaction 
between honokiol and AMPKγ1 (Fig.  9E). Importantly, 
AMPKγ1 knockdown significantly reduced AMPK acti-
vation by honokiol, and consequently the lipid-lower-
ing effects of honokiol (Fig.  9F, G). This suggests that 
AMPKγ1 is necessary for the full activation of AMPK 
by honokiol. Moreover, in shPRKAG1 cells, rescue of 
honokiol-induced AMPK activation and its subsequent 
protective effect only occurred in cells supplemented 
with WT-AMPKγ1, instead of the AMPKγ1-3A mutant 
(Fig.  9H, I). Our research suggests that honokiol could 
potentially be an AMPK complex agonist through direct 
binding to AMPKγ1 (Fig. 9J).

Discussion
NAFLD and related metabolic syndrome have become 
major disease burdens worldwide, and approved phar-
macological interventions for these conditions are lack-
ing. The failure of promising drug candidates in phase 
II or phase III clinical trials over the last three years 
further emphasizes the urgent need for new, effec-
tive, and safe agents for NASH therapy. FDA-approved 
drug libraries provide a highly efficient strategy for 
anti-NASH drug screening and development, benefit-
ing from the well-tested safety and pharmacology of the 
included compounds. Here we identified honokiol as an 
AMPK agonist that ameliorated NASH and metabolic 
syndrome. Intriguingly, honokiol did not inhibit lipid 
accumulation, inflammation, and cell damage via clas-
sical upstream AMPK activation pathways, but instead 
through direct interaction with AMPKγ1 and subsequent 
phosphorylation.

Honokiol is a pleiotropic compound found in magno-
lia plants, and it is used in traditional Chinese medicine 
for the treatment of several diseases. Previous studies 
have reported that honokiol is useful for the treatment 
of tumors, sepsis-associated acute lung injury, neurode-
generative diseases, and cardiomyopathy [31]. The main 
beneficial effects of honokiol are related to its ability to 
induce apoptosis, reduce inflammation, and scavenge 
harmful oxidizing agents. Moreover, previous studies 
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activity of CDAHFD‑fed mice shown in the indicated groups. n = 6 mice per group. Student’s t‑test was applied for statistical analysis. H Serum TC 
concentrations in CDAHFD‑fed mice treated with the indicated groups. n = 6 mice per group. Student’s t‑test was applied for statistical analysis. 
I Dot plot representing pairwise GSVA comparisons of transcriptomic data from CDAHFD‑fed mice shown in the indicated groups. J Heatmap of 
transcriptomic data from CDAHFD‑fed mice shown in the indicated groups
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have also reported that honokiol can ameliorate hepato-
cyte lipotoxicity and macrophage polarization in the liver 
[21–24]. It also has a reported anti-obesity effect [32, 33]. 
However, previous studies have not fully established the 
detailed molecular events and gene expression profiles 

related to the phenotypes induced by honokiol treatment. 
Based on the results of our present study, honokiol repre-
sents a promising drug candidate for metabolic disorder-
related diseases via a previously unappreciated molecular 
mechanism. Notably, there might be other mechanisms, 
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beneficial effects of honokiol in ameliorating obesity and NASH progression
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except from AMPK signaling, also involved in the ben-
eficial effects of honokiol against NAFLD progression. In 
our experiments, both AMPK signaling and Retrograde 
endocannabinoid signaling are enriched, the latter having 
been associated with neuron diseases [34] but its impli-
cation in NAFLD yet to be investigated. It is essential to 
conduct further research to determine if honokiol can 
ameliorate NAFLD and metabolic syndrome through 
other pathways, such as retrograde endocannabinoid 
signaling.

Hepatic and adipose tissue lipid accumulation results 
from an imbalance between lipid production and utili-
zation [35]. As noted above, our multi-transcriptomic 
analysis further showed that honokiol protected against 
obesity/NAFLD/NASH by promoting fatty acid oxidation 
(FAO), a key metabolic pathway for fatty acids. Further 
analysis of signaling pathways regulating FAO revealed 
AMPK activation. AMPK is a master regulator of nutri-
ent metabolism, including lipid synthesis and degrada-
tion [36]. AMPK activation has been shown to protect 
against NASH [37–42], obesity [43], and type 2 diabetes 
[44, 45]. Notably, AMPK activation in the intestine by 
nicotine could aggravate NASH by increasing intestinal 
ceramide formation [46]. We confirmed activation of 
AMPK and its targets by honokiol [21, 24, 33], consistent 

with its protective effects against NAFLD and NASH 
in vitro and in vivo. Through both genetic and pharma-
cological methods, we demonstrated that the protective 
effect of honokiol in NAFLD/NASH depends on AMPK 
activation. Transcriptomic analysis suggested that com-
pound C (CC) treatment significantly reversed the gene 
expression profile regulated by honokiol administration.

As reported previously, AMPK activation is tightly reg-
ulated by upstream kinases and phosphatases [8]. How-
ever, we found that honokiol did not rely on its classical 
regulators for activation of AMPK. Molecular docking 
analysis and biotin-avidin affinity capture of honokiol and 
AMPK complex indicated that honokiol could directly 
bind to the AMPKγ1 subunit, thus activating the AMPK 
complex. After point mutation of predicted bind-
ing sites, enrichment of the AMPKγ1-3A mutant by 
honokiol largely decreased. These experimental results 
further suggest honokiol can bind to AMPKγ1 to acti-
vate the AMPK complex. In PRKAG1 (gene expressing 
AMPKγ1)-knockdown hepatocytes, we found a marked 
reduction in honokiol-induced AMPK activation, an 
effect that could be rescued by supplementation with 
AMPKγ1 but not with the AMPKγ1-3A mutant. These 
findings suggest direct targeting AMPKγ1 by honokiol to 
activate the AMPK complex. Consistent with this, liver-
specific gain-of-function mutations in AMPKγ1 or direct 
targeting of AMPKγ1 with small molecules have shown 
protective effects against NASH [12, 47, 48] and liver 
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glucose production [49], highlighting the importance of 
AMPKγ1 in the subsequent protective effects of AMPK 
activation. These results suggest that honokiol appears to 
act as an AMPK complex agonist that can be applied to 
several AMPK inactivation-mediated pathologies.

Hepatic and adipose tissue lipid accumulation occurs 
through an imbalance between lipid production and uti-
lization [35]. Our multi-transcriptomic analysis showed 
that honokiol benefited obesity/NAFLD/NASH by pro-
moting FAO, which is a key metabolic pathway for fatty 
acids. Further analysis of signaling pathways regulating 
FAO revealed AMPK activation. AMPK is a master reg-
ulator of nutrient metabolism, including lipid synthesis 
and degradation [36]. Inactivation of AMPK is a major 
hallmark of metabolic diseases [25, 41, 50–53], while 
activating AMPK has been shown to protect against 
NASH [37–42], obesity [43] and type 2 diabetes [44, 45]. 
However, excessive activation of AMPK might lead to 
unwanted side-effects, for instance AMPK activation in 
the intestine by nicotine from tobacco could aggravate 
NASH by increasing intestinal ceramide formation [46]. 
Furthermore, long-term administration of pan-AMPK 
agonists is causally related to cardiac hypertrophy [54]. 
In the present study, using genetic and pharmacological 
methods, we demonstrated that the protective effect of 
honokiol on NASH and its related metabolic diseases is 
dependent on AMPK activation. More importantly, we 
did not observe any side effects of honokiol on the car-
diovascular system, which might be due to the specific 
regulation of AMPK by honokiol.

Conclusions
In summary, here we introduce a treatment that may be 
suitable for the entire spectrum of NASH and metabolic 
syndrome. Honokiol effectively prevented lipid accumu-
lation, cell damage, and immune responses both in vitro 
and in  vivo. In-depth analysis of the molecular mecha-
nisms regulating FAO uncovered significant activation of 
AMPK, which was required for honokiol’s mechanism of 
action in pharmacological and genetic studies. Of note, 
honokiol-mediated activation of the AMPK complex did 
not rely on its classical regulators, instead acting as an 
AMPK complex agonist via directly binding to AMPKγ1 
subunit. Thus, our findings add new insight that targeting 
AMPKγ1 with small molecular agents could be a poten-
tial treatment for obesity, NAFLD, and NASH without 
adverse effects.
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