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Panax notoginseng alleviates oxidative stress 
through miRNA regulations based on systems 
biology approach
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Run‑Bo Mao1, Yang‑Chi‑Dung Lin1,2* and Hsien‑Da Huang1,2*   

Abstract 

Background Herbal medicine Sanqi (SQ), the dried root or stem of Panax notoginseng (PNS), has been reported to 
have anti‑diabetic and anti‑obesity effects and is usually administered as a decoction for Chinese medicine. Alter‑
native to utilizing PNS pure compound for treatment, we are motivated to propose an unconventional scheme to 
investigate the functions of PNS mixture. However, studies providing a detailed overview of the transcriptomics‑based 
signaling network in response to PNS are seldom available.

Methods To explore the reasoning of PNS in treating metabolic disorders such as insulin resistance, we implemented 
a systems biology‑based approach with RNA sequencing (RNA‑seq) and miRNA sequencing data to elucidate key 
pathways, genes and miRNAs involved.

Results Functional enrichment analysis revealed PNS up‑regulating oxidative stress‑related pathways and down‑
regulating insulin and fatty acid metabolism. Superoxide dismutase 1 (SOD1), peroxiredoxin 1 (PRDX1), heme oxyge‑
nase‑1 (Hmox1) and glutamate cysteine ligase (GCLc) mRNA and protein levels, as well as related miRNA levels, were 
measured in PNS treated rat pancreatic β cells (INS‑1). PNS treatment up‑regulated Hmox1, SOD1 and GCLc expres‑
sion while down‑regulating miR‑24‑3p and miR‑139‑5p to suppress oxidative stress. Furthermore, we verified the 
novel interactions between miR‑139‑5p and miR‑24‑3p with GCLc and SOD1.

Conclusion This work has demonstrated the mechanism of how PNS regulates cellular molecules in metabolic 
disorders. Therefore, combining omics data with a systems biology strategy could be a practical means to explore the 
potential function and molecular mechanisms of Chinese herbal medicine in the treatment of metabolic disorders.
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Background
Herbal drugs have a typical nature involving multi-
component and multichannel, and with the aid of next-
generation sequencing (NGS), monitoring herbal drug 
molecular mechanisms in modern diseases is there-
fore made possible. In past research, it has shown to be 
a time-efficient and cost-effective way to authenticate 
herbal drugs such as Traditional Chinese Medicines 
(TCMs). During the past 15  years, the high throughput 
of massively parallel sequencing has become a power-
ful tool, used in various fields, such as clinical genetics, 
oncology and microbiology [1, 2]. To discuss disorders 
with highly complex metabolic mechanism, researchers 
focused on the transcriptomic changes of the pancreatic 
β cell through NGS-based analysis [3–5] and TCMs have 
been found to increase insulin synthesis and secretion as 
well as reduce β cell apoptosis and oxidative stress. As 
an alternative medicine, TCMs have been practiced for 
thousands of years and Panax notoginseng (PNS) has its 
fair share of contributions. Studies have shown that gin-
senosides can promote insulin synthesis and secretion 
[6], inhibit β cell apoptosis [7], and reduce inflammation 
and oxidative stress damage [8].

PNS, also known as “Sanqi (SQ)” in Chinese, is com-
posed of several compounds including saponins, fla-
vonoids, cyclopeptides, sterols, polyacetylenes, amino 
acids, volatile oil, and polysaccharides. Saponins, as the 
major chemical components of PNS, have been found 
to have promising anti-diabetic effects [9]. Dammarane-
type triterpenoid saponins are the major bioactive sapo-
nins. They are composed of ginsenoside Rb1, Rg1, Rc, Rd, 
Re, Rf, Rh1, Rg, notoginsenoside R1 (NR1), etc. [10]. It 
was reported that ginsenoside Rb1 exerts significant anti-
obesity, anti-hyperglycemic, and anti-diabetic effects by 
regulating glycolipid metabolism and improving insulin 
and leptin sensitivities. It also inhibits the JNK signaling 
pathway, and JNK1 and c-Jun expression in STZ-induced 
diabetic rats, resulting in negative regulation of the 
expression of the inflammatory molecules IL-6, IL-1β, 
and TNF-α [11]. Ginsenoside can promote insulin syn-
thesis (Rb2), and increase insulin secretion (Rg3) of rat 
pancreatic β cells (INS-1) in a high-glucose environment 
[12] as well as inhibit β cell apoptosis through activat-
ing ERK and p38 MAPK phosphorylation. Other studies 
showed that PNS upregulate the expression of miR-181b, 
caspase-3 bcl-2 and activate PI3K-AKT-mTOR pathway, 
which blocks autophagy expression genes and autophagy 
membrane marker, thereby reducing apoptosis and 
autophagy [13]. However, compound-level studies can 
hardly account for the complex interaction networks of 
components and molecular biological systems in PNS, 
leaving a gap between the actual effects of PNS and our 
current knowledge [14]. While these studies showed 

evidence of diabetes-related biological pathways and 
gene networks, they do not provide a detailed representa-
tion of how PNS as a whole influence diabetes in pancre-
atic β cells.

MicroRNAs are a class of ~ 22 nucleotides noncod-
ing RNAs that are post-transcriptional regulators of 
the gene expression of target genes. By interacting with 
complementary sites in the 3′ untranslated region of the 
target mRNAs [15], miRNA play gene-regulatory roles 
and produce many changes in physiological and patho-
logical processes. Studies have shown that miRNAs have 
been involved in the regulation of different biological 
processes, including apoptosis, proliferation, metabo-
lism, cellular differentiation, and gene regulation [16, 
17]. Through sequencing by hybridization or sequenc-
ing by synthesis, NGS can sequence the transcriptome of 
desired samples efficiently and accurately [18]. However, 
relatively few studies implement NGS-based approach to 
elucidate the functions of Chinese herbs when discussing 
metabolic disorders such as diabetes treatment. In this 
study, we utilized NGS to carry out transcriptomic profil-
ing for uncovering essential anti-oxidation-related genes, 
miRNAs and pathways, like others previously [19, 20]. 
Furthermore, it also aids in the identification of changes 
in diabetic-related pathways and key active compound in 
action under specific therapeutic treatment [21].

By adopting systems biology approaches that integrates 
transcriptomic data with miRNA interaction networks, 
we have significantly expanded our understanding of 
molecular pathways disrupted in metabolic diseases and 
prove helpful in identifying novel biomarkers, and dis-
ease mechanisms [22, 23]. In the context of metabolic 
disorders such as diabetes, network biology and net-
work pharmacology have been used to unravel unique 
biological pathways. For instance, a network approach 
using transcriptomic data identified Cylcocarya paliurus 
treatment inhibited inflammation and apoptosis path-
ways [24]. Furthermore, Kutlu et al. constructed a genetic 
network of cytokine-regulated genes using time-course 
microarray data and revealed the gene networks acti-
vated in β cells under prolonged immune assault [25].

Since PNS has been known to be effective in treat-
ing diabetes, we wished to examine and explain the 
detailed effect of PNS in rat pancreatic β cells (INS-1). To 
refine our research, we investigated the genes involved 
in enriched pathways under PNS treatment, specifi-
cally the regulation of oxidative stress. With the knowl-
edge from our miRTarBase database [26] to construct a 
miRNA-gene regulatory network and gene-target path-
way network. Specifically, we examined the activity and 
expression of genes and proteins including Superoxide 
dismutase 1 (SOD1), heme oxygenase-1 (Hmox1), and 
glutamate cysteine ligase (GCLc) and results of our study 
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suggest that PNS protects pancreatic β cells from oxida-
tive stress.

Methods
Cell culture
Pancreatic β cells INS-1 (Cellcook Biotech Co., Ltd, 
Guangzhou city, China) were routinely cultured in 
RMPI-1640 (Gibco cat: 11875) media supplemented 
with 10% FBS, 1X sodium pyruvate and 0.05  mM 
β-mercaptoethanol and incubated at 37  °C in a humidi-
fied environment with 5%  CO2. The cells were passaged 
and detached with Trypsin–EDTA.

Metabolite extraction
100 mg Panax notoginseng (Efong Pharmaceutical) sam-
ples were thawed on ice, and metabolite were extracted 
with 0.5 mL of pre-chilled 80% methanol. The extraction 
mixture was then stored in 30 min at − 20 °C. Sample was 
then centrifuged at 20,000 × g for 10 min following vac-
uum drying of supernatants and redissolved with 100 μL 
80% methanol. Samples were then stored at − 80 °C prior 
to the LC–MS analysis.

Compound detection with UPLC‑MS/MS
Ultimate 3000 UPLC (Thermo Fisher Scientific, Bremen, 
Germany) was utilized to carry out the chromatographic 
separation of all samples and ACQUITY BEH C18 col-
umn (2.1 × 100 mm, 1.7 µm, Waters, Milford, USA) was 
used for reverse phase separation. In this work, the flow 
rate was determined at 0.3 mL/min and the mobile phase 
consisted of solvent A (water, 0.1% formic acid) and sol-
vent B (Acetonitrile, 0.1% formic acid). Gradient elution 
conditions were set as follows: 0–0.8  min, 2% B; 0.8–
2.8  min, 2% to 70% B; 2.8–5.6  min, 70% to 90% B; 5.6–
6.4 min, 90% to 100% B; 6.4–8 min, 100% B; 8–8.1 min, 
100% to 2% B; 8.1–10  min, 2% B. The high-resolution 
tandem mass spectrometer Q-Exactive (Thermo Scien-
tific), operated in both positive and negative ion modes, 
was used to detect metabolites eluted from the column. 
During the Q-Exactive analysis, precursor spectra with 
the range of 70–1250  m/z were collected at 70,000 res-
olutions to hit an AGC target of 3e6 with a maximum 
inject time of 100  ms. Addi-tionally, fragment spectra 
were collected at 17,500 resolutions to hit an AGC tar-
get of 105 with a maximum inject time of 50 ms. A top 3 
configuration to acquire data was set in DDA mode and 
results are available in Additional file  19: Table  S9. Par-
allel reaction monitoring (PRM) mode was used for the 
content analysis of selected compounds. Raw compound 
data were then analyzed with Skyline software [27] and 
XcaliburTM 4.1 software (ThermoFisher, San Jose, CA, 
USA, 2019) for peak extraction and metabolite identifica-
tion. The secondary mass spectrogram information in the 

sample experiment was then used to match with stand-
ard databases including MzCloud (Thermo), Traditional 
Chinese Medicine (Thermo), BMDMS-NP (BMDMS), 
Vani-ya-Fiehn_Natural_Products (Fiehn lab), PlaSMA 
(RIKEN). The matching error settings were 0.01  Da for 
the first level, 0.05 Da for the second level, and a match-
ing score > 70 was considered a reliable metabolite.

PNS preparation, dosage sensitivity assays and treatment 
conditions
Prepare 1  mL of PNS solvent by dissolving in RMPI-
1640 media and centrifuge at 12,000  rpm for 5  min to 
obtain supernatant and dilute solvent into 8 different 
concentrations in total (1 g/mL, 3.3 ×  10–1 g/mL,  10–1 g/
mL, 3.3 ×  10–2 g/mL,  10–2 g/mL, 3.3 ×  10–3 g/mL,  10–3 g/
mL and 3.3 ×  10–4  g/mL). The dosage sensitivity assay 
was performed to acquire inhibition of cell viability 
when INS-1 cells are treated with PNS to generate dose 
response curve. Experiments were carried out in sextu-
plicate. In short, INS-1 cells were seeded at 5 ×  103 cells/
well into 96-well microplates and incubate for 24 h before 
replacing clean media with different concentrations of 
PNS solvent with 8 different concentrations, 100 µL/well. 
After 24 h of incubation, CCK-8 assay was performed by 
removing the PNS solvents and adding 100 µL/well of 
CCK-8 reagent, incubating for 1.5 h and reading absorb-
ance of each well at 450 nm in a microplate reader. Inhi-
bition ratio (IR) was then calculated used to decide upon 
three PNS concentrations used (Low: 11.2, Medium: 20.2 
and High: 29.1 mg/mL).

RNA isolation
For RNA isolation, INS-1 cells were plated at a density 
of  105 cells per 10 cm dish and incubated in RPMI-1640 
for 24  h before exchanging with media containing PNS 
at 3 different concentrations and a model control with 2 
experimental repeats (different cell generations) for the 
4 conditions. On the following day, the cells were col-
lected with 1  mL TRIzol reagent (Invitrogen) per dish 
and stored at − 80 °C before RNA extraction. mRNA was 
extracted from INS-1 cells using standard RNA isolation 
TRIzol protocol and miRNA extracted with miRNeasy 
Mini Kit (Qiagen, Hilden, Germany). Extracted RNA 
was then dissolved in RNase-free water and stored at 
− 80 °C before further treatment. Concentration of RNA 
was measured using Qubit Fluorometric Quantification 
(ThermoFisher, Waltham, MA, USA).

Library preparation for RNA and small RNA sequencing
RNA-seq and small RNA-seq cDNA libraries were con-
structed following the MGI mRNA library preparation 
assay (Hieff  NGS® Ultima Dual-mode RNA Library prep 
kit for MGI, 13333ES96) protocol, previously purified 
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and fragmented with Hieff  NGS® mRNA Isolation Mas-
ter Kit (Hieff  NGS®, Cat#12603). Resulting cDNA library 
fragments were validated using Agilent 2100 Bioanalyzer 
(Agilent) and cDNA libraries were measured using quan-
titative reverse-transcription PCR (qRT-PCR) (Roche, 
 LightCycler® 480 system, Basel, Switzerland) as well as 
Qubit fluorometer (Invitrogen, Carlsbad, California, 
USA). Then they were pooled, and sequenced on BGI 
NGS platform (DNBSEQTM-T7), pair-ended mode with 
150 bps. Coverage depth were approximately 20 million 
and 5 million reads obtained in RNA-seq and miRNA-
seq, respectively.

RNA sequencing data analysis
Raw data was processed by nf-core/rnaseq pipeline (v3.0) 
with the parameter of “--genome Rnor_6.0 --gencode” to 
get the read count matrix for all samples. For details, low 
quality and adaptor sequences in raw reads were trimmed 
using Trim Galore. After removal of ribosomal RNA by 
SortMeRNA, the cleaned reads were aligned to the ref-
erence genome (Rnor_6.0, UCSC) using STAR. iDEP 
(http:// ge- lab. org/ idep/), an integrative web application, 
was used to perform differential expression analysis. 
mRNA count matrix was first preprocessed to remove 
the low level expressed genes with count less than 4 in all 
samples and then normalized to log2-CPM matrix. PCA, 
bar chart and distribution plot were used to visualize 
the data quality. Differential expressed mRNA analysis 
was performed with DESeq2 with a False Discovery Rate 
(FDR) ≤ 0.05 and fold change ≥ 1.5.

Small RNA sequencing data analysis
Small RNA-seq raw data was inputted in nf-core/smr-
naseq pipeline (v1.0.0) with the parameter of “--genome 
Rnor_6.0”. Firstly, low quality and adaptor sequences in 
raw reads were trimmed using Trim Galore. Secondly, the 
cleaned reads were aligned against miRbase [28] mature 
miRNA and hairpin using Bowtie. Finally, a list of top 
expression hairpin and mature miRNA after TMM nor-
malization was obtained using edgeR [29]. MiRNA CPM 
matrix was first preprocessed to remove the low level 
expressed miRNA with CPM less than 10 in all samples. 
Correlation matrix was used to analysis the data quality. 
Differential expressed miRNA analysis was performed by 
small program with p-value ≤ 0.05 and fold change ≥ 8.

A computational approach for reconstruction of miRNA 
gene regulatory network
The mature DEmiRs were used to analyze the target 
genes. Experimental MTIs were obtained from miRTar-
Base [26]. The predicted MTIs were obtained using two 
prediction databases. MiRWalk 2.0 [30], which integrated 
several MTI prediction databases, was used to predict 

the target gene of DEmiRs by TarPmiR algorithm. All 
13 parameters in this algorithm were optimized auto-
matically. MiRDB [31] was also used to predict the MTI 
with default parameters. We select the DEGs which was 
detected MTI relation with DEmiRs to construct miRNA 
regulatory network. Cytoscape software was used to vis-
ualize the MTI network of up and down regulated DEGs 
separately. To discuss the function of the MTI network, 
we further analyzed the target up and down DEGs func-
tional annotation by using MetaScape [32] separately.

Network construction and analysis of DEGs related 
pathways
Metacore (Clarivate MetaCore + MetaDrug™ version 
20.4 build 70300) was used to analysis the up and down 
DEG related pathways and GO processes. The param-
eters were set as p-value ≤ 0.05 and FDR ≤ 0.05. After 
we got the enriched pathways, we selected the signifi-
cant pathways and related DEGs for further discussion. 
Cytoscape software was used to visualize the DEG-path-
way topology network.

Quantitative real‑time PCR
The expressions of specific target genes will be deter-
mined. Total RNA of TCMs treated INS-1 cells were 
extracted, and the RNA was reverse transcribed into 
cDNA by reverse-transcription polymerase chain reac-
tion. Quantitative real-time PCR (QuantStudio 6 Flex 
Real-Time PCR System) with the SYBR green system 
(PowerUP SYBR green, Applied Biosystems) were used 
to determine the relative gene expression levels in cells 
compared to control. MiRNA was reverse transcribed 
using miRcute Plus miRNA First Strand cDNA Synthesis 
Kit (Tiangen Biotech, Beijing, China) and amplified with 
SYBR green system (PowerUP SYBR green, Applied Bio-
systems). The expressions were analyzed with housekeep-
ing genes glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) and U6 for RNA and miRNA, respectively. All 
primers used are listed in Table 1.

Dual‑luciferase reporter assay
The 3′-UTR of GCLc and SOD1 genes carrying the 
predicted binding sites of miR-139-5p and miR-24-3p 
(http:// mirwa lk. umm. uni- heide lberg. de/) was synthe-
sized into the pmirGLO vector (E1330, Promega Corpo-
ration) to generate wild-type (WT) and mutant (MUT) 
GCLc and SOD1 dual-luciferase expression vectors 
(SOD1-WT, SOD1-MUT, GCLc-WT, and GCLc-MUT). 
293T cells were co-transfected with SOD1-WT or SOD1-
MUT or GCLc-WT or GCLc-MUT, and miR-24-3p or 
miR-139-5p or the control mimics using  Lipofectamine® 
2000 (Invitrogen). After 24 h, the activities of Firefly and 
Renilla luciferase were determined using Dual-Luciferase 

http://ge-lab.org/idep/
http://mirwalk.umm.uni-heidelberg.de/
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Reporter assay system (Promega Corporation). The 
results were conducted in triplicates and shown as the 
ratio of Renilla to Firefly luciferase activity.

Western blotting
For the protein expression analysis of SOD1, Hmox1 and 
GCLc proteins, PNS treated INS-1 cells were washed 
with ice-cold phosphate buffer saline (PBS), collected and 
lysed using RIPA lysis buffer (P0013C, Beyotime, China) 
supplemented with a protease inhibitor PMSF (ST506, 
Beyotime, China) according to manufacturer’s protocol 
to obtain total protein. Equal amounts of protein lysates 
were resolved in 10% SDS-PAGE (SK6010-250, Coolaber, 
China), transferred on the Immobilon-PSQ PVDF blot-
ting membrane (ISEQ00010, Merck) using wet transfer. 
Membranes were incubated in 5% BSA (ST023-200  g, 
Beyotime, China) in Tris-buffered saline pH 7.6 contain-
ing 0.1% Tween-20 following primary antibody incuba-
tion overnight. Antibodies used against SOD1 (dilution: 
1:50000, ab51254), Hmox1 (dilution: 1:50000, ab68477), 
GCLc (dilution: 1:20000, ab190685) were purchased from 
Abcam. GAPDH (dilution: 1:100000, 60004-1-Ig) was 
purchased from Protein Tech. Membranes were then 
washed with TBST and incubated with secondary anti-
body Anti-Mouse IgG, HRP-linked antibody (A0208, 
Beyotime, China) and Anti-Rabbit IgG, HRP-linked anti-
body (A0216, Beyotime, China). Protein detection was 
performed using ECL western blotting substrate (SL1350, 
Coolaber) and captured with Amersham Imager 600 (GE 
Healthcare Life Sciences). Expression of GAPDH was 
used as a control.

Compound target protein prediction
The pathway interpreter, a credited biology pathway 
information-based algorithm, was utilized to find pos-
sible pathways of protein targets to DEGs. It mainly 
includes two steps: compound target protein prediction 
and functional enriched pathway network prediction. The 
metabolites of PNS were first annotated with PubChem 
id and corresponding SMILES structure as shown in 
Additional file  20: Table  S10. Then, we predicted the 
target protein of PNS metabolites with DeepConv-DTI, 
SEA, and SuperPred and selected targets with both accu-
racy and model probability over 0.9 where results are 
available in Additional file 21: Table S11. DeepConv-DTI 
is a deep learning approach to predict small compound 
drug-target interactions [33]. We trained the model with 
an in-house drug-target interaction dataset collected 
from KinaseSARfari, PubChem BioAssay database, Drug-
Bank, and IUPHAR, which included over 100,000 experi-
mentally validated drug-target interactions. We selected 
high scoring predicted target proteins for major com-
ponents of PNS compounds. SEA is a well-known simi-
larity-based target prediction method [34]. We selected 
targets with p-value less than 1 ×  10–12. SuperPred is a 
drug target prediction webserver [35].

Network discovery between PNS target proteins and DEGs
To understand the molecular mechanisms of PNS acti-
vating oxidative stress reaction, we investigated the 
possible pathway between PNS targets and DEGs with 
an in-house pipeline called pathway interpreter. Most 
pathway analyses can only give general predictions, just 
arbitrary combinations of current pathway information 

Table 1 Sequences of primer pairs of mRNA and miRNA used in the real‑time quantitative PCR reaction

Gene symbol Forward (5′–3′) Reverse (5′–3′)

Hmox1 ACC GTG GCA GTG GGA ATT TA CAA GAT TCT CCC CTG CAG AGA 

GCLc TGA GTC TCC TCT TGC TGT GTA CGT GGG ACT GCT CTG CAA AGG AA

Txn1 GTG GTG TGG ACC TTG CAA AA CTG GCA GTC ATC CAC GTC TACTT 

SOD1 CAC TGC AGG ACC TCA TTT TAA TCC GTC CTT TCC AGC AGC CAC AT

PRDX1 AGC TCG ACT CTG CTG ATA GCAA AAT TGT CCA TCG GGC ATA ACA 

Lpl GCT CCA TCC ATC TCT TCA TTGAC AGG CAG AGC CCT TTC TCA AAT 

ABCG1 TGG AGA ACG CGA AGC TAT ACC CAG CCC GGA TTT TGT ATC TCA 

Cav‑1 CCA TGG CAG ACG AGG TGA AT ACC ACG TCG TCG TTG AGA TG

RPS6 GAA AGC CCT TAA ACA AAG AAG GTA AG ATA CGT CGG CGT TTG TGT TG

Gab1 TCC CAC CAC ACC CAG ACA CT TGG GCT CTG GTG GGT TCA 

GAPDH GGT GGA CCT CAT GGC CTA CA CAG CAA CTG AGG GCC TCT CT

MiRNA Forward (5′–3′) Reverse (5′–3′)

Rno‑miRNA‑139‑5p GTC TAC AGT GCA CGT GTC CCA GTT TTT TTT TTT TTT TCT GGA G

Rno‑miRNA‑24‑3p AGT GGC TCA GTT CAGCA CCA GTT TTT TTT TTT TTT TCT GTT CCT 

Rno‑miRNA‑671 GCA GTC CGG TTC TCAG GGT CCA GTT TTT TTT TTT TTT TGG T



Page 6 of 19Tang et al. Chinese Medicine           (2023) 18:74 

from mixed sources. The pathway interpreter was 
designed to give credited pathway prediction with a 
biology knowledge-based algorithm.

The pathway interpreter gives Impact Factor (IF) based 
reliability scores for all interactions in the pathway for qual-
ity control. The oxidative stress reaction related pathway 
data were collected from Reactome [36], MetaCore [37], 
and KEGG [38] databases. The reference information is col-
lected simultaneously. Based on the IFs of collected refer-
ences, the IF score is calculated for creditability check. The 
exponential algorithm is applied for IF score calculation to 
avoid bias from the accumulation of low IF references. 
IFscore =

∑

(

e
IF/5

2
−

1

2

)

 . The reaction-wise IF scores and 
general statistics for the IF distribution of target biology 
pathways were calculated for further evaluation.

The pathway interpreter found all the possible path-
ways starting from the PNS target proteins to the DEGs 
with step lengths less than 11 in the oxidative stress 
reaction process. The biology-based assessment score is 
calculated for all the pathways to filter out the top 10 rea-
sonable paths for every target-DEG combination (Addi-
tional file 22: Table S12). The score calculation is based on 
the following biology principles: disfavor the extension of 
steps (Penalty = − n(n + 1)) for the length of n) and favor 
key molecules in signal transduction (No penalty for cen-
troid molecules). The first 8 PNS targets were selected to 
construct the predictive pathway with 17 nodes, results 
are shown in Fig. 8a.

In vivo experimental settings of PNS and ginsenoside Re 
protective functions
In the in  vivo experiment, we conducted anti-oxidative 
function validation in two models of zebrafish (WT and 
hyperglycemia model) based on Reactive Oxygen Spe-
cies (ROS) level, glucose level and gene expression analy-
sis of anti-oxidation related genes including superoxide 
dismutase 1 (SOD1), heme oxygenase-1 (Hmox1), glu-
tamate cysteine ligase (GCLc), lipoprotein lipase (Lpl), 
caveolin-1 (CAV-1), Kelch-like ECH-associated protein 
1 (Keap1) and nuclear factor erythroid 2-related fac-
tor 2 (Nrf2). The zebrafish experiment was assisted by 
Hangzhou Hunter Biotechnology, Inc. and was accred-
ited by the International Association for Assessment and 
Accreditation of Laboratory Animal Care (AAALAC, 
001458) and was licensed to use experimental animals 
(SYXK [Z] 2022-0004). Experimental dose of PNS and 
ginsenoside Re for in vivo evaluation is available in Addi-
tional file 22: Table S12 and further experimental designs 
and results are available in Additional file  25: Material 
and methods.

Statistical analysis
All statistical analyses were performed using the SPSS 
16.0 software (SPSS, USA), and p-value < 0.05 was con-
sidered statistically significant. For quantitative analysis, 
all data were presented as mean ± SE, and results were 
statistically compared between TCM-treated and control 
zebrafish groups.

Results
Many PNS compounds are known to be able to protect 
against metabolic disorders such as diabetes. However, 
we wanted to explore the detailed role and mechanism 
of its protective effect as a whole mixture in pancreatic β 
cells (INS-1) and uncover novel miRNA target relations. 
A schematic overview of the experimental and computa-
tional framework to identify the regulatory effect of PNS 
treatment is presented in Fig. 1, where INS-1 cells were 
treated with a number of different PNS concentrations 
to obtain three administration concentrations (11.2, 20.2 
and 29.1  mg/mL). RNA was then extracted for analysis 
of high-throughput expression profiles. Quality control 
filtered out the noise data to obtain clean RNA-seq and 
miRNA-seq data. Computational methods including the 
identification of differentially expressed genes (DEGs) 
and differentially expressed miRNAs (DEmiRs) and con-
structing regulatory network and functional annotation 
of target genes were utilized. The raw sequencing data of 
PNS treated samples against control models are listed in 
Additional files 11, 12 and 13: Tables S1, S2 and S3.

Effect of different PNS concentration treatments 
on pancreatic β cell growth
After exposure to three PNS concentrations for 24  h, 
pancreatic β cell viability was measured and showed to be 
insignificant up to condition of log(− 2) g/mL, and results 
are shown in Fig.  6a. Cell morphology and growth pat-
terns of pancreas β cells were observed under a micro-
scope interstingly, showed increase in growth under 
20.2 mg/mL and 11.2 mg/mL PNS treatments compared 
to control and 29.1 mg/mL PNS concentration. Cell mor-
phology results are shown in Fig. 6b.

Effect of different PNS treatments on gene expressions 
in pancreatic β cell
To understand the molecular mechanism of PNS, we 
investigated the transcriptome profiling of pancreatic 
β cells and filtered out the DEGs present across two or 
three PNS concentrations (Fig.  2). In our study, there 
were eight RNA samples under three increasing PNS 
concentrations (11.2, 20.2 and 29.1 mg/mL), one control 
model and two experimental repeats (different cell gener-
ations) for each sample group (Additional files 11 and 12: 
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Table S1 and S2). Read quality of RNA-seq and miRNA-
seq are shown in Additional file  1: Fig.  S1. Low expres-
sion genes were removed and count matrix normalized, 
resulting in around 14,000 genes for analysis across eight 
samples. Then principal component analysis (PCA) was 
conducted for pre-processed mRNA-seq matrix and 
showed clearly defined groups between the different con-
centrations that were similar across two experimental 
repeats (Additional file 1: Fig. S1A and S1B).

The volcano plots in Additional file 2: Fig. S2 presented 
the DEGs, acquired from RNA-seq data after cleaning 
up and normalizing the raw sequencing data. Detailed 
information on all DEGs (mRNA log2-CPM matrix) are 
provided in Additional file 14: Table S4. In pancreatic β 
cells, 14,453 genes (count > 4 and converted to log2-CPM 
matrix) were detected and DEGs of each concentra-
tion were determined separately; relative to the model 
control group. Expression values exceeding 1.5-fold 
change with FDR ≤ 0.05 were included for further anal-
ysis. Number of up-regulated DEGs were 8, 63 and 381 
respectively to 11.2, 20.2 and 29.1 mg/mL PNS concen-
tration. 63 DEGs overlapping two or three concentrations 
(Additional file 4: Fig. S4) were selected. The number of 
down-regulated DEGs were 3, 35 and 428; 33 common 
DEGs were found to overlap two or three concentration 
conditions. Genes related to insulin are shown in Addi-
tional file 5: Fig. S5 and around half of our entire mRNA 
matrix presented positively or negatively correlated gene 

expression with PNS. In contrast, over half of the insulin-
related genes of our mRNA matrix showed no obvious 
correlation.

Effect of PNS concentration on miRNAs expression 
in pancreatic β cells
MiRNA-seq was conducted as well to investigate the 
miRNA expressions under PNS influence. The detailed 
information of DEmiR raw data is provided in Additional 
file 13: Table S3. In pancreatic β cells, a total list of 260 
miRNAs (count > 4 and converted to CPM [count per 
million reads mapped]) were detected (Additional file 15: 
Table  S5) and DEmiRs of each PNS treated concentra-
tion (11.2, 20.2 and 29.1 mg/mL) were determined sepa-
rately, relative to model control. Only miRNAs with fold 
change exceeding eight for both down and up-regulation 
(False Discovery Rate (FDR) ≤ 0.05) were considered. 
Low expression miRNAs were again removed and count 
matrix normalized. MiRNAs that were differentially 
expressed across two or three PNS concentration groups 
were selected and filtered with miRWalk (high-perfor-
mance prediction database) [30] and miRDB (support 
prediction database) to remove hairpins [31], providing 
us with a final list of 43 up and down-regulated DEmiRs, 
14 up-regulated and 29 down-regulated across three 
PNS concentrations. After inputting the list into miRTar-
Base (experimentally validated targets) [26], our DEmiRs 

Fig. 1 Schematic representation of the study workflow to identify the regulatory network of PNS in treating metabolic disorders
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showed no experimentally validated relation to our DEGs 
(Additional file 7: Fig. S7), suggesting novel miRNA Tar-
get Interactions (MTIs).

Only mature miRNAs excluding hairpin candidates 
that were present across two or three PNS concentration 
treatments were qualified candidates and these condi-
tions left two up-regulated (miR-3596d, and let-7f-5p) 

Fig. 2 Heatmap presents expression values of Differentially Expressed Genes (DEGs) in PNS‑treated pancreatic β cells compared to the control 
model. DEGs that were seen across 2 or 3 PNS concentrations were taken into account, resulting in 63 up‑regulated DEGs and 33 down‑regulated 
DEGs. Up‑regulated DEGs (pink label) were functionally enriched in nuclear factor erythroid‑derived two signaling, glutathione metabolism, 
and cellular iron ion homeostasis related pathways, while down‑regulated DEGs (turquoise label) were functionally enriched in organic hydroxy 
compound transport, negative regulation of ERK1 and ERK2 cascade, and cholesterol homeostasis related pathways. (Fold change ≥ 1.5, False 
Discovery Rate (FDR) ≤ 0.05). Low: 11.2, Medium: 20.2 and High: 29.1 mg/mL
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and seven down-regulated (miR-139-5p, miR-194-5p, 
miR-671, miR-9a-5p, miR-3556a, miR-24-3p and miR-
196b-5p) DEmiRs. Six of which were found to influence 
DEGs related to diabetes from our gene analysis. Some 
miRNA expressions were significantly different post 
PNS treatment, such as miR-3596d and let-7f-5p being 
unevenly up-regulated in the PNS-treated groups com-
pared with the control group across three concentrations 
(Fig. 3). Volcano plot graphs in Additional file 3: Fig. S3 
presents the DEmiRs for PNS concentrations 11.2  mg/
mL, 20.2  mg/mL and 29.1  mg/mL were 6, 4 and 10, 
respectively. Number of down-regulated DEmiRs for L, 
M and H groups were 16, 16 and 10, respectively.

Transcriptome and functional enrichment analysis 
demonstrated that PNS influences pancreatic β cell 
by protecting against oxidative stress damage
To understand the molecular mechanisms of PNS in met-
abolic disorders, we further investigated the transcrip-
tome profiling across three different concentrations. GO 
and biological pathways for 96 DEGs in PNS treatment 
(63 up-regulated and 33 down-regulated) were predicted 
through MetaCore (Clarivate MetaCore + MetaDrugTM 
version 20.4 build 70,300) to identify the relationship 
between expressions of mRNAs in alleviating oxidative 

stress. Identification of the expected correlation through 
pathway analysis produced a final list of 138 and 142 
pathways for up-regulated DEGs and down-regulated 
DEGs, respectively. This list was filtered and narrowed 
down to focus on related pathways incorporating at least 
2 DEGs from our DEG data. 25 top enriched pathways 
for up and down-regulated DEGs were filtered out to 
generate a pathway network, and outliers were removed 
(Fig.  4). Up-regulated DEGs were functionally enriched 
in oxidative stress, NRF2-antioxidant response pathway, 
glutathione metabolism, heme metabolism and apop-
tosis and survival inhibition of ROS-induced apoptosis 
pathways (Fig. 2 and Additional file 16: Table S6). Down-
regulated DEGs were functionally enriched in choles-
terol-lowering drug (fenofibrate) response, anti-diabetic 
drug (pioglitazone and rosiglitazone) response, choles-
terol transport, AKT, PIP3, IGF-1 signaling pathways and 
lipoprotein metabolism pathways (Fig. 2 and Additional 
file  17: Table  S7). Therefore, MetaCore pathway analy-
sis suggested that PNS treatment exhibited anti-diabetic 
effects through reduced oxidative stress response, glu-
tathione metabolism, antidiabetic drug-related response, 
insulin signaling and reduced ROS-induced cell 
apoptosis.

Fig. 3 Heatmap presents expression values of Differentially Expressed miRNA (DEmiR) of PNS treated pancreas β cells (Fold change ≥ 8, 
p‑value ≤ 0.05). Low: 11.2, Medium: 20.2 and High: 29.1 mg/mL
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GO clustering analysis of MTI related DEGs showed 
functional enrichment in NRF2 signaling pathway, fer-
roptosis, cellular iron ion homeostasis, hydroxy com-
pound transport pathway, ERK1 and ERK2 cascade and 
cholesterol homeostasis related pathways (Additional 
file  6: Fig.  S6). The results suggested that our DEmiRs 
have similar anti-diabetic effects compared to our DEGs 
under PNS treatment in INS-1 cells through involvement 
with oxidative stress response pathway and insulin regu-
lation, and fatty acid metabolism.

MiR‑139‑5p and miR‑24‑3p regulates oxidative stress 
response by targeting GCLc and SOD1
To specifically understand the roles of our DEmiRs in the 
oxidative stress pathway discussed earlier, we constructed 
a miRNA-gene target regulatory network for DEmiRs and 
DEGs. miRNA-seq are susceptible and accurate tools for 
measuring miRNA expression under different environ-
mental conditions. Often, we would assume miRNAs act 
as negative regulators of target mRNAs, so miRNA and 
target genes should present an inverse expression pro-
file. To obtain reliable MTI pairs from our high through-
put data, we used predicted evidence of miRNA and its 
target gene from miRNA databases. Nine miRNAs and 
targets genes were observed and a network connection 
was constructed (Fig.  5). For up-regulated DEG targets, 

miR-9a-5p/671/24-3p/139-5p and their target genes were 
hub nodes in the network (Fig.  5a), for down-regulated 
DEG targets, miR-9a-5p/139-5p/671 were hub nodes 
(Fig.  5b). Interestingly, miR-139-5p was predicted to 
suppress both SOD1 and GCLc gene expression, whilst 
miR-24-3p was predicted to suppress SOD1 and GCLc. 
Abcg1 gene, a main hub gene in the down-regulated DEG 
related MTI network, showed five miRNA regulators 
(miR-9a-5p/24-3p/139-5p/671 and let-7f-5p). The related 
GO analysis of each DEmiR with its related DEGs is 
also annotated in the MTI network. Up-regulated DEG, 
DEmiR enriched pathways include, “N” for NFE2L2 
pathway, “F” for Ferroptosis, and “C” for cellular iron ion 
homeostasis, whilst for down-regulated DEG, DEmiR 
enriched pathways include, “O” for organic hydroxy com-
pound transport, “N” for negative regulation of ERK1 
and ERK2 cascade, and “C” for cholesterol homeostasis.

The effect of PNS on oxidative stress related miRNA 
and gene expressions in INS‑1 cells
Quantitative real-time PCR (qPCR) was conducted to 
verify the expression profiles of these genes in RNA 
samples under three different concentrations of PNS. 
The results showed that most of the targets considered 
presented a consistent trend of differential gene expres-
sion induced by PNS with RNA-seq expression profiles 
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(Fig.  6c, d). Moreover, western blot further confirmed 
total superoxide dismutase 1 (SOD1), heme oxyge-
nase-1 (Hmox1) and glutamate cysteine ligase (GCLc) 
expression at protein level (Fig.  7c, d), supporting the 

hypothesis of PNS up-regulated antioxidants to amelio-
rate diabetes-induced oxidative stress.

Based on the reconstructed miRNA gene regulatory 
network (Fig. 5), we further examined their binding site 
at 3′UTR of four MTIs, miR-24-3p to GCLc and SOD1, 

Fig. 5 Predicted up and down‑regulated DEG‑related MTI network. A The annotation label “N” represents NFE2L2 pathway, “F” represents 
Ferroptosis, and “C” represents cellular iron ion homeostasis. B “O” represents organic hydroxy compound transport, “N” represents negative 
regulation of ERK1 and ERK2 cascade, and “C” represents cholesterol homeostasis. The rectangle denotes mRNA, the rhombus denotes miRNA (blue: 
down‑regulated; pink: up‑regulated). Dashed line: target prediction from 1 database. Grey line: target prediction from 2 databases. Rectangles with 
black rim: DEGs found in our highly enriched functions

Fig. 6 Effect of PNS treatment in INS‑1 cell line. A Pancreatic β cell viability test determined with CCK‑8 assay. Each point shows inhibition ratio of 
PNS on cells adjusted with control against a concentration gradient. B Cell morphology at different magnification post 24 h PNS treatment in 3 
different concentrations, low (L, 11.2 mg/mL), medium (M, 20.2 mg/mL) and high (H, 29.1 mg/mL). Cells were collected after 24 h PNS treatment for 
RNA and miRNA sequencing. C Relative quantification (RT‑qPCR) of up‑regulated DEGs and D down‑regulated DEGs transcripts. The gene encoding 
Glyceraldehyde 3‑phosphate dehydrogenase (GAPDH) was used for normalization. E RT‑qPCR of miRNA expression profiles. U6 was used for 
normalization. Each column represents the mean of three independent samples of different cell passage. * indicate significant differences between 
groups *p < 0.05; **p < 0.01
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and miR-139-5p to SOD1 and GCLc. Results suggested 
that miR-139-5p and miR-24-3p showed down-regu-
lation post PNS treatment, while miR-671 expression 
appears unstable (Fig. 6e). Their target interactions from 
dual luciferase assay confirmed the four MTIs mentioned 
before, and miR-139-5p presented a higher affinity to 
both SOD1 and GCLc genes than miR-24-3p. Show-
casing miR-139-5p as a more promising miRNA target 
(Fig. 7a, b). Functional enrichment analysis results of up- 
and down-regulated DEmiRs are shown in Additional 
file 18: Table S8.

We then drew a schematic diagram of how PNS com-
pound targets can be linked to our DEGs shown in 
Fig. 8a. Interestingly, SOD1 is not only a DEG post PNS 
treatment, it is also a predicted target protein of PNS. 
Moreover, out of three major PNS components ginse-
noside Rg1, Re and notoginsenoside R1, ginsenoside Re 
exhibited higher number of compound-target interac-
tions, proving to have greater validation value, therefore 
was chosen for further exploratinon through in vivo vali-
dation along with PNS extract.

Fig. 7 PNS regulates miR‑139‑5p and miR‑24‑3p to up‑regulate ant‑oxidation related proteins in INS‑1 cells. A The binding sites of miR‑139‑5p and 
miR‑24‑3p on WT GCLc (red), and the mutant type GCLc (blue). B The relative luciferase activity with control or miR‑139‑5p mimics or miR‑24‑3p 
mimics overexpression in GCLc and SOD1 WT or MT groups *p < 0.05; **p < 0.01. C Representative immune blots D and quantification of GCLc, 
Hmox1, and SOD1 protein expression level with control or different PNS concentration treatment in INS‑1 cells (L, 11.2 mg/mL; M, 20.2 mg/mL; and 
H, 29.1 mg/mL)
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Protective effects of PNS and ginsenoside Re in WT 
and high‑glucose model Zebrafish
In vivo findings supported our previous results in 
rat pancreatic cells, both providing evidence for the 
hypothesis that PNS could reduce oxidative stress seen 
in metabolic syndromes. Results showed that both PNS 
and ginsenoside Re lowered ROS level in either WT or 
hyperglycemic model zebrafish (Fig. 8b, d), but showed 
little effect in glucose levels (Fig. 8c). The mRNA levels 
of genes related to anti-oxidation, inflammation, insulin 
regulation and fatty acid metabolism were determined, 
including SOD1, Hmox1, GCLc, Lpl, CAV-1, Keap1 
and Nrf2. As shown in Fig.  8e, anti-oxidative genes 
were generally up-regulated under PNS treatment and 

exerted slightly stronger effects than single compound 
ginsenoside Re. A statistically significant up-regulation 
of GCLc and Hmox1 were observed in zebrafish treated 
with PNS (p < 0.01, or 0.001). Further details on in vivo 
experimental results are available in Additional file 25: 
Material and methods.

Discussion
Recent attempts to uncover new therapeutic agents from 
natural derivatives to treat insulin resistance in diabe-
tes and other metabolic disorders has been increasing. 
Chinese herbal medicine could be a plausible candidate. 
Transcriptomic data of drugs and diseases has been 
highly used to investigate treatments for the disease over 

Fig. 8 The effects of PNS on oxidative stress and glucose level in zebrafish. A PNS compound target proteins regulate anti‑oxidants through 
TXNRD1 enzyme and transcription factors including NRF2, p53, AP‑1 and NF‑kB. Hmox1, SOD1, GCLc and PRDX1, takes place in the ROS suppression 
pathway and inhibit reactive oxygen radicals and hydrogen peroxide. Green rectangles are predicted PNS compound target proteins, purple 
rectangles are enzymes, orange rectangles are transcription factors and red rectangles are DEGs from our RNA‑seq data. B Fluorescence value of 
ROS in WT zebrafish post PNS treatment. C Glucose and D ROS levels in high‑sugar model zebrafish after PNS treatment. E Real‑time qPCR results 
for selected genes involved in oxidative stress, insulin regulation and fatty acid metabolism. **p < 0.01; ***p < 0.001
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the years and studies in various herbal compounds have 
provided the base with promising results. Their active 
compounds have lowered glucose and lipid levels with 
minimal side effects compared to modern medicine. PNS 
is commonly used in Asian countries and is one of the 
major species in Panax genus. It has potential therapeu-
tic effects on many human chronic disorders including, 
arthritis, atherosclerosis, Alzheimer disease, hyperlipi-
demia and in our particular interest, oxidative stress and 
insulin resistance [39, 40]. By combining transcriptomic 
data with systems biology, we introduced the significantly 
affected mRNA and miRNA under PNS treatment and 
analyzed their cellular targets with associated signaling 
pathways. To the best of our knowledge, a handful of pre-
vious studies focused on mRNA and miRNA expression 
of PNS compounds on different disease models, but the 
evidence supporting the effect of PNS as a whole with 
the combination of experimental, transcriptomic data 
and network approach in the case of oxidative stress and 
insulin resistance is scant. Other disease models have 
shown PNS compounds with cholesterol reducing, oxida-
tive stress lowering and cardio-cerebral vascular disease 
preventing properties [41, 42]. Many studies focused on 
bioactive compounds, such as Rb1, Rg3, and Rb2, where 
Rb1 regulates glycolipid metabolism and improves insu-
lin and leptin sensitivities [11], and Rg3 increases insu-
lin secretion of INS-1 cells in high-glucose environment 
[12]. However, compound-level studies can’t represent 
the complex interaction networks of PNS function, so 
our study takes into account the entirety of the herbal 
plant to map the multi-component and multi-channel 
mechanism.

The detailed understanding of the molecular mecha-
nism remains unclear, but proves crucial for improve-
ment of disease treatment. In the present study, we 
questioned whether PNS has direct beneficial effects on 
insulin resistance and determined the relevant mRNA 
and miRNA expression profiles in PNS supplemented 
pancreatic β cell samples compared with control samples 
based on NGS. We extracted metabolic disorder related 
genes from the RNA-seq matrix. Results presented over 
half of extracted genes with a positive correlation to PNS 
dosage effect on gene expression compared to the control 
model (Additional file 5: Fig. S5). We then generated the 
biological functions, canonical pathways and miRNA-
mRNA networks related to our list of DEGs. We found 
that functional classification showed that significantly up- 
and down-regulated genes are related to three significant 
mechanisms, insulin regulation, reactive oxygen species 
(ROS) response and fatty acid metabolism (Fig. 2). Under 
PNS treatment, insulin regulation and lipid metabolism 
were mainly related to DEG down-regulation, while 

reduced ROS stress correlated with DEG up-regulation 
(Fig. 4).

PNS exposure alleviates oxidative stress response
Elevated levels of pro-oxidants and lower levels of antiox-
idants such as glutathione are primarily seen in patients 
with metabolic disorders such as diabetes. It is increas-
ingly understood that glucose metabolism is regulated by 
redox homeostasis, where the redox imbalance contrib-
utes to insulin resistance and hyperglycemia development 
[43, 44]. In this study, we found that, through pathway 
crosstalk analysis, PNS treatment suppressed oxida-
tive stress factors, by up-regulating antioxidant-related 
gene expression levels, including superoxide dismutase 
1 (SOD1), peroxiredoxin 1 (PRDX1), heme oxygenase-1 
(Hmox1) and glutamate cysteine ligase (GCLc), indicat-
ing PNS could reduce insulin resistance. However, ROS 
may vary in reactivity and molecular targets. Therefore, 
mapping ROS signals’ biological effects prove challenging 
to decode. Decreased glutathione (GSH) content in cells 
is commonly found in human diabetes, accompanied by 
increased oxidative stress and the induction of the GSH 
redox system [44, 45]. GSH redox system is an antioxi-
dant response, shown to have beneficial effects on insulin 
sensitivity, but the mechanistic link remains incompletely 
understood. Our findings reveal PNS provision up-reg-
ulated GCLc gene expression. GCLc is the rate limiting 
enzyme in GSH synthesis that directly repress ROS [46, 
47]. Interestingly, the down-regulation of miR-139-5p 
and miR-24-3p under PNS exposure both positively 
affect GCLc expression as GCLc targets is a target of 
both miRNAs (Fig.  9). In other words, PNS suppresses 
the interference of miR-139-5p and miR-24-3p on GCLc 
function, while inducing GCLc expression, further ensur-
ing the proper transformation of cysteine to GSH.

Deficiencies in antioxidant defenses against ROS 
described in diabetes included antioxidant enzyme such 
as SOD1 [48, 49], PRDX1 [50], Hmox1 [51] and antioxi-
dants, thioredoxin 1 (Txn1) [52]. SOD1 encodes for cop-
per zinc superoxide dismutase 1, this enzyme is mainly 
found in the cytosol and directly converts superoxide to 
hydrogen peroxide  (H2O2) and oxygen  (O2). Deletion of 
this enzyme results in glucose intolerance [53]. SOD1, 
GCLc, PRDX1, Txn1 are all related in the endogenous 
defense system, where SOD1 eliminates  O2.-, whereas 
PRDX1, GCLc, and Txn1 involve in the elimination of 
 H2O2 [54]. Therefore, we propose PNS exposure to rat 
pancreatic β cells positively affects insulin resistance by 
up-regulating the expression of antioxidant defense-
related genes (Fig. 9). In our study, miR-24-3p and miR-
139-5p appear to suppress the expression of SOD1 and 
GCLc, whilst PNS down-regulated both miRNAs. As a 
result, PNS suppresses the interference of miR-24-3p and 
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miR-139-5p on SOD1 and GCLc function. With these 
two positively regulated loops working together, causing 
an enhanced oxidant reducing function.

PNS exposure reduces insulin regulation and lipid 
imbalance
In gene-pathway network, two down-regulated DEGs 
were notable, first being the loss of ATP binding cas-
sette subfamily G member 1 (Abcg1), which functions in 
removing excess cholesterol, impaired insulin secretion 
both in vivo and in vitro [55]. Second, both overexpres-
sion [56, 57] and loss [58–60] of lipoprotein lipase (Lpl) 
impairs insulin secretion as Lpl serves as a “gatekeeper”. 
ETS variant transcription factor 5 (Etv5) gene, another 
major regulator of insulin secretion, is significantly 

enriched in human diabetes and obesity GWAS [61], 
and in our case, was one of the central hub genes in 
the up-regulated DEGs related MTI network shown in 
Fig.  5. MiR-24-3p/198b/671 and let-7f all targeted Etv5, 
but let-7f has been seen to induce instead of suppress 
Etv5 expression. MiR-24-3p and miR-671 both nega-
tively influenced Etv5, suggesting the down-regulation 
of miR-24-3p and miR-671 under PNS treatment were 
involved in protection against cytotoxic ROS (presented 
by reduced inhibition of GCLc and PRDX1) as well as 
lowered inhibition effect on insulin secretion [46, 62, 63].

PNS treatment down-regulated the expression of 
miR-24-3p, which induced the expression of caveolin-1 
(CAV-1). CAV-1, plays a role in insulin-receptor medi-
ated signaling, where siRNA knockdown resulted in a 

Fig. 9 PNS induced β cell autocrine signaling response. PNS regulates different genes and proteins at multiple levels. Following the uptake of 
PNS, it up‑regulates gene expression of Hmox1, SOD1, GCLc, Txn1 and PRDX (arrows) while suppressing Gab‑1 and CAV‑1 gene. Hmox1, SOD1, 
GCLc, Txn1 and PRDX, takes place in the ROS suppression pathway and inhibit reactive oxygen radicals and hydrogen peroxide. Blue rectangles 
and rhombus are suppressed DEGs and DEmiRs, respectively and orange rectangles are up‑regulated DEGs. Hmox1, heme oxygenase‑1. SOD1, 
superoxide dismutase 1. GCLc, glutamate cysteine ligase. Txn1, thioredoxin. PRDX, peroxiredoxin. Gab‑1, GRB2 associated binding protein 1. RPS6, 
ribosomal protein S6 kinase. CAV‑1, caveolin‑1
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significant increase in insulin secretion in several pan-
creatic cell lines, including INS-1 and MIN6 [64, 65]. 
GRB2-associated binding protein 1 (Gab-1), is an insulin 
receptor substrate that recruits downstream signaling 
elements that may be part of signaling pathways leading 
to cell growth, transformation, and apoptosis [66]. The 
downstream effect of Gab-1 gene suppression under PNS 
treatment is unclear. Our enrichment results didn’t show 
any further DEGs related to this gene and none of the 
DEmiRs regulated Gab-1.

Lpl is an enzyme that hydrolyzes triglycerides into fatty 
acids. Insulin stimulates Lpl expression and Lpl activity 
is lower in patients with diabetes, which in turn impair 
lipoproteins’ metabolism, leading to hyperglyceridemia 
[67]. Transgenic mice with liver-specific overexpression 
of Lpl develop liver-specific lipid accumulation and liver-
specific insulin resistance [56], and patients with condi-
tions that results in Lpl mutation (hyperlipoproteinemia 
type 1) that lower Lpl expression is prone to developing 
insulin resistance, not necessarily specific to the liver 
[57]. In our study, PNS appears to suppress Lpl. How-
ever, further research must be done to decipher the exact 
mechanism of action in regulating lipid imbalance.

An unconventional approach to deciphering protective 
functions of PNS
Multiple compounds characterize a single TCM, in 
our case, Panax notoginseng consists of over one hun-
dred compounds, details available in Additional file  20: 
Table  S10. Through, UPLC-MS/MS analysis of the PNS 
sample used in this study, we identified nine major com-
ponents of PNS including notoginsenoside R1, ginseno-
side Rb1, Rb2, Rb3, Rd, Re, Rg1, Rg2 and Rg3, marked 
on the based peak chromatogram of positive ion mode 
shown in Additional file 8: Fig. S8. Detailed data results 
and linearity plot of nine reference standards for quanti-
tation are listed in Additional file 19: Table S9, Additional 
files 9 and 10: Figs. S9 and S10. Our study aims to evalu-
ate the mechanism of PNS through an unconventional 
method based on the mixture of compounds instead of 
single compounds and results demonstrated that our PNS 
sample identified active compounds well known in PNS 
research and identified anti-oxidative mechanism as a 
main target explaining the protective effect of PNS when 
treating metabolism disorders such as insulin resistance 
as oxidative stress is a well-known cause of insulin resist-
ance. Anti-oxidative functions were also validated in ani-
mal model. With these supporting results, we reclaim 
that we are trying to elucidate the whole system not 
through a conventional means of research using single 
compounds. Instead, the use of a systems biology-based 
approach based on transcriptome profiling with experi-
mentally verified targets of these PNS active compounds, 

we can therefore figure out a mapping of how different 
compounds link to alleviating oxidative stress.

Conclusion
In summary, our research into the protective functions 
of PNS shows its’ mechanisms through multiple tar-
gets, biological processes and signaling pathways espe-
cially involving the regulation of anti-oxidation related 
genes and miRNAs. Overall, this study contributes to 
the investigation of an alternative approach in explain-
ing anti-oxidative protecting mechanisms of medicinal 
plants based on systems biology and transcriptome 
profiling where the combination of omics data with 
systems biology strategy could aid in the exploration of 
potential functions and molecular mechanisms of Chi-
nese herbal medicine.
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