
Zhang et al. Chinese Medicine           (2023) 18:64  
https://doi.org/10.1186/s13020-023-00763-3

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Chinese Medicine

Expanding potential targets of herbal 
chemicals by node2vec based on herb–drug 
interactions
Dai‑yan Zhang1†, Wen‑qing Cui1†, Ling Hou1, Jing Yang1, Li‑yang Lyu1, Ze‑yu Wang1, Ke‑Gang Linghu1, 
Wen‑bin He2, Hua Yu1 and Yuan‑jia Hu1,3* 

Abstract 

Background The identification of chemical–target interaction is key to pharmaceutical research and development, 
but the unclear materials basis and complex mechanisms of traditional medicine (TM) make it difficult, especially for 
low‑content chemicals which are hard to test in experiments. In this research, we aim to apply the node2vec algo‑
rithm in the context of drug‑herb interactions for expanding potential targets and taking advantage of molecular 
docking and experiments for verification.

Methods Regarding the widely reported risks between cardiovascular drugs and herbs, Salvia miltiorrhiza (Danshen, 
DS) and Ligusticum chuanxiong (Chuanxiong, CX), which are widely used in the treatment of cardiovascular disease 
(CVD), and approved drugs for CVD form the new dataset as an example. Three data groups DS‑drug, CX‑drug, and 
DS‑CX‑drug were applied to serve as the context of drug‑herb interactions for link prediction. Three types of datasets 
were set under three groups, containing information from chemical‑target connection (CTC), chemical‑chemical 
connection (CCC) and protein–protein interaction (PPI) in increasing steps. Five algorithms, including node2vec, were 
applied as comparisons. Molecular docking and pharmacological experiments were used for verification.

Results Node2vec represented the best performance with average AUROC and AP values of 0.91 on the datasets 
“CTC, CCC, PPI”. Targets of 32 herbal chemicals were identified within 43 predicted edges of herbal chemicals and drug 
targets. Among them, 11 potential chemical‑drug target interactions showed better binding affinity by molecular 
docking. Further pharmacological experiments indicated caffeic acid increased the thermal stability of the protein 
GGT1 and ligustilide and low‑content chemical neocryptotanshinone induced mRNA change of FGF2 and MTNR1A, 
respectively.

Conclusions The analytical framework and methods established in the study provide an important reference for 
researchers in discovering herb–drug interactions, alerting clinical risks, and understanding complex mechanisms of 
TM.
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Introduction
Due to changes in drug discovery patterns, classic reduc-
tionism was transformed into holism [1], and researchers 
turned their attention to the multi-effects of drugs, which 
called for exploring explicit targets of drugs to meet the 
requirements of complex analysis. The target identifica-
tion of the drug is highly related to the associated thera-
pies and side effects [2–4], which attracts a high level 
of attention. The traditional way to identify drug-target 
interactions is via biological experiments, which is rela-
tively credible but time-consuming and costly [5]. With 
the development of computer science, some techniques 
were put forward to ease the experiment burden, such 
as molecular docking based on the three-dimensional 
structures of targets [6, 7], pharmacophore-based meth-
ods [6, 8], similarity searching [9], and machine learning 
[10, 11]. Under the guidance of theory, web applications 
and software were put forward to predict potential drug-
target interactions, like Pharmmapper [12], the similarity 
ensemble approach [13], and TarFisdock [14]. In recent 
years, some new research applied artificial intelligence 
algorithms to explore potential targets, such as random 
forest, support vector machine [15], convolutional neural 
networks [16], and recurrent neural networks [17], which 
largely enriched the method of target prediction.

However, there is little research focusing on traditional 
medicine (TM). As reported, there are 75–80% of the 
world’s population [18] are users of TM, but its charac-
teristic of “multi-compound, multi-target” makes it dif-
ficult in identifying biomolecules, especially the targets 
of TM chemicals, which further pose a great challenge 
on the effective usage and potential risk. For example, 
on the topic of the potential risk of drug-herb interac-
tions [19, 20], widely used herbal medicines pose great 
risks to non-specialized practitioners, such as cardiovas-
cular diseases (CVD) [21, 22]. At present, target identi-
fication of TM mainly relies on computer-based analysis 
tools developed from western drugs and experiments. 
Researchers in wet laboratories mainly focus on high-
content chemicals and ignore other unmeasurable low-
content ingredients, which may have cumulative effects. 
Therefore, TM needs specific new methods to expand 
potential targets of herbal chemicals without ignoring 
low-content chemicals.

In the research, a graph embedding algorithm called 
node2vec, inspired by Word2Vec [23], was proposed 
to explore the potential targets of TM. Node2vec can 
extract features from a graph and transform high-dimen-
sional graph data into low-dimensional vector data [24, 
25]. It has been applied in disease mechanism exploration 
[17] and drug-target interactions [26]. Salvia miltiorrhiza 
(Danshen, DS) and Ligusticum chuanxiong (Chuanxiong, 
CX) were chosen as examples in this study, which were 

widely used to treat conditions related to CVD [27, 28] by 
promoting blood circulation and removing blood stasis.

Thus, this research aims to apply the node2vec algo-
rithm in the context of drug–herb interactions for 
expanding potential targets of herbal chemicals by tak-
ing DS, CX and CVD-related approval drugs as examples 
and employing molecular docking and pharmacological 
experiments for verification. The research framework is 
clearly shown in Fig. 1. This study can provide an impor-
tant reference for researchers to discover herb–drug 
interactions, alert clinical risks, and understand the com-
plex mechanisms of TM.

Methods and materials
Data collection
Western drugs collection
To achieve reliable drug information related to CVD, we 
referred to the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) [29]. The study 
retrieved drugs from the Drugbank database [30], and 
the Drugcentral database [31] served as a supplement. In 
detail, we filtered the database by ATC code with all sub-
parts within the “C CARDIOVASCULAR SYSTEM” and 
two subparts, “B01 ANTITHROMBOTIC AGENTS” and 
“B02 ANTIHEMORRHAGICS,” within the “B BLOOD 
AND BLOOD FORMING ORGANS” to acquire CVD-
related drugs. For these sampled drugs, we identified four 
aspects of drug information, including “Approval sta-
tus,” “Known action,” “Organism,” and “CAS/SMILES,” to 
ensure the chosen drugs are still used in the market for 
humans with specific structures. One aspect of the drugs’ 
target information, “Uniprot ID of drug targets,” was used 
for target standardization.

Herbal chemicals collection
The chemical information of DS and CX was collected 
from the literature and three chemical databases: tradi-
tional Chinese Medicine System Pharmacology Database 
(TCMSP; http:// tcmspw. com/ tcmsp. php) [32]; Tradi-
tional Chinese Medicines Integrated Database (TCMID; 
http:// www. megab ionet. org/ tcmid/) [33]; Shanghai Insti-
tute of Organic Chemistry of CAS Chemistry Database 
(http:// www. organ chem. csdb. cn) and The Encyclopedia 
of Traditional Chinese Medicine 2.0 (ETCM; http:// www. 
tcmip. cn/ ETCM2/ front/#) [34, 35]. PubChem (http:// 
pubch em. ncbi. nlm. nih. gov) [36] was used to standardize 
chemicals and supplement relevant chemical data, such 
as PubChem CID and SMILES information, and essen-
tial amino acids, monosaccharides, and disaccharides 
were excluded. To ensure the reliability of herbal chemi-
cal targets, we adopted “bioassay results” from PubChem, 
which showed detailed and credible activity information; 
only the results labeled as “active” in the activity column 

http://tcmspw.com/tcmsp.php
http://www.megabionet.org/tcmid/
http://www.organchem.csdb.cn
http://www.tcmip.cn/ETCM2/front/#
http://www.tcmip.cn/ETCM2/front/#
http://pubchem.ncbi.nlm.nih.gov
http://pubchem.ncbi.nlm.nih.gov
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Fig. 1 Research framework
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were chosen, and all targets were standardized by Uni-
prot (https:// www. unipr ot. org/) [37].

Data processing and dataset preparation
Herb–drug interactions identification
Three kinds of interactions were involved, including 
the chemical-target connection (CTC), the similarity of 
chemicals (chemical–chemical connection, CCC), and 
the interaction of targets (protein–protein interactions, 
PPI). Firstly, the direct CTC was acquired during data 
collection after a strict screening process. Secondly, CCC 
was constructed by structural similarity analysis. The 
ChemmineR [38] toolkit running in R studio was used to 
perform a fingerprint-based chemical similarity search 
with a Tanimoto coefficient  ≥ 0.6 [39]. If the structural 
similarity of chemicals was 0.6 and above, two chemicals 
were connected. Thirdly, a PPI network was constructed 
to acquire PPI interactions by STRING [40], which can 
evaluate the tightness of proteins by providing a scoring 
system with a score range from 0 to 1. Only protein inter-
action scores of 0.9 and above were connected to ensure 
close target relationships.

Construction of groups, datasets and networks
The data on herbs and approved drugs formed different 
data groups. DS-drug and CX-drug groups were pre-
pared directly. Meanwhile, because of their synergistic 
therapeutic effects clinically, DS and CX are regarded as 
the herbal pair to perform their function together. There-
fore, the DS-CX-drug group was formed. These three 
groups were analyzed uniformly.

Among the three kinds of interactions, CTC is an indis-
pensable part. Theoretically, structural similarity analy-
sis and target interaction information will provide extra 
information and improve the accuracy of predictions, 
but comparisons are still needed. Therefore, due to the 
three types of interactions between chemicals and tar-
gets, three types of datasets were constructed to compare 
in every group. The first type of dataset only contained 
direct chemical and target interactions (CTC included). 
Considering the rule that structurally similar molecules 
have similar biological activities [41], information on 
chemical structure similarity was added for the second 
time (including CTC and CCC), and the third added 
correlations among proteins based on the second group 
for more information supplied (CTC, CCC, and PPI 
included). Finally, there are a total of nine datasets, three 
for each group.

Link prediction
Identifying potential targets of TM complex systems is a 
key problem. Prof. Shao Li proposed the concept of net-
work targets [42] to provide a theoretical basis for the 

solution of this problem. Li’s team published successively 
for the mechanism of action of TCM prescriptions [43, 
44], biomolecular markers of TCM evidence [45], etc. It 
is through networks that GE identifies potential targets in 
target prediction, and the concept of network targets pro-
vides theoretical support.

In this study we transform the problem of target identi-
fication into link prediction, which is a method to predict 
the existence of a connection between two nodes. We 
selected one representation algorithm with node2vec of 
graph embedding (GE) and four traditional algorithms 
(Adamic-Adar, Jaccard similarity coefficient, preferen-
tial attachment, and spectral clustering) to evaluate how 
they perform on a chemical–target prediction task. We 
validated the results by checking the AP and the AUROC 
scores with tenfold cross validation. Each dataset is sepa-
rated into a training set, a validation set, and a test set with 
a ratio of 6:3:1. A diagram of methods to explore potential 
targets were shown as Fig. 2 for better understanding. This 
diagram showed the dataset with CTC, CCC, PPI as an 
example to elucidate the process.

Algorithms
Node2vec The node2vec algorithm, introduced by Adi-
tya Grover and Jure Leskovec in 2016 [25], simply means 
transferring the data description of a node into a vector. 
Developed from DeepWalk [24], node2vec samples node 
information by random walk with bias. The basic idea of 
the algorithm is to form a low-dimensional vector space 
by extracting features from a graph by both a breadth-first 
search and a depth-first search. Node2vec applies two 
parameters to implement the strategy of random walk. 
Return Parameter p controls the probability of the walk 
visiting a visited node, and a high value of p tends to visit 
a node never before reached. In–Out Parameter q con-
trols the search visiting the base node inward or outward. 
After the data transformation step, a logistic regression 
algorithm is applied to the final classification task based 
on the vector-type data of a graph.

Adamic‑Adar (AA) The Adamic-Adar algorithm, a fre-
quency weighted common neighbors algorithm, was intro-
duced by Eytan Adar and Lada Adamic in 2003 [46]. The 
logarithmic function helps to create a weight to a shared 
neighbor between two nodes. This algorithm simply means 
that two nodes with more shared or common neighbors 
have more possibilities of linking.

It is defined as:

where N (x) is the set of neighbors connected to x.

AAindex(A,B) =
∑

Z∈(N (A)∩N (B))

1

log |N (Z)|

https://www.uniprot.org/
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Jaccard similarity coefficient (JS) The Jaccard similar-
ity coefficient algorithm was first introduced by Paul 
Jaccard and reformulated by Tanimoto TT [47]. This 
algorithm is commonly used to calculate the diversity or 
the similarity between two nodes.

The index is defined as:

where N (x) is the set of neighbors connected to x.

Jaccardindex(A,B) =
|N (A) ∩ N (B)|

|N (A) ∪ N (B)|

Fig. 2 Diagram of methods of applying algorithms on link prediction. In processes A, B and D, chemicals of TM were colored in orange and 
approved drugs in blue. Circle nodes labeled with “C” meant chemicals and hexagons labeled with “T” meant targets. Black lines represented the 
connection between chemicals and targets from known knowledge. A meant the dataset from the curated database. In B, two individual networks 
were connected by integrating the links between chemicals and targets to form the CCT and PPI, which were labeled as green lines. C shown here 
mainly reflects the operating principle of node2vec. In D, new predicted interactions were labeled as red solid and dashed edges. In this research, 
we paid attention to the interaction between chemicals of TM and targets of approved drugs, which were labeled as red solid lines
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Preferential attachment (PA) The Preferential attach-
ment algorithm was introduced in 1925 by Udny Yule 
and popularly applied in the Barabási–Albert model by 
Albert-László Barabási and Réka Albert. This algorithm 
considers that a node with more connected neighbors is 
more likely to have a new link.

It is defined as:

where N (x) is the set of neighbors connected to x.

Spectral clustering (SC) Spectral clustering, based on a 
normalized Laplacian matrix, belongs to the clustering 
algorithms family. It performs best when the original data 
is highly non-convex. Given an n× n adjacency matrix 
A of the graph with n nodes, a Laplacian matrix can be 
defined as:

where D is the n× n diagonal matrix of A.
After the data transformation step, Euclidean distance 

or k-nearest neighbors (KNN) algorithm will be applied 
on the Laplacian matrix with features from eigenvectors.

Evaluation
Average precision (AP) score The AP score is one of a 
most popular and useful indicators on the prediction per-
formance of a classification model. The score computes 
the Precision value P while the Recall value R , a threshold 
for the metrics, increases from 0 to 1. The Precision value 
and the Recall value are defined as:

Once the Precision value and Recall value are calcu-
lated, the AP score can be computed by the equation 
given below:

where Rn and Pn is the Recall value and the Precision 
value at the nth threshold.

Area under the receiver operating characteristic (AUROC) 
score The AUROC score describes the expectation that 
a uniformly drawn random positive is ranked before a 
uniformly drawn random negative. It indicates precisely 
and comprehensively even if the dataset is imbalanced. 

PAindex(A,B) = |N (A)| × |N (B)|

L = D − A

Precision =
True Positive

True Positive + False Positive

Recall =
True Positive

True Positive + False Negative

AP =
∑

n

(Rn − Rn−1)Pn

The value varies from 0.5 to 1, as does the performance of 
the classification model from bad to good.

Before calculating the AUROC score, it is indispensable 
to draw a receiver operating characteristic (ROC) curve. 
A ROC curve consists of two parameters: true positive 
rate (TPR) and false positive rate (FPR). TPR is the same 
as the Recall value given above. FPR is defined as:

The x-axis of a ROC curve is FPR, and the y-axis is 
TPR.

Molecular docking
To verify the results of the GE link prediction, virtual 
molecular docking was used. The crystal structures of the 
targets were downloaded from the RCSB PDB (https:// 
www. rcsb. org/) [48], and only X-ray structures with a 
resolution less than 3 Å were selected and saved as pdb 
format files. The ligand and receptor were split by Dis-
covery Studio 4.5 [49]. Autodock Tools was used to pre-
pare pdbqt format files. The gird boxes were adjusted to 
cover the entire pocket. After getting the related protein 
files, we searched the PubChem database for TM chemi-
cals and Western drugs information, which were saved as 
sdf format and transformed into pdbqt format by Open-
Babel to dock in the next step. Autodock Vina1.1.2 [50] 
was used to simulate the potential interactions among 
the selected chemicals and the targets.

Experimental verification
Besides virtual molecular docking, cellular thermal shift 
assay (CETSA) and mRNA expression upon the treat-
ment of predicated compounds were applied to verify 
predicted results.

Chemicals and reagents
Ginsenoside rb1, neocryptotanshinone, caffeic acid and 
ligustilide (the purities of all standards were higher than 
98% by high-performance liquid chromatography analy-
sis) were purchased from Chengdu Pufeide Biotech Co., 
Ltd. (Chengdu, China).

TRIzol™ Reagent, Fetal bovine serum (FBS), 0.25% 
Trypsin–EDTA (w/v), Dulbecco’s modified eagle’s 
medium (DMEM), penicillin–streptomycin (10,000 U/
mL, P/S), and phosphate-buffered saline (PBS) were 
purchased from Thermo Fisher Scientific (Waltham, 
MA, USA). Human MTNR1A polyclonal antibody 
and GGT1 polyclonal antibody were purchased from 
CLOUD-CLONE CORP. (CCC, USA). Anti-rabbit IgG, 
HRP-linked antibody was purchased from Cell Signaling 
Technology (Danvers, MA, USA). β-actin was purchased 
from COHESION BIOSCIENCES (SUZHOU, CHINA).

FPR =
False Positive

False Positive + True Negative

https://www.rcsb.org/
https://www.rcsb.org/
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Cell culture
Human umbilical vein endothelial cells (HUVECs) were 
supplied by American Type Culture Collection (Manas-
sas, Virginia, USA) and cultured in DMEM medium 
supplemented with 10% FBS and 1% P/S at 37  °C in an 
atmosphere of 95% humidity and 5%  CO2. HUVECs 
were subjected to cell experiments when cultured to 90% 
confluence.

CETSA
The HUVECs cells were subcultured in a 100  mm cell 
culture dish and lysed with RIPA lysis buffer containing 
PMSF and protease inhibitor cocktail on ice for 10  min 
then centrifuged (12,000 × g, 10 min) at 4 ℃. Cell lysates 
were incubated with or without 20 μM compounds (Caf-
feic acid or Ligustilide) under shaking at 4 °C overnight. 
The protein concentration was adjusted to 2 μg/μL using 
RIPA lysis buffer. 40  μL cell lysates were transferred to 
new tubes and heated for 2.5  min for each tube at dif-
ferent temperatures (53–72 ℃) using a thermal mixer C 
(Eppendorf, USA). After centrifugation (12,000 × g for 
10 min), 30 μL of the supernatants were incubated with 
10  μL 5 × SDS-PAGE loading buffer at 95 ℃ for 10  min 
before western blotting assay.

Quantitative real‑time RT‑PCR
Total RNA was extracted from HUVECs by TRIzol 
Reagent according to the manufacturer’s protocol. The 
content of total RNA was detected by the NanoVue spec-
trophotometer (Biochrom, United Kingdom). RNA was 
transcribed to cDNA using the PrimeScript™ RT Reagent 
Kit (TaKaRa Bio Inc., Kusatsu, Japan) by the manufactur-
er’s instruction. Real-time PCR was performed on a ViiA 
7 Real-Time PCR System (Thermo Fisher Scientific, MA, 
USA). The primers were synthesized by IGE BIOTECH-
NOL OGY LTD (Guangzhou, China) and sequences were 
as follows: GGT1, forward TGA CGT ACC ACC GCA 
TCG TAGA and reverse CAG CGA AGA ACT CGG AGG 
TCAT; MTNR1A, forward CTG GTC ATC CTG TCG GTG 
TATC and reverse TCG ACA TCA GCA CCA ACG GGTA; 
β-actin, forward CAC CAT TGG CAA TGA GCG GTTC 
and reverse AGG TCT TTG CGG ATG TCC ACGT.

The fold change of mRNA was determined relative to a 
blank control after normalizing to β-actin in each sample 
using the delta-delta Ct method.

Results
Data integration and screening
For western drugs, after screening the cardiovascular-
related drugs by ATC code, we got 1203 drugs from two 
databases. Further screening processes were used to 
exclude data that did not meet the requirements, and 463 

eligible drugs were acquired. We also excluded duplicate 
records, resulting in 378 drugs with different structures. 
Related targets of the filtered drugs were reserved.

782 herbal chemicals from three databases and litera-
ture without amino acids and simple saccharides were 
collected. After identifying their specific structures and 
related targets from the PubChem database, 117 were 
left. We excluded duplicate chemicals with the same 
structure and achieved 40 chemicals in DS and 38 chemi-
cals in CX in the last step, which contained seven com-
mon chemicals.

The filtering details of the drugs and herbal chemicals 
are shown in Fig. 3A and Fig. 3B.

Group and dataset information
Based on herb–drug interactions, three herb–drug inter-
action groups were formed: DS-drug, CX-drug, and DS-
CX-drug. In every group, three datasets were formed. As 
mentioned in the method section, to verify whether the 
extra structural similarity analysis and target interactions 
can help improve the accuracy of predictions, CTC, CTC 
& CCC, and CTC & CCC & PPI datasets were formed in 
each group. The statistical information was collected and 
integrated, as shown in Table 1.

Best dataset and algorithm selection
We checked the AUROC and AP scores of nine datasets 
with five algorithms. To evaluate dataset performance 
and select the best one, the average AUROC and AP 
scores of five algorithms were calculated. As shown in 
Fig. 4, Compared to the other two types, the CTC & CCC 
& PPI datasets performed better in all three groups; that 
is, 0.86, 0.87, 0.86 with AUROC values, and 0.86, 0.85, 
0.86 with AP values in DS-drug, CX-drug, and DS-CX-
drug, respectively.

On the other hand, node2vec and four other traditional 
algorithms were applied to compare and acquire link pre-
dictions of all datasets. We took a deeper look into the 
CTC & CCC & PPI dataset of each group and selected 
the best algorithm to further our research. As shown in 
Fig.  5, node2vec showed the best performance; that is, 
0.91 with AUROC value, and 0.91, 0.91, 0.90 with AP 
values in the three groups, respectively. Furthermore, 
the ROC curve of the different algorithms intuitively on 
the CTC & CCC & PPI dataset in the three groups were 
shown in Fig. 6, which illustrated that the node2vec was 
better. For full data of AUROC and AP of all datasets, 
please check Additional file 1: Table S1 and Table S2. The 
datasets of CTC & CCC & PPI in three groups with aver-
age AUROC and AP values of 0.86 and the algorithm of 
node2vec with average AUROC and AP values of 0.91 
were combined.
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Link prediction results
Expanded information
Based on the results of node2vec on the CTC & CCC & 
PPI datasets in the three groups, new predicted edges 
were counted and collected. Among predicted edges, 
we are just concerned about CTC. Furthermore, based 
on our research objectives, herbal chemical-drug tar-
get edges were the predicted information need to be 
counted. Besides, we were also concerned about how 
many herbal chemicals these predicted edges are asso-
ciated with, which meant how many chemicals we pro-
vided new target information for. Hence, we counted 
the number of herbal chemical nodes. All information 
above were listed in Table 2. In DS-drug, CX-drug and 

DS-CX-drug groups, new edges of 445, 384, and 478 
were respectively predicted. Compared to 236 herbal 
chemical-drug target edges of the whole CTC, tar-
gets of 32 herbal chemicals were identified within 43 
predicted edges of herbal chemicals and drug targets. 
Detailed information of 43 predicted edges were listed 
in Additional file 1: Table S3 

Further filtering of expanded information
The scope of data was further narrowed to select more 
appropriate data for verification. Firstly, we checked 
the indications of western drugs based on the col-
lected targets. Although all drugs are related to CVDs 
by their ATC code, some drugs may contain multiple 

Fig. 3 Flow diagram of filtered chemicals. The blue boxes showed the excluded chemicals with related reasons. A show the filtered Western 
drugs for CVD, and the two numbers in parentheses indicated the sources of Drugbank and Drugcentral, respectively. B showed the filtered herbal 
chemicals; the numbers in parentheses meant DS and CX, respectively

Table 1 Statistical information of the three groups

Group Node Edge (dataset 1) Edge (dataset 2) Edge (dataset 3)

DS‑drug 1497 (Chemical: 416 and target: 1081) 3429 (CTC: 3429) 4317 (CTC: 3429 and CCC: 888) 10562 (CTC: 3429 and CCC: 888 and PPI: 6245)

CX‑drug 1435 (Chemical: 418 and target: 1017) 3311 (CTC: 3311) 4141 (CTC: 3311and CCC: 830) 9546 (CTC: 3311and CCC: 830 and PPI: 5405)

DS‑CX‑drug 1542 (Chemical: 449 and target: 1093) 3679 (CTC: 3679) 4619(CTC: 3679 and CCC: 940) 11001 (CTC: 3679 and CCC: 940 and PPI: 6382)
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Fig. 4 Average AUROC and AP scores of five algorithms in nine datasets. A and B showed AUROC and AP, respectively
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ATC codes whose main indication does not belong to 
CVDs. Taking Dexamethasone as an example, it has 
16 ATC codes, including “C05 VASOPROTECTIVES,” 
but its main indication is for bacterial infections with 
inflammation in acute otitis media and acute otitis 
externa, which is not closely related to CVDs. There-
fore, its target is not suitable as a potential target for 
CVD-related herbs. Secondly, we further excluded 
herbal chemicals without bioassay research or chemi-
cal profiling research from the TM published article to 
verify the importance of chemicals in TM. Thirdly, tar-
get structure information was checked using the PDB 

database, and SLC22A8 and POU2F2 were excluded 
due to an information shortage. Finally, 22 qualified 
CTC were chosen with 17 chemicals and 20 targets 
whose prediction values were 0.5 or above were filtered, 
including 12 CTC came from the DS-CX-drug group, 4 
CTC from the DS-drug group, and 6 CTC from the CX-
drug group. Low-content compounds were involved. In 
DS, the neocryptotanshinone, tanshindiol C of diter-
pene quinones, cyanidin of flavonoid metabolites and 
tigogenin of steroidal sapogenin were included. In CX, 
it includes three volatile oil components terpinolene, 
β-farnesene, and methyleugenol.

Fig. 5 AUROC and AP of five algorithms in CTC & CCC & PPI datasets. A and B show AUROC and AP, respectively. Numbers of 0.91 show the average 
value of AUROC or AP
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Molecular docking
We searched the related X-ray structure of 22 targets. 
For ATP1B1, because it takes effect with ATP1A1, 
we docked chemicals with a complex of two proteins 
whose PDB ID is 3wgv. ATP1A2 and ATP1A1 are iso-
forms of the catalytic subunit, and they only exist in 
different organs. Due to ATP1A2 not having an ade-
quate structure, we docked it by the structure of the 
ATP1A1-related protein complex with the same 3wgv 
structure. After that, 22 CTC including 20 targets and 
17 chemicals were docked to show the binding affinity. 
Targets were also docked with their ligand and western 
drugs to compare them with the results of 22 CTC. As 
shown in Table  3, 11 CTC with better binding affin-
ity than native ligands or drugs were listed. Complete 
docking information of all targets is presented in Addi-
tional file 1: Table S4

Experimental verification
CETSA indicated a direct interaction between GGT1 
and caffeic acid
CETSA is a valuable tool for the validation and optimiza-
tion of drug target engagement [51]. CETSA showed that 
caffeic acid increased the thermal stability of the protein 
GGT1 (Fig. 7A), which indicated an interaction between 
caffeic acid and GGT1, suggesting GGT1 to be the direct 
target of caffeic acid. However, CETSA results showed 
that ligustilide did not interact with MTNR1A (Fig. 7B).

mRNA expression of GGT1, FGF2, CES2, MTNR1A, ATP1A2 
upon the treatment of predicated compounds in the HUVECs
Additionally, we detected the mRNA expression of 
GGT1, FGF2, CES2, MTNR1A, ATP1A2 upon 6  h 
treatment of corresponding compounds (caffeic acid, 
neocryptotanshinone, neocryptotanshinone, ligusti-
lide, ginsenoside rb1) in the HUVECs. The experimental 

Fig. 6 In three groups, the ROC curve of five algorithms on the CTC & CCC & PPI datasets. A, B, and C represent the groups of DS‑drug, CX‑drug and 
DS‑CX‑drug, respectively

Table 2 Expansion information

1: The numbers in parentheses mean the expansion percentage in different categories

Data group Category Original number Expanded number 1

DS‑drug Total edges 10562 445 (4.21%)

Herbal chemical‑drug target edges 132 9 (6.82%)

Total nodes 416 184 (44.23%)

Herbal chemical nodes 40 20 (50.00%)

CX‑drug Total edges 9546 384 (4.02%)

Herbal chemical‑drug target edges 104 9 (8.65%)

Total nodes 418 167 (39.95%)

Herbal chemical nodes 38 11 (28.95%)

DS‑CX‑drug Total edges 11001 478 (4.35%)

Herbal chemical‑drug target edges 236 25 (10.59%)

Total nodes 449 142 (31.63%)

Herbal chemical nodes 71 20 (28.17%)

All herbal chemical‑drug target edges 236 43 (18.22%)

All chemical nodes 71 32 (45.07%)
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results showed that neocryptotanshinone (20  μM) and 
ligustilide (20 μM) induced the sixfold mRNA change of 
FGF2 (Fig. 8B) and 4.8-fold mRNA change of MTNR1A 
(Fig.  8C), respectively. The other three mRNA (GGT1, 
CES2, ATP1A2) did not change after the treatment of the 
corresponding compounds.

Discussion
The exploration of drug-target interactions is always a 
hot and pivotal topic within modern drug development. 
Burdensome experiments cost money and time, but 
they do not produce the desired results [5]. Advances 
in computer technology are likely to compensate for 

this gap. Not only western drugs, but widely used and 
cheaper TM faces bigger questions because of its com-
plex composition and mechanisms. Some artificial 
intelligence-based approaches have been used in the 
study of Chinese medicine, such as intelligent prescrip-
tion recommendation systems [52]. However, few stud-
ies have been conducted to identify potential targets of 
natural compounds. In this research, a mature disease, 
CVD, was selected to conduct experiments on tech-
nology transfer exploration, which contains enough 
data on western drugs and curative TM. By integrating 
and screening data, multiple datasets and algorithms 
were set to choose the best combination. Finally, we 

Table 3 The docking results of the herbal chemicals with investigated target proteins

Target PDB entry Chemicals Chemical category Binding Affinity 
(kcal/mol)

Group Herb Prediction 
value

ATP1A2 3wgv Oligomycin A Native ligand − 9.9

Ouabain Drug − 7.3

Sitogluside Herbal chemicals − 7.3 DS‑CX DS 0.94

GGT1 6xpb CU‑6PMN Native ligand − 6.8

Aspirin Drug − 6

Caffeic acid Herbal chemicals − 6.2 CX CX 0.93

CES2 1mx9 N‑METHYLNALOXONIUM Native ligand − 8.5

Prasugrel Drug − 9.2

Neocryptotanshinone Herbal chemicals − 8.8 DS‑CX DS 0.93

CA1 1czm 3‑Amabs Native ligand − 5.7

Chlorthalidone Drug − 9.6

3,4‑Dihydroxybenzoic acid Herbal chemicals − 6 CX CX 0.89

ATP1A2 3wgv Oligomycin A Native ligand − 9.9

Ouabain Drug − 7.3

Ginsenoside rb1 Herbal chemicals − 8.2 DS DS 0.89

CSNK2A1 6yum PQ8 Native ligand − 9

Fostamatinib Drug − 9.3

Tanshindiol C Herbal chemicals − 9.7 DS DS 0.82

MTNR1A 6me3 2‑PHENYLMELATONIN Native ligand − 9.7

Dopamine Drug − 5.7

Ligustilide Herbal chemicals − 7.3 DS‑CX CX 0.81

FGF4 1ijt Sulfate ion Native ligand − 2.6

Pentosan polysulfate Drug − 4.9

1‑Pentadecanol Herbal chemicals − 3.2 DS‑CX CX 0.56

FGF2 5 × 1o Inositol 1,4,5‑Trisphosphate Native ligand − 5.9

Pentosan polysulfate Drug − 5.2

Neocryptotanshinone Herbal chemicals − 6.4 DS‑CX DS 0.51

SLC9A1 2ygg Tris(Hydroxyethyl)aminomethane Native ligand − 3.2

Amiloride Drug − 4.3

Vitamin E Herbal chemicals − 4.5 DS‑CX DS 0.51

RPS6KA3 4nus LJH685 Native ligand − 10.1

Aspirin Drug − 5.9

Terpinolene Herbal chemicals − 6 CX CX 0.50
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expanded the dataset and acquired new potential tar-
gets for herbal chemicals.

From the beginning of the study design, we paid close 
attention to the reliability of the data. With a mature 
database, western drugs’ information is comprehensive 
with a high level of reliability. However, for the TM data-
base, the situation is unsatisfactory. To pursue the reli-
ability of TM data, a strict screening process results in a 
massive reduction in chemicals, which affects the subse-
quent analysis to some extent. Hence, the non-standardi-
zation and incomplete information in the TM database is 
a problem that requires urgent attention.

For the dataset scale, we chose approved CVD drug 
information as our background, which is not extensive 
but can be expanded in further research. On the one 
hand, other popular and widely used TM with good 
clinical efficacy can be merged with the drugs dataset to 
acquire predicted results, such as Carthamus tinctorius L 
[53]. and Angelica sinensis [54]. On the other hand, we 
can focus not only on CVD but also others. Otherwise, 
the type of data can be expanded from drugs to chemi-
cals with better activity in vivo or in vitro.

We took CCC and PPI as supplements to CTC, which 
can be expanded. Some works showed interactions 
between biomolecules added by other information, such 
as the KGE model [55], which can integrate informa-
tion on drug side effects, drug disease, protein disease, 
gene ontology annotation, and so on. Additionally, in 
the research on building credible negative samples to 

predict CTC [56], researchers still consider the protein 
data of sequence similarity and domain similarity. All of 
the above mentioned information can be transferred into 
the research of TM, but the data reliability of TM and its 
related information is still the key issue. One published 
work applied node2vec to TM [57], which combined dif-
ferent types of data. However, the research raises two 
questions. The first is that the herb target interactions in 
this article come from a TCM database that is not cred-
ible. The second is that consistency between the TCM 
indication and Western medicine theory was not clearly 
illustrated.

In algorithms, the performance of the model is highly 
correlated to the quality of the input dataset. A larger 
dataset carrying more information is more likely to con-
tain the expected results. Managing a link prediction task 
is based on linked sample nodes and then masking those 
positive samples. In the case of an imbalanced dataset, 
however, there were a large number of unlinked nodes we 
could not take into consideration, which might be helpful 
to the model. Moreover, it could be possible to apply edge 
weight while processing embeddings in further work.

Back to the DS and CX in this research, these two herbs 
were chosen due to their wide research and application 
clinically and their huge sales in the TM market. For our 
research process and aims, two herbs have enough cred-
ible biological evidence to apply the new methods. Con-
sidering the common use of the two herbs, three groups 
were constructed to do the analysis, and the DS-CX-drug 

Fig. 7 CETSA indicated caffeic acid increased the thermal stability of the GGT1 protein but ligustilide did not affect the thermal stability of the 
MTNR1A protein. CETSA was performed in HUVECs cell lysates after coincubation with 20 μM caffeic acid (A) or 20 μM ligustilide (B), then subjected 
to heating (51–72 ℃) before western blotting
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group contained full data of the other two groups. There-
fore, the original predicted data from the DS-CX-drug 
group covered the other two. However, after the filtering 
process, the situation changed because different groups 
showed different prediction values about the same CTC, 
and only CTC with high values were left. One possi-
ble reason is the scale of the data. The scale of the DS-
CX-drug is near twice the size of the other two, which 
causes prediction values to change. The other reason is 
the selection of filter values. The higher the tolerance, 
the higher the final similarity of DS-CX-drug and the 
other two. After link prediction, 17 compounds acquired 
new predicted potential targets, including 7 low-content 
chemicals. Molecular docking verified the interactions 
of herbal chemicals and drug targets, and half of them 
showed better binding affinity than native ligands or 
related drugs. In the experimental validation, caffeic acid 

increased the thermal stability of the protein GGT1, indi-
cating direct interaction between caffeic acid and GGT1. 
GGT1 is a member of the Gamma-glutamyltransferase 
family. A large number of evidence suggests that elevated 
GGT activity is associated with an increased risk of CVD 
[58]. GGT was reported to be directly involved in ath-
erosclerosis by promoting the atherosclerotic process, 
plaque instability and coronary ischemic events [59]. 
Ligustilide and low-content chemical neocryptotanshi-
none induced mRNA change of FGF2 and MTNR1A, 
respectively. FGF2 is associated with platelet and it can 
stimulate platelet-derived growth factors mRNA expres-
sion in a time-dependent and transient manner [60]. For 
MTNR1A, the receptor for melatonin, diabetes reduces 
its expression [61], and its ligand melatonin is associ-
ated with platelet activation and function [62]. This study 
combined virtual molecular docking, CETSA and mRNA 

Fig. 8 mRNA expression of GGT1, FGF2, CES2, MTNR1A, ATP1A2 upon the treatment of predicated compounds in the HUVECs. HUVECs were 
treated with 20 μM compounds of caffeic acid, neocryptotanshinone, ligustilide and ginsenoside rb1 for 6 h respectively, then subjected to a 
standard qPCR operation to determine the mRNA change of GGT1 (A), FGF2 (B), CES2 (B), MTNR1A (C), ATP1A2 (D) (n = 5).  P### < 0.001 vs the Ctrl 
group
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expression means for partial validation, further and more 
robust in vivo and in vitro experimental studies are still 
to be developed.

The main role of this work is to identify potential tar-
gets of different components based on the multi-com-
ponent systems of TM with available reliable data. The 
most relevant target is the exploration of the potential 
mechanism of the multicomponent system, which is the 
best application of the method for TM. The discovery of 
new potential targets has the possibility to unravel the 
mystery of the complex mechanisms that arise in some 
complex TM systems that produce good effects but are 
difficult to elucidate in some complex systems. In addi-
tion, the identification of activity-based quality control 
markers can also be applied to find potential targets for 
key compounds. In addition, the identification of activ-
ity-based quality control markers, formula composition, 
and herb–drug co-risk can be accomplished by identi-
fying potential targets for key compounds through this 
method.

Conclusions
After integrating and screening data, setting multiple 
datasets to acquire the best datasets and comparing algo-
rithms, the CTC & CCC & PPI datasets with node2vec 
were selected for predictions. Based on the results, node-
2vec expands 43 edges of the herbal chemical-drug target 
based on the 236 original data. Compared to 71 herbal 
chemicals with different structures, it supplied new tar-
gets for 32 herbal chemicals, including low-content vola-
tile oil or diterpenoids.

This study sufficiently expanded the potential target 
pool of herbal chemicals, including low-content chemi-
cals that are hard to test by experimental approaches. 
This study employs a novel computational-based research 
framework that provides an important reference for 
researchers to understand herb–drug interactions, alarm 
potential clinical risks, and discover the complex mecha-
nisms behind TM.

Abbreviations
AA  Adamic‑adar
AP  Average precision
AUROC  Area under the receiver operating characteristic
CCC   Chemical–chemical connection
CETSA  Cellular thermal shift assay
CTC   Chemical‑target connection
CVD  Cardiovascular diseases
CX  Chuan xiong
DMEM  Dulbecco’s modified eagle’s medium
DS  Dan shen
FBS  Fetal bovine serum
FPR  False positive rate

GE  Graph embedding
HUVECs  Human umbilical vein endothelial cells
JS  Jaccard similarity coefficient
PA  Preferential attachment
PBS  Phosphate‑buffered saline
PPI  Protein–protein interactions
PRISMA  Preferred Reporting Items for Systematic Reviews
ROC  Receiver operating characteristic
SC  Spectral clustering
TM  Traditional medicine
TPR  True positive rate

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13020‑ 023‑ 00763‑3.

Additional file1: Table S1. AUROC value of 5 algorithms applied on 
9 datasets. Table S2. AP value of 5 algorithms applied on 9 datasets. 
Table S3. Predicted edges of herbal chemical‑drug target. Table S4. 
Docking results.

Acknowledgements
Not applicable.

Author contributions
YH directed the research design. DZ designed the research content, col‑
lected data and completed the molecular docking. WC and KL completed 
the pharmacological verification. LH completed the main coding work for 
algorithms. JY provided important clues in the research methods section. 
LL identified data screening process and optimized figures. ZW assisted in 
identifying data credibility. DZ and WC drafted the manuscript, and YH, HY 
and WH commented on and revised drafts. All authors read and approved the 
final manuscript.

Funding
This research was funded by the University of Macau, Grant Number 
MYRG2022‑00103‑ICMS and Key Research Program of Science and Technology 
Bureau of Shanxi.

Availability of data and materials
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 State Key Laboratory of Quality Research in Chinese Medicine, Institute 
of Chinese Medical Sciences, University of Macau, 999078 Macao, China. 
2 Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi Univer‑
sity of Chinese Medicine, Taiyuan, China. 3 DPM, Faculty of Health Sciences, 
University of Macau, Macao, China. 

Received: 10 March 2023   Accepted: 1 May 2023

https://doi.org/10.1186/s13020-023-00763-3
https://doi.org/10.1186/s13020-023-00763-3


Page 16 of 17Zhang et al. Chinese Medicine           (2023) 18:64 

References
 1. Hopkins AL. Network pharmacology: the next paradigm in drug discov‑

ery. Nat Chem Biol. 2008;4(11):682–90.
 2. Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets: 

selectively non‑selective drugs for mood disorders and schizophrenia. 
Nat Rev Drug Discov. 2004;3(4):353–9.

 3. Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, 
et al. Predicting new molecular targets for known drugs. Nature. 
2009;462(7270):175–81.

 4. Zhang C, Hong H, Mendrick DL, Tang Y, Cheng F. Biomarker‑based drug 
safety assessment in the age of systems pharmacology: from founda‑
tional to regulatory science. Biomark Med. 2015;9(11):1241–52.

 5. Wu Z, Li W, Liu G, Tang Y. Network‑based methods for prediction of drug‑
target interactions. Front Pharmacol. 2018;9:1134.

 6. Rognan D. Structure‑based approaches to target fishing and ligand 
profiling. Mol Inform. 2010;29(3):176–87.

 7. Waszkowycz B, Clark DE, Gancia E. Outstanding challenges in protein–
ligand docking and structure‑based virtual screening. Wiley Interdiscip 
Rev Comput Molecular Sci. 2011;1(2):229–59.

 8. Yang SY. Pharmacophore modeling and applications in drug dis‑
covery: challenges and recent advances. Drug Discov Today. 
2010;15(11–12):444–50.

 9. Thorner DA, Willett P, Wright PM, Taylor R. Similarity searching in files of 
three‑dimensional chemical structures: representation and searching of 
molecular electrostatic potentials using field‑graphs. J Comput Aided 
Mol Des. 1997;11(2):163–74.

 10. Ding H, Takigawa I, Mamitsuka H, Zhu S. Similarity‑based machine learn‑
ing methods for predicting drug–target interactions: a brief review. Brief 
Bioinform. 2014;15(5):734–47.

 11. Chen X, Yan CC, Zhang X, Zhang X, Dai F, Yin J, et al. Drug–target interac‑
tion prediction: databases, web servers and computational models. Brief 
Bioinform. 2016;17(4):696–712.

 12. Liu X, Ouyang S, Yu B, Liu Y, Huang K, Gong J, et al. PharmMapper server: a 
web server for potential drug target identification using pharmacophore 
mapping approach. Nucleic Acids Res. 2010. https:// doi. org/ 10. 1093/ nar/ 
gkq300.

 13. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. 
Relating protein pharmacology by ligand chemistry. Nat Biotechnol. 
2007;25(2):197–206.

 14. Li H, Gao Z, Kang L, Zhang H, Yang K, Yu K, et al. TarFisDock: a web server 
for identifying drug targets with docking approach. Nucleic Acids Res. 
2006. https:// doi. org/ 10. 1093/ nar/ gkl114.

 15. Tao W, Xu X, Wang X, Li B, Wang Y, Li Y, et al. Network pharmacology‑
based prediction of the active ingredients and potential targets of 
Chinese herbal radix curcumae formula for application to cardiovascular 
disease. J Ethnopharmacol. 2013;145(1):1–10.

 16. Öztürk H, Özgür A, Ozkirimli E. DeepDTA: deep drug–target binding affin‑
ity prediction. Bioinformatics. 2018;34(17):i821–9.

 17. Peng J, Guan J, Shang X. Predicting parkinson’s disease genes based on 
node2vec and autoencoder. Front Genet. 2019;10:226.

 18. Organization WH. WHO traditional medicine strategy: 2014–2023. 
Geneva: World Health Organization; 2013.

 19. Izzo AA. Herb–drug interactions: an overview of the clinical evidence. 
Fundam Clin Pharmacol. 2005;19(1):1–16.

 20. De Smet PA. Clinical risk management of herb–drug interactions. Br J Clin 
Pharmacol. 2007;63(3):258–67.

 21. Zuo HL, Linghu KG, Wang YL, Liu KM, Gao Y, Yu H, et al. Interactions of 
antithrombotic herbal medicines with Western cardiovascular drugs. 
Pharmacol Res. 2020;159: 104963.

 22. Zuo HL, Yang FQ, Hu YJ. Investigation of possible herb–drug interactions 
for the treatment of cardiovascular diseases. Semin Thromb Hemost. 
2019;45(5):548–51.

 23. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word repre‑
sentations in vector space. Arxiv Preprint Arxiv. 2013. https:// doi. org/ 10. 
48550/ arXiv. 1301. 3781.

 24. Perozzi B, Al‑Rfou R, Skiena S, editors. Deepwalk: online learning of social 
representations. Proceedings of the 20th ACM SIGKDD international 
conference on Knowledge discovery and data mining. 2014

 25. Grover A, Leskovec J, editors. node2vec: Scalable feature learning for net‑
works. Proceedings of the 22nd ACM SIGKDD international conference 
on Knowledge discovery and data mining. 2016.

 26. Chen Z‑H, You Z‑H, Guo Z‑H, Yi H‑C, Luo G‑X, Wang Y‑B editors. 
Predicting Drug‑Target Interactions by Node2vec Node Embedding 
in Molecular Associations Network. International Conference on Intel‑
ligent Computing. Springer. 2020.

 27. Cheng TO. Cardiovascular effects of Danshen. Int J Cardiol. 
2007;121(1):9–22.

 28. Chen Z, Zhang C, Gao F, Fu Q, Fu C, He Y, et al. A systematic review 
on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong). Food 
Chem Toxicol. 2018;119:309–25.

 29. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting 
items for systematic reviews and meta‑analyses: the PRISMA statement. 
PLoS Med. 2009;6(7): e1000097.

 30. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, et al. DrugBank 30: a 
comprehensive resource for ‘omics’ research on drugs. Nucleic Acids 
Res. 2010. https:// doi. org/ 10. 1093/ nar/ gkq11 26.

 31. Ursu O, Holmes J, Knockel J, Bologa CG, Yang JJ, Mathias SL, et al. Drug‑
Central: online drug compendium. Nucleic Acids Res. 2016. https:// doi. 
org/ 10. 1093/ nar/ gkw993.

 32. Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSP: a database of 
systems pharmacology for drug discovery from herbal medicines. J 
Cheminform. 2014;6(1):1–6.

 33. Huang L, Xie D, Yu Y, Liu H, Shi Y, Shi T, et al. TCMID 2.0: a comprehen‑
sive resource for TCM. Nucleic Acids Res. 2018;46(D1):D1117–20.

 34. Xu H‑Y, Zhang Y‑Q, Liu Z‑M, Chen T, Lv C‑Y, Tang S‑H, et al. ETCM: an 
encyclopaedia of traditional Chinese medicine. Nucleic Acids Res. 
2019;47(D1):D976–82.

 35. Zhang Y‑Q, Li X, Shi Y, Chen T, Xu Z, Wang P, et al. ETCM v2 0: an update 
with comprehensive resource and rich annotations for traditional 
chinese medicine. Acta Pharmaceutica Sinica B. 2023. https:// doi. org/ 
10. 1016/j. apsb. 2023. 03. 012.

 36. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 
2019 update: improved access to chemical data. Nucleic Acids Res. 
2019;47(D1):D1102–9.

 37. Consortium U. UniProt: a worldwide hub of protein knowledge. 
Nucleic Acids Res. 2019;47(D1):D506–15.

 38. Cao Y, Charisi A, Cheng L‑C, Jiang T, Girke T. ChemmineR: a compound 
mining framework for R. Bioinformatics. 2008;24(15):1733–4.

 39. Delaney JS. Assessing the ability of chemical similarity measures to 
discriminate between active and inactive compounds. Mol Diversity. 
1996;1(4):217–22.

 40. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta‑Cepas J, et al. 
STRING v11: protein–protein association networks with increased cov‑
erage, supporting functional discovery in genome‑wide experimental 
datasets. Nucleic Acids Res. 2019;47(D1):D607–13.

 41. Martin YC, Kofron JL, Traphagen LM. Do structurally similar molecules 
have similar biological activity? J Med Chem. 2002;45(19):4350–8.

 42. Li S. Network target: a starting point for traditional Chinese 
medicine network pharmacology. Zhongguo Zhong Yao Za Zhi. 
2011;36(15):2017–20.

 43. Li S, Wang Y, Ji L, Li Y. A discussion and case study of complexities in 
traditional Chinese medicine. J Sys Simul. 2002;14(11):1429–503.

 44. Li S. Framework and practice of network‑based studies for Chinese 
herbal formula. J Chinese Integr Med. 2007;5(5):489–93.

 45. Li S, Zhang Z, Wu L, Zhang X, Li Y, Wang Y. Understanding ZHENG in tra‑
ditional Chinese medicine in the context of neuro‑endocrine‑immune 
network. IET Syst Biol. 2007;1(1):51–60.

 46. Adamic LA, Adar E. Friends and neighbors on the web. Social networks. 
2003;25(3):211–30.

 47. Tanimoto TT. Elementary mathematical theory of classification and 
prediction. New York: International business machines corp; 1958.

 48. Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV, et al. RCSB 
protein data bank: powerful new tools for exploring 3D structures of 
biological macromolecules for basic and applied research and educa‑
tion in fundamental biology, biomedicine, biotechnology, bioengi‑
neering and energy sciences. Nucleic Acids Res. 2021;49(D1):D437–51.

 49. Biovia DS. Discovery studio visualizer. CA: San Diego; 2017.
 50. Trott O, Olson AJ. AutoDock vina: improving the speed and accuracy 

of docking with a new scoring function, efficient optimization, and 
multithreading. J Comput Chem. 2010;31(2):455–61.

https://doi.org/10.1093/nar/gkq300
https://doi.org/10.1093/nar/gkq300
https://doi.org/10.1093/nar/gkl114
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.1093/nar/gkq1126
https://doi.org/10.1093/nar/gkw993
https://doi.org/10.1093/nar/gkw993
https://doi.org/10.1016/j.apsb.2023.03.012
https://doi.org/10.1016/j.apsb.2023.03.012


Page 17 of 17Zhang et al. Chinese Medicine           (2023) 18:64  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 51. Molina DM, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C, et al. 
Monitoring drug target engagement in cells and tissues using the cel‑
lular thermal shift assay. Science. 2013;341(6141):84–7.

 52. Shi QY, Tan LZ, Seng LL, Wang HJ. Intelligent prescription‑generating 
models of traditional chinese medicine based on deep learning. World J 
Tradit Chin Med. 2021;7(3):361–9.

 53. Zhou X, Tang L, Xu Y, Zhou G, Wang Z. Towards a better understanding of 
medicinal uses of Carthamus tinctorius L. in traditional Chinese medicine: 
a phytochemical and pharmacological review. J Ethnopharmacol. 
2014;151(1):27–43.

 54. Hu Y, Wang J. Interactions between clopidogrel and traditional Chinese 
medicine. J Thromb Thrombolysis. 2019;48(3):491–9.

 55. Mohamed SK, Nounu A, Nováček V. Biological applications of knowledge 
graph embedding models. Brief Bioinform. 2021;22(2):1679–93.

 56. Liu H, Sun J, Guan J, Zheng J, Zhou S. Improving compound–protein 
interaction prediction by building up highly credible negative samples. 
Bioinformatics. 2015;31(12):i221–9.

 57. Wang N, Li P, Hu X, Yang K, Peng Y, Zhu Q, et al. Herb target prediction 
based on representation learning of symptom related heterogeneous 
network. Comput Struct Biotechnol J. 2019;17:282–90.

 58. Ndrepepa G, Kastrati A. Gamma‑glutamyl transferase and cardiovascular 
disease. Ann Transl Med. 2016;4(24):481.

 59. Mason JE, Starke RD, Van Kirk JE. Gamma‑glutamyl transferase: a novel 
cardiovascular risk biomarker. Prev Cardiol. 2010;13(1):36–41.

 60. Lachapelle F, Avellana‑Adalid V, Nait‑Oumesmar B, Baron‑Van EA. 
Fibroblast growth factor‑2 (FGF‑2) and platelet‑derived growth factor AB 
(PDGF AB) promote adult SVZ‑derived oligodendrogenesis in vivo. Mol 
Cell Neurosci. 2002;20(3):390–403.

 61. Yu LM, Dong X, Xue XD, Xu S, Zhang X, Xu YL, et al. Melatonin attenu‑
ates diabetic cardiomyopathy and reduces myocardial vulnerability to 
ischemia‑reperfusion injury by improving mitochondrial quality control: 
Role of SIRT6. J Pineal Res. 2021;70(1):e12698.

 62. Zhou H, Li DD, Zhu PJ, Hu SY, Hu N, Ma S, et al. Melatonin suppresses 
platelet activation and function against cardiac ischemia/reperfusion 
injury via PPAR gamma/FUNDC1/mitophagy pathways. J Pineal Res. 2017. 
https:// doi. org/ 10. 1111/ jpi. 12438.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1111/jpi.12438

	Expanding potential targets of herbal chemicals by node2vec based on herb–drug interactions
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Methods and materials
	Data collection
	Western drugs collection
	Herbal chemicals collection

	Data processing and dataset preparation
	Herb–drug interactions identification
	Construction of groups, datasets and networks

	Link prediction
	Algorithms
	Node2vec 
	Adamic-Adar (AA) 
	Jaccard similarity coefficient (JS) 
	Preferential attachment (PA) 
	Spectral clustering (SC) 

	Evaluation
	Average precision (AP) score 
	Area under the receiver operating characteristic (AUROC) score 


	Molecular docking
	Experimental verification
	Chemicals and reagents
	Cell culture
	CETSA

	Quantitative real-time RT-PCR

	Results
	Data integration and screening
	Group and dataset information
	Best dataset and algorithm selection
	Link prediction results
	Expanded information
	Further filtering of expanded information

	Molecular docking
	Experimental verification
	CETSA indicated a direct interaction between GGT1 and caffeic acid
	mRNA expression of GGT1, FGF2, CES2, MTNR1A, ATP1A2 upon the treatment of predicated compounds in the HUVECs


	Discussion
	Conclusions
	Anchor 44
	Acknowledgements
	References


