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Abstract 

Traditional Chinese medicine (TCM) has been practiced for thousands of years with clinical efficacy. Natural products 
and their effective agents such as artemisinin and paclitaxel have saved millions of lives worldwide. Artificial intel-
ligence is being increasingly deployed in TCM. By summarizing the principles and processes of deep learning and 
traditional machine learning algorithms, analyzing the application of machine learning in TCM, reviewing the results 
of previous studies, this study proposed a promising future perspective based on the combination of machine learn-
ing, TCM theory, chemical compositions of natural products, and computational simulations based on molecules 
and chemical compositions. In the first place, machine learning will be utilized in the effective chemical components 
of natural products to target the pathological molecules of the disease which could achieve the purpose of screen-
ing the natural products on the basis of the pathological mechanisms they target. In this approach, computational 
simulations will be used for processing the data for effective chemical components, generating datasets for analyzing 
features. In the next step, machine learning will be used to analyze the datasets on the basis of TCM theories such as 
the superposition of syndrome elements. Finally, interdisciplinary natural product-syndrome research will be estab-
lished by unifying the results of the two steps outlined above, potentially realizing an intelligent artificial intelligence 
diagnosis and treatment model based on the effective chemical components of natural products under the guidance 
of TCM theory. This perspective outlines an innovative application of machine learning in the clinical practice of TCM 
based on the investigation of chemical molecules under the guidance of TCM theory.

Keywords Machine learning, Deep learning, Traditional Chinese medicine, Natural products, Chemical components, 
Multidisciplinary intersection

Introduction
Machine learning, which involves learning relationships 
from data using computer science, has been success-
fully applied to solve complicated tasks such as computer 
vision, speech recognition, and natural language process-
ing [1, 2]. The large amount of TCM data which utilized 
natural product (herbal medicine) to remedy disease 
produced from long-term clinical diagnoses, treatment 
and experiments, can be utilized for future research with 
machine learning. Machine learning verifies similarities 
among datasets by identifying characteristic regularities 
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between input data and output results, and it has been 
applied for research on natural products, disease diagno-
sis and treatment, etc. [3]. Deep learning is an extension 
of machine learning that involves processing and valida-
tion of large training datasets between input and output 
units [4]. Deep learning has gained increasing impor-
tance for effective processing of large amounts of data 
and identifying patterns or functions hidden deep inside 
biological data. It has rapidly developed and success-
fully applied in many fields, including image recognition, 
robotics, speech recognition, and life sciences [5]. Deep 
learning uses different structural network models for dif-
ferent types of data and different application situations, 
and the primary models in deep learning include the con-
volutional neural network (CNN), Elman recurrent neu-
ral network (RNN), long short-term memory (LSTM), 
and generative adversarial network (GAN). Unlike CNN, 
RNN, and LSTM, which are deep neural network models, 
GAN is an unsupervised learning algorithm that learns 
by playing two deep neural networks against each other.

TCM is one of the oldest healthcare systems in the 
world and is being increasingly used as a complemen-
tary medicine system worldwide [6]. As a fully institu-
tionalized part of Chinese healthcare, TCM is widely 
used with western medicine in China. Natural prod-
ucts which contain various chemical ingredients are 
employed to cure disease under the guidance of TCM 
theory. TCM theories such as the eight diagnostic prin-
ciples to differentiate, the five elements theory, and the 
visceral manifestation theory can be collected by four 
traditional examination methods: looking, listening and 
smelling, asking, and touching, which could obtain pulse, 
face, tongue, urine, and stool information to provide 
essential information for diagnosis and natural products 
treatment. The process of diagnosis that guides treat-
ment is called syndrome differentiation, which reflects 
the temporary state of a syndrome defined on the basis 
of the symptoms and signs identified by the four tradi-
tional examination methods. In this approach, wherein a 
clinical condition defined as a specific disease in western 
medicine can manifest in different syndrome elements 
in the same patient and may require varying treatment 
over time [7]. When this guiding TCM theory could be 
reproduced by machine learning, natural products which 
treat disease basing on chemical ingredients and mol-
ecules will be more powerful in remedying disease, that 
will bring major changes to human health and the qual-
ity of human life and save more lives. Although machine 
learning in TCM have been studied before [8–10], in the 
present study, we provide a systemic summary both of 
machine learning and its application in TCM, and pro-
posed a promising future research direction. We sum-
marized the principles and processes underlying deep 

learning and traditional machine learning algorithms, 
analyzed the development and application of machine 
learning in TCM research, and proposed a promis-
ing research direction that integrates machine learning 
with TCM theory, natural products research, and com-
putational simulation to provide an intelligent artificial 
intelligence diagnosis and treatment model based on the 
effective chemical components of natural products and 
molecules under the guidance of TCM theory.

Machine learning algorithms‑deep learning
Convolutional neural network
CNN is a deep feedforward neural network with the 
characteristics of local connection and weight-sharing 
that uses a stack of convolution layers to extract features. 
It is widely used in image classification [11], facial recog-
nition [12], semantic segmentation [13], object detection 
[14], and natural language processing [15]. The core idea 
of CNN involves a local receptive field, weight-sharing, 
and a pooling layer. The architecture of CNN consists of 
a sequence of layers that function as follows: when data 
is input into the CNN, the convolution layer extracts the 
features and the pooling layer aggregates the local fea-
tures extracted by the convolution layer to obtain global 
features. Finally, the fully connected layer is combined to 
classify and output the results (Fig.  1). The convolution 
kernel (also named as filter) is utilized in the convolu-
tion layer with sizes of 1 × 1, 3 × 3, or 5 × 5. Activation 
is applied after each convolution layer. The ReLU func-
tion, a mathematical formula that chooses the maximum 
of either z or 0 and is designated as f (z) = max(0, z) , is 
often utilized. Then, the pooling layer is used to reduce 
location sensitivity, minimize the number of parameters 
and computation in the network, and to control over-
fitting [16]. The most common pooling function is the 
MAX pooling function, which uses the maximum value 
from each cluster of neurons at the prior layer to form 
a new neuron in the next layer. Other functions such 
as average pooling are also applicable [16]. The pooling 
layer reduces the input dimension of the subsequent net-
work layer, reduces the size of the model, improves the 
calculation speed, improves the robustness of the feature 
map, and prevents overfitting. Three hyperparameters-
depth, stride, and padding are used to control the size of 
the output data volume. The depth is consistent with the 
number of filters used, while the stride parameter reflects 
the number of pixels by which the filter moves each time 
it slides. The filling layer reflects the filling at the edge of 
the data volume, which can be filled with 0 or the mean 
value. CNN minimizes losses by adjusting the network 
parameters iteratively, and improves the accuracy of the 
network through frequent iterative training [17].
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Elman recurrent neural network
The Elman RNN, also named as a simple recurrent net-
work, was the first RNN among feedback neural net-
works and was specifically designed for processing 
time-dependent sequential data. The Elman RNN is often 
used in natural language processing [18]. It shows both 
current and past features of time series, adapts to the 
long-term historical changes in data, stores past infor-
mation to solve context-dependent tasks, and provides 
predictions simultaneously with existing observations 
[2]. The Elman RNN consists of input, recurrent, hidden, 
and output layers. The standard connections of each layer 
which are similar to a feedforward network, are applied 
synchronously to propagate information from one layer 
to another by calculating a nonlinear function [19]. The 
input layer plays a signal transmission role, and the out-
put layer plays a weighting role. The hidden and output 
layers usually employ the sigmoid nonlinear function as 
the activation function [20]. The recurrent layer is uti-
lized to memorize the output value of the hidden layer at 
the previous moment, which can be regarded as a one-
step delay operator. By the recurrent layer, the output of 
the hidden layer can self-connected to the input through 
delay and storage facilitated, and this self-connection 
makes the network can capture historical information. 
The addition of the internal feedback network increases 
the capacity of the network to handle dynamic informa-
tion, thereby allowing dynamic modeling [21] (Fig. 2).

Long short‑term memory network
The LSTM is an advanced variant of RNN with the 
capability of preserving long-term dependencies by 
using internal feedback [22]. Essentially, the LSTM lay-
ers prevent older information from gradually vanishing 
[23]. The LSTM is a popular RNN and has been suc-
cessfully applied in many fields such as speech rec-
ognition, image description, and natural language 

processing. The LSTM can make use of gating mecha-
nisms to mitigate gradient exploding and gradient van-
ishing when learning long-term dependencies [24]. 
This model introduces an intermediate type of stor-
age using memory cells. A memory cell is a composite 
unit built from simpler nodes in a specific connectiv-
ity pattern, with the novel inclusion of multiplicative 
nodes. Each memory cell is equipped with an internal 
state and a number of multiplicative gates, namely, the 
input, forget, and output gates. The input gate deter-
mines whether a given input should impact the inter-
nal state; the forget gate determines the extent to which 

Fig. 1 The basic structure of CNN, including input, convolution, pooling, full connection and output layers

Fig. 2 The basic structure of Elman RNN, consists of input, 
recurrent, hidden, and output layers. U, V and W are the weights 
of input layer, output layer, recurrent layer separately. Parameter 
b represents bias term of hidden layer, b’ represents bias term of 
output layer. Hidden layer: hit = f (U ∗ Xnt +W ∗ hi(t−1) + b) . Output 
layer:Ojt = V ∗ hit + b′
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the internal state should be flushed; and the output gate 
determines the extent to which the internal state of a 
given neuron should be allowed to influence the cell’s 
output. The LSTM uses two activation functions: the 
tanh function and the sigmoid function. The repetitive 
module of the Elman RNN contains only one tanh func-
tion, while the repetitive module in the LSTM contains 
four interacting activation functions (three sigmoid and 
one tanh) (Fig. 3).

Generative adversarial network
GAN is a promising framework composed of two com-
ponents: a generator and a discriminator. The genera-
tor generates false data samples and tries to deceive the 
discriminator. The discriminator tries to distinguish 
between true and false samples, which compete with each 
other in the training phase [25]. By repeating these steps, 
the generator and discriminator continue to improve in 
their respective tasks (Fig. 4). The generator and discrim-
inator are usually implemented by a neural network with 

Fig. 3 The basic structure of LSTM. Input X(t), output Y(t); W represents weight, b represents bias term. Hidden state: ht = ot ⊗ tanh(gt) ; input 
node: gt = tanh(XtWxg + ht−1Whg + bg) ; memory cell internal state: Ct = ft ⊗ Ct−1 + it ⊗ gt . Input gate: it = sigmoid(XtWxi + ht−1Whi + bi) ; 
forget gate: ft = sigmoid(XtWxf + ht−1Whf + bf ) ; output gate: ot = sigmoid(XtWxo + ht−1Who + bo)

Fig. 4 The basic structure of GAN structure, consisting of a generator and a discriminator
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simultaneous training, and both of them are trained by 
playing minimax games from game theory. The generator 
maximizes the cross-entropy loss (i.e., maxlog(D(x′)) ), 
while the discriminator minimizes the cross-entropy loss 
(i.e., min− ylogD(x)− (1− y)log(1− D(x)) ). The adver-
sarial loss created by the discriminator provides a clever 
approach to incorporate unlabeled samples into training 
and impose higher-order consistency. This model has 
achieved state-of-the-art performance in many image-
generation tasks, including text-to-image synthesis, 
super-resolution, and image-to-image translation [26].

Machine learning algorithms‑traditional machine 
learning algorithms
Multilayer perceptron
Multilayer perceptron (MLP) uses a neural network 
with fully connected layers in a nonlinear model, includ-
ing an input layer, several hidden layers, and an output 
layer with the capability to calculate the weighted sum of 
its inputs and then apply an activation function to trans-
form a signal to the next neuron [27] (Fig. 5). The ReLU, 
sigmoid, and tanh functions are the common activation 
functions in the MLP. The sigmoid function, which takes 
a real-value input and “squashes” it in a range between 0 
and 1, was often used previously. Like the sigmoid func-
tion, the tanh function also squashes its inputs, trans-
forming them into elements on the interval between − 1 
and 1. However, the ReLU function has now emerged as 
a more popular nonlinear function with a mathemati-
cal formula that chooses the maximum of either x or 0 
[16]. The ReLU function is significantly more amenable 
to optimization than the sigmoid or the tanh function. 

MLP utilizes the back-propagation method with stochas-
tic gradient descent to training [28].

Support vector machine, decision tree, random forest
The support vector machine (SVM) algorithm is a gen-
eralized linear classifier model for binary classification 
[29]. By using a non-parametric max-margin classifica-
tion technique, it can classify data into two groups [30]. 
However, since practical research usually involves non-
linear problems, high-dimensional linear separable 
problems should be used instead of low-dimensional 
linear inseparable problems. Kernel functions such as 
the Gaussian, linear, and polynomial kernel functions are 
used to address this issue. SVM is based on the princi-
ple of structural risk minimization and shows excellent 
characteristics in nonlinear and small-sample problems. 
Combinations of methods or modification of separat-
ing hyperplanes, classification margins, boundaries, etc., 
can improve the generalization of SVM [30], avoiding 
the under-fitting and overfitting problems in previous 
attempts at neural network learning and yielding high 
generalization ability [31]. Decision tree (DT) is a basic 
classification and regression method in machine learn-
ing that mainly includes feature selection, decision tree 
generation, and pruning [32, 33]. Common DT algorithm 
models include the ID3, C4.5, and CART algorithms [34]. 
The DT algorithm is simple and intuitive, easy to under-
stand, shows enough flexibility and expression ability. 
The random forest (RF) algorithm is an extension of DT 
with a high-performance speed [35, 36]. RF can perform 
prioritization of features by assigning different weight 
coefficients to different categories [37]. RF works by 
sequentially injecting training data and feature vectors 

Fig. 5 The basic structure of MLP, including input layer, hidden layer, and output layer. The parameter w and w’ represent weight, b and b’ represent 
bias term. Hidden layer: hi = X ∗ w + b ; output layer: Oj = h ∗ w′

+ b′
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into each of the base learners, identification of the best 
subset of features, and achieving the highest performance 
among all the aggregated base learners by increasing the 
impact factor of the best-feature subset in the classifier 
[38].

Comparisons between algorithms
From the original AlexNet in 2012 through the VGG in 
2014 and ResNet in 2015, CNNs have been predomi-
nantly used in the field of computer vision [39] and natu-
ral language processing [40]. CNNs show good fitting 
effect and high accuracy. The weight-sharing feature of 
CNNs reduces the number of parameters, while their 
shift-invariant feature enhances the robustness of the 
network and shows an anti-disturbance effect. However, 
the shift-invariant feature also means that slight changes 
in the object will not activate the recognition of the object 
neurons. Moreover, the CNN model pooling layer loses 
a lot of valuable information, and the lack of a memory 
function as well as the limited data size and high com-
putational requirements are other shortcomings of CNN 
[41]  (Table  1). The Elman RNN has shown good ability 
in capturing the dynamics of sequences via recurrent 
connection, e.g., as in natural language processing [22]. 
The Elman RNN is effective and shows good generaliza-
tion ability and has been widely used for solving practi-
cal problems [21]. However, it is prone to show gradient 
explosion and gradient vanishing, and cannot address the 
problems of long-term dependencies and parallel train-
ing [42]. In comparison with the Elman RNN, LSTM can 
achieve better analysis results in longer sequences, solv-
ing the vanishing gradient problem and stability prob-
lems in the time dimension of Elman RNN. However, 
the use of LSTM for processing longer sequence data is 
still difficult. Moreover, its calculation is time-consuming 
[22]  (Table  1). As a generative model, GAN only uses 
back-propagation, which improves efficiency. GAN is an 
unsupervised learning method and is good at generali-
zation. It can be used when the probability density can-
not be calculated. The main disadvantage of GAN is the 
unstable training process and the difficulty in achieving 
Nash equilibrium. GAN can be used for various learning 
tasks, especially in the field of computer vision, but it is 
not suitable for processing discrete forms of data, such as 
text [25] (Table 1).

MLP is a simple and easy-to-implement algorithm with 
good generalization ability that is often used for identifi-
cation, classification, and prediction [32]. However, there 
are two main problems associated with the development 
of MLP networks: architecture optimization and train-
ing. The definition of the architecture is a critical point 
because the lack of connections can reduce the abil-
ity of the network to solve the problem of insufficient 

adjustable parameters, while too many connections may 
lead to overfitting of the training data. Therefore, train-
ing for large datasets is very time-consuming with MLP 
[27]  (Table  1). SVM is more suitable for binary classifi-
cation with small sample sizes and shows better robust-
ness and generalization ability [43]. However, SVM is 
sensitive to parameters and kernel functions, and it is 
not suitable for multi-classification research in the case 
of non-optimization. SVM is often used in data classifi-
cation and regression [32]  (Table  1). As common tradi-
tional machine learning algorithms, DT and RF are based 
on simple principles and are easy to implement and can 
be used for data classification and regression [32, 44]. 
However, DTs are unstable since small variations in the 
data may result in the generation of a completely differ-
ent tree. On the other hand, although RF shows good 
capability to reduce data noise, it is prone to overfitting 
when training large amounts of data [45]. RF has a simple 
structure, and is ease of understanding, performs higher 
efficiency than similar methods [37] (Table 1).

Deep learning offers absolute advantages in computer 
vision and natural language processing. Its powerful 
processing capabilities for features such as image and 
time series features are beyond the reach of traditional 
machine learning algorithms. Deep learning methods 
such as generative adversarial algorithms and reinforce-
ment learning ensure continuous improvements in the 
calculation accuracy, which is also beyond the reach of 
traditional machine learning algorithms. However, for 
small datasets, deep learning is prone to overfitting and 
shows no advantage over traditional machine learning 
algorithms. Thus, the development of artificial intelli-
gence techniques for TCM will require a combination 
of deep learning and traditional machine learning. Deep 
learning is preferred in feature extraction, such as seman-
tic segmentation data fitting and image feature extrac-
tion. In contrast, traditional machine learning algorithms 
such as MLP and RF may be more suitable for small data 
classification and regression problems (Table 1).

Applications of machine learning in TCM research
Applications of machine learning in natural products 
development
Deep learning is widely used in the research and devel-
opment of natural products  (Table  2). Natural products 
which contain many effective chemical components with 
great potential value are the main methods to treating 
diseases in TCM. Approximately 70–95% of people in the 
developing world continue to rely on natural products as 
their primary pharmacopeia [47]. Thus, the development 
of natural products is of a great importance in clinical 
therapy, especially in combination with machine learn-
ing, is an innovative, forward-looking, and applicable 
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new model. The effective scientific characterization of 
natural products is the basis for using machine learn-
ing [48]. Chemical descriptors and fingerprints are often 
used to quantify the natural products’ effective chemical 
entities physicochemical characteristics and the related 
biological target molecules. Chemical descriptors char-
acterized molecules properties by experimental quan-
tification or theoretics which represent its chemical, 
physical, or topological characteristics. While chemical 
fingerprints are more complex for encoding as binary 
bit strings. Chemical fingerprints can reflect the active 
constituents in substances and can effectively character-
ize the quality of TCM’s materials [48]. Both molecular 
descriptors and fingerprints perform crucial functions in 
machine learning-based applications for drug discovery 
processes such as target molecule ranking, similarity-
based compound search, and virtual screening [49]. For 
example, machine learning could successfully identify 
the antibiotic precursor halicin with different structures 
[50]. The researchers used a deep neural network model 
that translated the graphical representation of a molecule 
into a continuous vector through a directed bond-based 
message passing approach to train the dataset and then 
used computer simulations to screen compounds that 
were obtained by vitro screening to finally obtain halicin. 
Chen [51] used the SVM algorithm to establish a math-
ematical discriminant model to distinguish the cold and 
hot nature of natural products. Machine learning can 
collect and process data based on the medicinal prop-
erties, chemical compositions, and function of natural 
products, allowing automatic discrimination and predic-
tion. Chuang [52] comprehensively discussed how artifi-
cial intelligence can address the limitations of molecular 
descriptors and fingerprints and thereby improve the 
predictive modeling of compound bioactivities. Yang 
[53] utilized RF, neural networks, and SVM to identify 
new compounds in TCM prescriptions for Alzheimer’s 
disease. They utilized data mining to collect Alzheimer’s 
disease-related and unrelated compounds from the lit-
erature databases. Then, RF, gradient boosting machine 
and neural networks were utilized to determine the 
importance of each feature, and important features were 
selected by molecular descriptors for feature extraction. 
The selected features were input to the SVM algorithm 
to identify the new compounds in TCM prescriptions. Yu 
[54] used RF to obtain the feature descriptors of natural 
product compounds, SVM to predict hit molecules based 
on the feature descriptors screened by RF, and molecular 
docking to perform virtual screening. They successfully 
identified 4′,5,7-trimethoxyflavone as a potential platelet-
derived growth factor receptor α (PDGFRA) inhibitor.

Although the majority of natural products appear 
inherently safe, clinicians and researchers should also 

pay attention to the potential for drug-induced injury. 
The liver which is the major organ of drug metabolism 
is more likely to show drug-induced injuries than other 
organs, and these injuries may lead to hepatitis, liver 
fibrosis, liver failure, and even death [55]. The kidney 
is also highly susceptible to drug-induced toxic insults 
that are a common cause of acute kidney injury [56]. 
With advancements in machine learning, researchers 
have turned their attention to the use of machine learn-
ing applications for evaluating drug-induced injuries. 
Hu [57] used SVM and in vitro screening to predict and 
validate the risk of idiosyncratic drug-induced liver inju-
ries caused by the natural products in Polygonum mul-
tiflorum Thunb, and provided a powerful tool to screen 
large datasets for toxicants. He [58] established a large-
scale dataset focused on TCM-induced hepatoprotection 
to train machine learning models such as RF and voting 
models. Their work helped screen potential hepatopro-
tectants from natural products. Chen [59] developed a 
method for screening hepatotoxic compounds in TCM 
and Western medicine combinations on the basis of 
chemical structures by using SVM, neural networks, 
DT, and RF. Their results showed that RF yielded a clas-
sification accuracy of 0.838, which was better than other 
machine learning methods.

Applications of machine learning in disease diagnosis
With the application of AI technology in TCM, AI-
assisted disease diagnosis has emerged as a promising 
research field. With TCM symptoms corresponding to 
features in the machine learning literature, syndrome ele-
ments serve as classes or labels [60], and machine learn-
ing has been used in disease diagnosis models (Table 2). 
Wang [10] used an optimized SVM algorithm to con-
struct a serology-based lung cancer diagnosis model, ana-
lyzed the potential therapeutic mechanisms of wogonin 
in lung cancer, explored the relationship between sero-
logical markers and wogonin targets, and constructed 
a signal pathway regulated by wogonin. Shi [61] devel-
oped a new fatigue classification method by integrating 
pulse data and tongue images with machine learning 
algorithms and using machine learning models, includ-
ing SVM, RF, and neural networks, to diagnose disease-
related fatigue and non-disease-related fatigue. Senoner 
[62] achieved good results when using the neural net-
work algorithm with electrocardiogram data to assist the 
diagnosis of preexcitation syndrome. Using the neural 
network model based on blood pressure data, Sun [63] 
established a TCM syndrome diagnosis model of coro-
nary heart disease. Zhang [64] developed a TCM assis-
tive diagnostic system by utilizing bidirectional LSTM 
with RF for named entity recognition, a CNN for text 
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processing for disease diagnosis, and an integrated learn-
ing model for syndrome prediction. Zhao [65] utilized an 
adaptive resonant neural network for quantitative diag-
nosis of TCM syndrome types.

Clinical information for TCM diagnosis is collected by 
the diagnostic methods of looking, listening and smell-
ing, asking, and touching. Intelligent auxiliary diagno-
sis methods based on these four diagnostic methods in 
TCM are constantly developing with the accumulation 
of clinical diagnosis and treatment records, experimen-
tal records, TCM databases, books, medical literature, 
and the other knowledge. Diagnosis based on visual 
examination is an important method to obtain disease 
information, and tongue and eye diagnoses are its main 
components. TCM tongue diagnosis involves inter-
pretation of tongue images obtained by doctors on the 
basis of the theory of TCM after observing the tongue 
coating, quality, shape, and other tongue-related infor-
mation. Tongue diagnosis provides much information 
about the state of the body, and the diagnostic points 
of tongue diagnosis include the color and state of the 
tongue coating, color, texture, shape, and characteris-
tics of the sublingual vein and tongue body parts, etc., 
which are important features in tongue diagnosis data 
collection. Traditional machine learning algorithms 
such as SVM [66], DT, neural networks [45], and RF [67] 
have been previously used as intelligent auxiliary diag-
nosis algorithms for tongue diagnosis. The accuracy of 
SVM in processing hyperspectral red-green-blue tongue 
images based on tissue type combination can be as high 
as 93.11% [66]. Liu [68] selected 22 kinds of tongue fea-
tures in 311 participants to establish the training data set, 
and used DT (accuracy rate, 66.9%) and MLP (accuracy 
rate, 64.3%) to classify the tongue images corresponding 
to kidney deficiency. Qi [67] used the open-source Weka 
software to classify the color of 728 tongue images, and 
obtained an RF prediction accuracy of 84.94%. Yan [69] 
used deep learning and RF to classify normal, mild, and 
severe teeth-marked tongues. Lu [70] utilized Ridge-
CNN to classify sublingual varices of TCM with an accu-
racy rate of 87.5%.

Although SVM, RF, and MLP have been shown to be 
effective for simple image classification, they are not 
satisfactory for complex tasks. With advancements 
in machine learning, deep learning is being gradually 
applied for complex task processing for intelligent tongue 
diagnosis. CNN models are good at image classification, 
and have been shown to be better than other traditional 
algorithms in this field [71]. The AlexNet, GoogLeNet, 
ResNet, and DenseNet network structures with CNN 
as the model algorithm have been applied for tongue 
image classification. Huo [72] used a CNN model with an 
AlexNet network structure and achieved higher accuracy 

for tongue shape classification as well as reduced training 
time for the CNN model. Xiao [73] used the improved 
AlexNet network structure to build a tongue coating 
color classification model. Using the GoogLeNet net-
work, Christian [74] proposed the inception module to 
optimize training from another perspective, extracting 
more features with the same amount of computation. 
With advancements in CNN, ResNet solved the problem 
of difficult training, high error rates, and a rapid decline 
in accuracy after the CNN depth increases. Shao [75] 
first separated the tongue and tongue coating, and then 
used the separated images as input to classify the tongue 
and tongue coating using ResNet-50. Residual connec-
tions make the CNN deeper, stronger, and more effi-
cient. DenseNet further expands network connectivity to 
ensure maximum information flow between layers. Using 
the AlexNet network structure, Chen [76] introduced the 
dense connection method in DenseNet and proposed the 
tongue-coating classification model TonNet.

Eye evaluations can realize intelligent auxiliary diag-
nosis through fundus image analysis. Retinal vessels are 
the only visible blood vessels that can be evaluated by 
simple fundus photography, and this approach provides 
a convenient method to evaluate cardiovascular status. 
One study found that retinal features were associated 
with stroke, and the researchers used the CNN model of 
the ResNet50 network structure to conduct a stroke risk 
assessment using retinal images [77]. Sun [78] used CNN 
to extract features and identify syndromes of yin defi-
ciency, and achieved good results.

Traditional auscultation mainly involves listening to 
sounds. With advancements in medical treatment, aus-
cultation using equipment is now also utilized in TCM. 
The combination of an electronic stethoscope with arti-
ficial intelligence technology can allow digital acquisition 
of heart sounds, providing an objective basis for heart 
sound auscultation. Traditional machine learning meth-
ods for heart sound auscultation usually involve segmen-
tation, feature extraction, and classification. Although 
traditional machine learning methods allows rapid model 
training, they usually require complex preprocessing and 
post-processing steps. However, advancements in deep 
learning, especially in the CNN model, have yielded 
favorable results for intelligent diagnosis based on heart 
sounds. The intelligent heart sound auscultation pro-
cess includes signal acquisition, signal preprocessing, 
heart sound feature extraction, and model training [79]. 
Fernando [80] proposed a heart sound segmentation 
method based on the combination of RNN with attention 
mechanism, which can effectively learn features from 
irregular and noisy heart sounds. Liu [81] used gradient-
enhanced DT, SVM, CNN, and residual convolutional 
recurrent networks to analyze heart sound signals. The 
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results showed that the residual convolutional recurrent 
network model has the highest recognition accuracy and 
sensitivity for the four types of coronary heart disease 
heart sounds.

Pulse diagnosis is one of the most important diagnos-
tic methods in TCM. Doctors use three fingers to touch 
the wrist at three specific positions, namely, inch, off, and 
ruler, to examine the pulse and determine the health of 
patients. With advancements in sensors, detectors, and 
sensor technologies, digital palpation data can now be 
obtained from the same location, enabling AI technol-
ogy to process palpation data and make diagnoses [82]. 
At present, most of the artificial intelligence technologies 
used in pulse diagnosis are limited to classical machine 
learning algorithms and their improved versions, includ-
ing SVM, RF, DT, and neural network. Each learning 
algorithm shows unique advantages in pulse diagnosis 
learning classification. SVM usually achieves better per-
formance than other traditional algorithms [82, 83]. As a 
widely used and adaptable deep learning method, CNN 
model algorithms have been proposed for TCM pulse 
diagnosis. CNN is good at mining local features and clas-
sifying and extracting global features. Moreover, CNN 
has been shown to perform better than traditional meth-
ods in AI-assisted pulse diagnosis, with accuracy above 
90% [71].

Applications of machine learning in disease treatment 
and effect evaluation
Machine learning has recently been successfully applied 
in disease treatment and effect evaluation of TCM, such 
as in prescription recommendation, transition predic-
tion, and treatment prognosis  (Table  2). The treatment 
prognosis model has received increasing attention in the 
context of clinical diagnosis and treatment decision-mak-
ing [84]. Zhang [85] utilized transformer and GAN to 
develop an auxiliary tool to prescribe TCM prescriptions 
based on the patient’s clinical electronic health records. 
In their approach, transformer was used for TCM pre-
scription generation, while the GAN model aims to 
augment the training set to further enhance the overall 
system performance by reducing overfitting effect. Dong 
[86] proposed a TCM prescription recommendation 
based on subnetwork term mapping and deep learning. 
They used TCM clinical case data to construct a natural 
product-symptom-related knowledge graph, constructed 
a symptom network by combining a meta path method 
and knowledge graph, proposed a subnetwork-based 
symptom term mapping method, utilized CNN as the 
train model, and finally output the prediction probability 
of each natural product to obtain the recommended pre-
scription [86]. Dengzhan Shengmai capsule is a patented 
TCM preparation for the secondary prevention of stroke. 

Lu [87] utilized SVM to classify the network matrix of 
the Dengzhan Shengmai capsule group at baseline versus 
after treatment. SVM classification revealed significant 
white matter network alterations after treatment in the 
drug groups, with an accuracy of 68.18%. Tang [84] used 
RF, SVM, logistic regression, and extreme gradient boost-
ing to predict whether colorectal cancer recurrence and 
metastasis with TCM factors would occur within 3 years 
and 5 years after radical surgery. The results showed that 
the four methods all showed certain predictive ability 
(area under the curve values > 0.70). Liu [88] proposed a 
graph CNN model to predict formula efficacy. The per-
formance of graph CNN for multi-classification of tonic 
formulae showed the best result in comparison with 
SVM, naive Bayes, logistic regression, DT, and K-nearest 
neighbor.

Applications of machine learning in prediction 
of biomarkers in TCM
The continuous advancement of information technology 
and biotechnology has yielded substantial biomarker data 
for TCM investigations using machine learning. Zhang 
[89] used RF and least absolute shrinkage and selection 
operator (LASSO) regression to identify important char-
acteristic genes of oxidative stress. The receiver operat-
ing characteristic results demonstrated that the model 
was better in prediction efficiency with an AUC of 0.873. 
They also found that Nobiletin, which targets PLA2G4, 
may indicate a third pathway for the treatment of acute 
myeloid leukemia. Zhang [90] utilized SVM and LASSO 
to screen the underlying feature biomarkers in four RNA 
microarray datasets of myocardial infarction. These two 
machine learning methods yielded 10 and 14 genes, 
respectively. IL1B and TLR2 were the intersection bio-
markers obtained by SVM and LASSO. On the basis of 
these biomarkers, several natural products such as dan 
shen and san qi, were identified as the potential TCM 
preparations for the treatment of myocardial infarction. 
By utilizing machine learning (residual CNN and partial 
least squares discriminant analysis), fingerprint, and net-
work pharmacology, Li [48] screened the potential bio-
markers in different parts of Wolfiporia cocos. Yuan [91] 
used RF to construct a drug-target prediction model to 
predict the key targets of Corydalis Rhizoma in the treat-
ment of cardiovascular and cerebrovascular diseases. 
Cong [92] utilized SVM, DT, and back-propagation neu-
ral network to predict novel and selective tumor necrosis 
factor-alpha converting enzyme inhibitors. In their work, 
the SVM model showed the best overall prediction accu-
racy (98.45%) (Table 2).



Page 12 of 17Ma et al. Chinese Medicine           (2023) 18:43 

Research foundation and future research direction
Advantages of algorithm ensemble and establishment 
of syndrome element diagnosis model of coronary heart 
disease
Our team proposed that algorithm ensemble is more 
suitable for TCM data models. Although an algorithm 
model can realize the construction of a prediction model 
based on the data for certain characteristics, the lack of 
universality and transferability limits the applicability of 
such models in systematic research on the diagnosis and 
treatment process of symptom-syndrome-treatment-
prescription-natural products. Therefore, considering 
the current status of artificial intelligence in TCM, uni-
fication of different diagnosis and treatment rules on the 
basis of syndrome elements through a combination of 
multiple algorithms may facilitate accurate calculation of 
the entire diagnosis and treatment process in symptom-
syndrome-treatment-prescription-natural products. The 
general structure of an ensemble learning algorithm con-
sists of a set of “individual learners”, which are used to 
create an ensemble using a certain policy [94]. Using the 
ensemble principle, the advantages of each model can be 
extracted to integrate the optimized fusion model. Voting 
and stacking are common strategies for algorithm ensem-
bles. A voting ensemble is a simple and effective fusion 
method that can weight the prediction results of a single 
model to improve model diversity while ensuring perfor-
mance. The stacking ensemble is a more powerful learn-
ing-based ensemble strategy that uses the initial dataset 
to train a “component learner” and then generates a new 
data set for training a “meta-learner”. The training results 
show that the prediction performance of the integrated 
model on the training set and the test set is generally bet-
ter than that of the single model. Fu [95] combined CNN 
with traditional algorithm models to analyze tongue-
coating properties and found that the performance of 
the integrated model was improved. On the basis of the 

voting and stacking strategy, Yang [96] performed rule 
integration-model fusion on three machine learning 
models of SVM, RF, and neural network, and achieved 
good performance. Ge [97] proposed an ensemble algo-
rithm that integrated the attention mechanism and 
LSTM, and showed that this ensemble algorithm can 
effectively select salient locations with higher accuracy 
and less computation.

The diagnosis and treatment theory in TCM shows the 
characteristics of diversified intersection. TCM treatment 
based on syndrome differentiation involves eight princi-
pal forms of differentiation, qi and blood fluid syndrome 
differentiation, zang-fu differentiation, and meridian syn-
drome differentiation. On the other hand, the compat-
ibility rules include monarch and minister compatibility, 
flavor compatibility, and component compatibility. In 
addition, differences in the diagnosis and treatment rules 
among TCM sects and TCM physicians have made it dif-
ficult to reserve large high-quality TCM data of the same 
rule system. To address this problem, our team proposed 
syndrome elements that could link the symptoms, treat-
ment, natural products, and prescriptions, and thereby 
unify different diagnosis and treatment rules [98]. The 
team used the improved transformer algorithm to con-
struct a diagnostic model of coronary heart disease syn-
drome elements. This transformer model integrated 
the Seq2Seq module of RNN, LSTM and self-attention 
mechanism. At the same time, the multi-head attention 
mechanism, compound word vector, and random inacti-
vation are used to study the syndrome elements of coro-
nary heart disease (Fig. 6).

Proposal of an application that combining machine 
learning with TCM theory and natural product 
computational biology
The effective chemical components of natural products 
have attracted attention worldwide. Rapid screening and 

Fig. 6 The diagnostic model of coronary heart disease syndrome elements by our team
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identification of potential candidate compounds are very 
vital to determine the mechanisms underlying the thera-
peutic effects of drugs and can greatly ameliorate the 
development of new drugs. Since the successful devel-
opment of artemisinin, the expectations for discovery 
of novel drugs with high efficacy and minimal adverse 
effects from TCM have increased. In this regard, a com-
bination of the knowledge of effective chemical compo-
nents of natural products with computational biology 
and machine learning under the optimization of TCM 
syndrome differentiation theory can facilitate disease 
treatment to realize effective development of machine 
learning in TCM clinical practice. The team proposed 
machine learning using a combination of computational 
biology of natural products and TCM theory. In this 
approach, computational biology is first used to study the 
pharmacology of natural products. Using the key molec-
ular targets of disease as the research aspect, computa-
tional biology is used to simulate and screen the effective 
components of natural products for the key molecular 
target of disease. Based on molecular mechanisms iden-
tified in natural products screening, machine learning is 
performed on the selected natural products to establish 
a prediction model of molecular characteristics of natu-
ral products compounds and attributes, TCM syndrome 
differentiation, and meridians. For disease clinical data 
collection, the establishment of patient syndrome model 
in combination with a TCM theory screening model can 
allow optimization of the final therapeutic drugs.

The study used computational biology methods to ana-
lyze and screen natural products. Computational biol-
ogy can unravel the seemingly impenetrable complexity 
of biological systems by an integrated approach which 
employed high-performance computers, state-of-the art 
software and algorithms, mathematical modeling, and 
statistical analyses [99]. Molecular dynamics, which is a 
branch of computational biology, can simulate the molec-
ular mechanisms of effective chemical molecules of natu-
ral products acting on the body. Using this approach, the 
effective chemical molecules of natural products can be 
screened out to future identify natural products which 
are effective to remedy disease. Fang [100] summarized 
various cheminformatics, bioinformatics, and systems 
biology resources used to reconstruct drug-target net-
works for natural product medicine. Fu [101] developed 
a data-clustering method using a collection of 2,012 com-
pounds associated with natural products and found that 
the cold and hot properties of natural products can be 
related to the physicochemical and target pathways of 
their constituent compounds. Wang [93] used DT, SVM, 
and RF algorithms for the first time to link the molecu-
lar characteristics of natural products compounds with 
the meridians of TCM. They identified the molecular 

characteristics of 646 natural products and their active 
constituents, including structure-based fingerprints and 
absorption, distribution, metabolism, and excretion char-
acteristics. The meridian properties of TCM were pre-
dicted by machine learning methods, with the highest 
accuracy of 0.83, and RF showed the best accuracy.

Syndrome differentiation and treatment form the core 
of TCM theory. The development of intelligent diag-
nosis based on machine learning provides a dialecti-
cal basis for TCM syndrome differentiation. The use 
of machine learning in the research and development 
of TCM provides a basis for syndrome differentiation, 
while the unified diagnosis and treatment rules based 
on syndrome elements provide a direction for syn-
drome differentiation. Machine learning with molecular 
basis underlying syndrome elements may better clas-
sify diseases and improve clinical treatment effective-
ness. Now, a web platform named SoFDA (http:// www. 
tcmip. cn/ Syndr ome/ front/#/) which is a network-based 
evaluation tool of multi-way associations among dis-
eases, syndrome differentiation, and prescriptions could 
facilitate the understanding of syndrome differentiation 
and natural products from the perspective of molecu-
lar biology, enriched gene ontology terms or signal-
ing pathways associated with syndrome differentiation 
[102]. Syndrome differentiation and treatment theory 
also conduct the relationship between natural products 
and syndrome elements which based on the function of 
natural products and their matched syndrome elements. 
By contacting natural products, syndrome elements, and 
molecules, promising research that combining machine 
learning with TCM theory and natural product com-
putational biology were proposed. The stem diagram of 
these proposal is shown in Fig.  7. After using machine 
learning algorithms to intelligently diagnose disease and 
syndrome differentiation, the natural products screened 
by computational simulation can be used to realize intel-
ligent diagnosis and treatment according to the results 
of intelligent differentiation of TCM. This process will 
use computational biology, machine learning, and TCM 
theory to achieve intelligent diagnosis and treatment 
of TCM, and is a potential research direction for TCM 
machine learning.

Conclusion
In summary, this study reviewed the applications of 
machine learning in TCM research, including the prin-
ciples of deep learning and traditional machine learning 
algorithms, the application of machine learning algo-
rithms in TCM research, and an analysis of promising 
research directions. Machine learning has been applied 
in natural product research, TCM disease diagnosis, dis-
ease treatment and effect evaluation, and prediction of 

http://www.tcmip.cn/Syndrome/front/#/
http://www.tcmip.cn/Syndrome/front/#/
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biomarkers in TCM. Traditional machine learning algo-
rithms such as SVM, RF, DT and MLP are widely used in 
TCM learning. With advancements in machine learning, 
deep learning has found additional applications in TCM. 
Deep learning shows higher prediction performance than 
traditional machine learning algorithms. Although the 
clinical diagnosis and treatment process in TCM pro-
duces large amounts of data, the diversity in diagnosis 
and treatment models has resulted in a lack of uniform 
standards. Thus, the use of syndrome elements as a uni-
fied standard is important for addressing the difficulties 
in developing artificial intelligence-based techniques for 
TCM. The multi-algorithm rule integration proposed 
herein is more suitable for a TCM data model. Natural 
products contain many chemical components that influ-
ence the therapeutic effects. By utilizing computational 
simulation, these medicines can be screened at the mol-
ecule level. TCM theory serves as the guideline for the 
use of natural products, and the integration of machine 
learning with TCM theory, natural product, and com-
putational simulation can yield an intelligent artificial 
intelligence-driven diagnosis and treatment model based 
on the effective chemical components of natural prod-
ucts under the guidance of TCM theory. Thus, the com-
bination of machine learning with our understanding of 

effective chemical components of TCM and TCM theory 
offers a practical direction for the use of artificial intelli-
gence in TCM, which can be expected to have far-reach-
ing implications.

Although the development of machine learning in 
TCM is a promising study, the challenges and difficul-
ties cannot be ignored. Effectiveness and safety are issues 
that need to be paid attention to in the development of 
artificial intelligence in TCM. The accurate application 
of machine learning in TCM theory which is the guiding 
program of TCM is related to the clinical effectiveness 
of TCM artificial intelligence research, and is a difficulty 
and challenge that TCM artificial intelligence needs to 
solve. The clinical effectiveness of intelligent diagnosis 
and treatment of the chemical molecular mechanism of 
natural products under the guidance of correct TCM the-
ory is a worth working. Safety in TCM intelligent diag-
nosis and treatment is another key point that influence 
its development. The potential for drug-induced injury 
should be taken into account in TCM artificial intelli-
gence research.
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