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Abstract 

Background Dermatophyte caused by Trichophyton mentagrophytes is a global disease with a growing prevalence 
that is difficult to cure. Perilla frutescens (L.) Britt. is an edible and medicinal plant. Ancient books of Traditional Chi‑
nese Medicine and modern pharmacological studies have shown that it has potential anti‑fungi activity. This is the 
first study to explore the inhibitory effects of compounds from P. frutescens on Trichophyton mentagrophytes and its 
mechanism of action coupled with the antifungal activity in vitro from network pharmacology, transcriptomics and 
proteomics.

Methods Five most potential inhibitory compounds against fungi in P. frutescens was screened with network phar‑
macology. The antifungal activity of the candidates was detected by a broth microdilution method. Through in vitro 
antifungal assays screening the compound with efficacy, transcriptomics and proteomics were performed to investi‑
gate the pharmacological mechanisms of the effective compound against Trichophyton mentagrophytes. Furthermore, 
the real‑time polymerase chain reaction (PCR) was applied to verify the expression of genes.

Results The top five potential antifungal compounds in P. frutescens screened by network pharmacology are: proges‑
terone, luteolin, apigenin, ursolic acid and rosmarinic acid. In vitro antifungal assays showed that rosmarinic acid had 
a favorable inhibitory effect on fungi. The transcriptomic findings exhibited that the differentially expressed genes 
of fungus after rosmarinic acid intervention were mainly enriched in the carbon metabolism pathway, while the 
proteomic findings suggested that rosmarinic acid could inhibit the average growth of Trichophyton mentagrophytes 
by interfering with the expression of enolase in the glycolysis pathway. Comparison of real‑time PCR and transcrip‑
tomics results showed that the trends of gene expression in glycolytic, carbon metabolism and glutathione metabolic 
pathways were identical. The binding modes and interactions between rosmarinic acid and enolase were preliminary 
explored by molecular docking analysis.
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Conclusion The key findings of the present study manifested that rosmarinic acid, a medicinal compound extracted 
from P. frutescens, had pharmacological activity in inhibiting the growth of Trichophyton mentagrophytes by affecting 
its enolase expression to reduce metabolism. Rosmarinic acid is expected to be an efficacious product for prevention 
and treatment of dermatophytes.

Keywords Perilla frutescens, Rosmarinic acid, Trichophyton mentagrophytes, Transcriptomics, Proteomics, Enolase

Introduction
In recent years, an increasing number of cases of der-
matophytes have been reported, in which Trichophyton 
mentagrophytes responsible for human dermatophytosis 
such as tinea corpora, tinea cruris and tinea capitis [1–3]. 
Although many drugs like terbinafine and azoles have 
shown desirable curative effects in treating intractable 
recurrent skin tinea disease, abuse of these drugs is liable 
to produce drug-resistant fungi [4–6] like Trichophyton 
mentagrophytes, thus significantly reducing their thera-
peutic effects in clinical practice [7–9]. Another study 
manifested that Trichophyton mentagrophytes could be 
isolated from patients with beriberi [10]. In addition, 
treatment with fluconazole and other drugs contributes 
to an increase in 4β-hydroxycholesterol [11], which in 
turn negatively impacts the body.

With the development of Chinese pharmacology, an 
increasing number of natural bioactivity components 
used in combination with the commonly-used antifungal 
drugs can improve the susceptibility of dermatophytes to 
antimicrobials and even reverse drug resistance. Pharma-
cological studies have exhibited that natural compounds 
like curcumin, eugenol, magnoflorine, and geraniol 
can inhibit drug-resistant dermatophytes with differ-
ent mechanisms from the existing antifungals [12–16]. 
Therefore, the use of newly-discovered natural antifun-
gal compounds will probably mitigate the evolution of 
drug-resistant fungi, reduce the drug dose and improve 
the therapeutic efficacy in the treatment of dermato-
phytes. Perilla frutescens (L.) Britt. is an annual herb of 
the Labiatae family [17, 18]. The medicinal part is mainly 
the leaves, which have analgesic, sedative and detoxify-
ing effects. In the Northern Song Dynasty, the Taiping 
Shenghui Fang written by Wang Huaiyin recorded the 
use of P. frutescens as the main medicine, Zisu Powder, 
for the treatment of women’s beriberi. In addition, the 
Compendium of Materia Medica compiled by Li Shizhen, 
a world-renowned medical scientist in the Ming dynasty 
has recorded that P. frutescens can effectively treat diar-
rhea, abdominal distension, dermatophytosis, etc. In 
Chinese medicinals, the stems, leaves, and seeds of P. 
frutescens are commonly used as effective medicines for 
treating pain, colds, cough, nausea, poisoning, asthma 
and constipation [19]. Modern studies have shown that 
P. frutescens has anti-bacterial [20], anti-inflammatory 

[21–23], anti-cancer [24], anti-viral [25, 26], and anti-
aging effects [27]. Most of these studies have focused 
on the inhibitory effects of P. frutescens extracts on the 
common bacteria and plant fungi in daily foods [20, 28]. 
However, studies about the effects of P. frutescens extracts 
on dermatophytes, a type of fungus present on the body 
surface of animals, are rather limited [29]. Investigators 
determined the minimum inhibitory doses and mini-
mum fungicidal dose of Trichophyton mentagrophytes by 
using airtight boxes, in which P. frutescens extracts had a 
good inhibitory effect [30, 31]. Nonetheless, the potential 
mechanism of how the active ingredients of P. frutescens 
extracts inhibit the growth of dermatophytes remains 
unclear. However, the network pharmacology through 
the disease-target-drug interaction network, contributes 
to the discovery of new functions of known compounds 
[32].

Given all the setbacks above, by utilizing network phar-
macology, transcriptomics and proteomics, the present 
study aimed to screen the potential compounds from P. 
frutescens in inhibiting the growth of Trichophyton der-
matophytes and elucidating the potential molecular 
mechanisms. In this study, firstly, network pharmacology 
was utilized to screen the potential compounds and then 
performed in vitro fungal inhibition assays to verify the 
therapeutic efficacy of the potential compounds. Besides, 
transcriptomics and proteomics were adopted to explore 
the potential compounds’ targets of action, and real-time 
PCR and molecular docking analysis were used to verify 
the gene expression. This study would probably provide 
a potentially more effective treatment for Trichophyton 
mentagrophytes. The whole study was illustrated in the 
flowchart of Fig. 1.

Materials and methods
Network pharmacology analysis
Active compounds collection and targets prediction
P. frutescens was used as a keyword to search the terms 
in the Traditional Chinese Medicine Systems Pharma-
cology Database and Analysis Platform (TCMSP) [33]. 
Compounds that met the following criteria were selected 
and considered as P. frutescens active ones: drug-likeness 
(DL) ≥ 0.18 [34]. The targets corresponding to the active 
compounds were extracted as P. frutescens targets. P. 
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Fig. 1 A schematic diagram of an integrated strategy of network pharmacology, transcriptomics and proteomics for revealing the mechanism of 
compounds extracted from P. frutescens 
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frutescens and subsequent tinea targets were normalized 
in the UniProt protein database to prevent bias caused by 
different nomenclatural methods [35].

Tinea targets collection
Tinea was used as a keyword to search in the Compara-
tive Toxicogenomics Database (CTD) [36] to obtain 
tinea-related targets, and the intersection of P. frutescens 
and tinea targets was obtained by EXCEL. The Venn dia-
gram was plotted through the online website www. bioin-
formatics.com.cn.

Drug‑target‑disease network construction
Cytoscape (version 3.9.0) [37] was used to construct the 
P. frutescens-target-tinea network to visualize the com-
plex relationships between compounds, targets and 
diseases. Analysis Network of Cytoscape was used to per-
form the network characteristics analysis and to screen 
the major active compounds.

Chemicals and reagents
Progesterone, ursolic acid, apigenin, luteolin and micona-
zole (≥ 95%) were purchased from Aladdin. Rosmarinic 
acid (≥ 95%) was purchased from Shanghai Puyu Kemao 
Co., Ltd. (Shanghai, China) and Dimethyl sulfoxide 
(DMSO) (≥ 99.8%) from Shandong Yousuo Chemical 
Technology Co., Ltd. (Linyi, Shandong, China).SDS-
PAGE gel preparation kits, Prestained Protein Marker II 
(10–200  kDa), RPMI-1640, Radio Immunoprecipitation 
Assay (RIPA) lysate, Cocktail protease inhibitors, phe-
nylmethylsulfonyl fluoride (PMSF), phosphorylation pro-
tease inhibitors, bicinchoninic acid (BCA) kit, Coomassie 
brilliant blue, loading buffer, Trizol, SweScript RT II First 
Strand cDNA Synthesis Kit and 2 × SYBR Green qPCR 
Master Mix were all purchased from Servicebio (Wuhan, 
Hubei, China). Fetal Bovine Serum (FBS) was pur-
chased from Zhejiang Tianhang Biotechnology Co., Ltd. 
(Huzhou, Zhejiang, China). Potato Dextrose Agar (PDA) 
was purchased from Qingdao Hope Bio-Technology Co., 
Ltd. (Qingdao, Shandong, China) Clinical strains 1078, 
1079, 130, and 1413 were shared by Wuhan No. 1 Hospi-
tal (Wuhan, Hubei, China). Trichophyton mentagrophytes 
ATCC9533 was purchased from Shanghai Bioresource 
Collection Center (Shanghai, China).

Preparation of drug working solution and spore 
suspension
Progesterone, ursolic acid, apigenin and luteolin were 
dissolved using DMSO to make a final concentration of 
12.8 mg/mL mother solution and then filtered for steri-
lization. An appropriate amount of rosmarinic acid pow-
der was weighed and dissolved in RPMI-1640 with 10% 
FBS to make the final concentration of 8 mg/mL and then 

filtered for sterilization. Trichophyton dermatophytes 
were cultivated on PDA at 28  ºC and were periodically 
transferred at 60-day intervals for preservation, filtered 
by 8 layers of sterile gauze with an appropriate amount of 
distilled water, and counted by blood cell counting plates. 
The concentration of spore suspension was finally diluted 
to 2 ×  104 CFU/mL by adding RPMI-1640 with 10% FBS.

Determination of minimum inhibitory concentration 
and minimum bactericidal concentration
The antifungal activity of the drug was tested by the 
broth microdilution method according to Clinical and 
Laboratory Standards Institute (CLSI) M38-A2. A ster-
ile 96-well plate was taken, and 100 μL RPMI-1640 con-
taining 10% FBS was added to the well 1 of each row as a 
blank control. 200 μL of rosmarinic acid working solution 
containing spore suspension was added to well 2. 100 μL 
of spore suspension was added to wells 3–11 respectively. 
Wells 3–11 were two-fold diluted. Well 12 in each row 
did not contain drugs and was used as the growth con-
trol. The drug-sensitive plates were incubated at 28  ºC 
for 6  days under constant temperature and light. Com-
pared with the growth control, the minimum inhibitory 
concentration (MIC) was determined to be the lowest 
drug concentration where higher than 80% growth was 
inhibited. The maximum concentration of progesterone, 
ursolic acid, apigenin and luteolin were set as 128 μg/mL 
two-fold dilution, and miconazole concentration in the 
positive group was determined to be 8  μg/mL, and the 
interference was eliminated by adding DMSO of equal 
concentration in the control group, with DMSO concen-
trations ≤ 1% in all systems. The minimum bactericidal 
concentration (MBC) was determined by the plate recov-
ery method, and 100 μL liquid absorbed from the integral 
multiples MIC wells measured on the 6th day was coated 
onto PDA plates and incubated at 28 ºC for 5 days. The 
drug concentration corresponding to the colony-free 
growth plate was used as MBC. All experiments were 
performed in three biological replicates.

Transcriptomic analysis and data processing
After 4  h treatment with 1MIC rosmarinic acid, the 
mycelia of well-grown Trichophyton mentagrophytes 
were collected for transcriptomic sequencing, which was 
performed by Beijing Biomarker Technologies Co.,Ltd. 
Briefly, total RNA was extracted from the control and 
rosmarinic acid groups and its quality was detected, then 
mRNA was purified and fragmented, and finally double-
stranded cDNA was synthesized using mRNA as the 
template. RNA sequencing library was constructed by 
PCR amplification. Upon completion, library quality was 
assessed on the Agilent Bioanalyzer 2100. After quali-
fied library screening, TruSeq PE Cluster Kit v3-cBot-HS 
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(Illumia) was used to cluster index-coded samples on 
cBot Cluster Generation System. Library preparations 
were then sequenced using the Illumina Hiseq 2000 and 
paired-end reads were generated. Trinity software was 
used to assemble all reads [38], and the gene expres-
sion level of each sample was estimated by RNA-Seq by 
Expectation–Maximization (RSEM) [39]. Specific steps 
are available in Additional file  1: Method 1. Sequenc-
ing results have been uploaded to the National Center 
for Biotechnology Information, and sequence number 
PRJNA847061 provides access to all RNA-seq data.

In this experiment, the DESeq R package was used to 
analyze differentially expressed genes (DEGs) in the two 
samples. In the process of DEGs analysis, the recognized 
and effective Benjamini–Hochberg method was used 
to correct the P-value of significance obtained from the 
original hypothesis test, and the corrected P-value was 
finally adopted. False Discovery Rate (FDR) was used as 
a key indicator for DEGs screening to reduce the false 
positives caused by independent statistical hypoth-
esis testing of the expression values of numerous genes. 
In the screening process, FDR less than 0.05 and Fold 
Change (FC) greater than or equal to 2 were considered 
as the screening criteria. Here, FC represents the ratio of 
expression between two samples or groups. Functional 
annotation of DEGs was performed using eggNOG [40], 
Gene Ontology (GO, http:// www. geneo ntolo gy. org/) and 
Kyoko Encyclopedia of Genes and Genomes (KEGG, 
http:// www. genome. jp/ kegg/) databases, enrichment 
analysis used the clusterProfiler R package [41], the heat 
map and volcano plot used gplots and ggplot2 R package 
respectively.

Proteomic analysis and data processing
Rosmarinic acid working solution was added to the 5-day 
cultured Trichophyton mentagrophytes solution to adjust 
the concentration to 1 MIC, and RPMI-1640 contain-
ing 10% FBS was used as the control. The samples were 
incubated at 28  ºC for 4  h with constant temperature 
shock, then centrifuged at 5000 × g for 15 min. After the 
supernatant was discarded, the samples were washed 
with ultrapure water 3 times. RIPA lysate containing, 
coupled with its instructions specified Cocktail protease 
inhibitors, PMSF and phosphorylation protease inhibi-
tors were then added, and the samples were centrifuged 
at 12,000 × g for 15 min after shaking for 10 min on ice. 
After BCA kit was used for protein quantification, the 
lowest protein concentration sample was used as the ref-
erence to adjust the protein concentration of each sam-
ple, and bovine serum protein was used as the standard. 
After adding loading buffer, the samples were boiled in 

water bath for 5 min, followed by SDS-PAGE of 8% sepa-
ration glue and 5% concentration glue. Finally, Coomassie 
brilliant blue was used for staining after electrophoresis.

Strip sequencing was performed by Biotree Biotech 
Co.,Ltd. (Shanghai, China). In brief, the bands on SDS-
PAGE were cut off, decolorized and dehydrated, and the 
polypeptide chains were extracted after trypsin digestion, 
dried and desalted by C18 column, and then analyzed by 
nanoLC-MS/MS. The off-machine data were searched 
and analyzed by Proteome Discoverer (version 2.4.0.305, 
Thermo Fisher Scientific) and the built-in Sequest HT 
search engine. After the abundance was normalized, dif-
ferential expression was calculated, and clusterProfiler 
and ggplot2 R package were used for enrichment analy-
sis and mapping. Details are available in Additional file 1: 
Method 2.

Quantitative real‑time PCR assays
The well-grown Trichophyton mentagrophytes were 
treated with 1 MIC rosmarinic acid for 4  h to collect 
mycelia. After grinding with liquid nitrogen, the RNA 
samples were extracted using Trizol. SweScript RT II 
First Strand cDNA Synthesis Kit was used to reverse 
transcribe RNA to obtain cDNA. Amplification was 
performed using 2 × SYBR Green qPCR Master Mix on 
qTower 3G Real-time PCR Instrument (Analytik Jena, 
Germany). PCR reaction conditions were as follows: 40 
cycles of predenaturation at 95 ºC for 30 s, denaturation 
at 95 ºC for 15 s, annealing at 65 ºC for 30 s, and exten-
sion at 72 ºC for 30 s. 18S RNA gene was used as refer-
ence, and the differential expression levels of target genes 
and reference genes were calculated by  2(−ΔΔCt) method. 
All primer sequences used in this experiment are avail-
able in Additional file 1: Table S1.

Molecular Docking Studies
Virtual molecular docking was employed to analyze the 
potential binding modes of enolase and rosmarinic acid 
(Fig.  2C). Four recognized enolase inhibitors were used 
for comparison [42–45]. All compound structures were 
obtained from the PubChem database (https:// pubch em. 
ncbi. nlm. nih. gov/). AP-III-a4 is nonsubstrate analog that 
directly binds to enolase and inhibits its activity. Hex and 
D-(-)-3-Phosphoglyceric acid disodium are substrate-
competitive enolase inhibitors and POMHEX increases 
the permeability of HEX into cells and tissue. The crystal 
structure of enolase was downloaded from the Uniport, 
which was selected and saved as pdb format. The ligand 
and receptor were split by Pymol. Autodock Tools 1.5.7 
was used to transform pdb to pdbqt format files with 
gird boxes adjusted to cover the entire pocket for the 

http://www.geneontology.org/
http://www.genome.jp/kegg/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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preparation of virtual docking. The structures of chemi-
cals were collected from Pubchem as sdf format and 
transformed into pdbqt format [46]. Autodock vina 1.2.0 
was used to simulate the potential interactions among 
the selected compounds and the targets [47].

Statistical analysis
The data were analyzed using GraphPad Prism statisti-
cal software. All results are presented as mean ± SEM 
deviation. One-way analysis of variance was performed 
between multiple groups when the homogeneity of vari-
ance and normality were met. P < 0.05 was considered 
statistically significant.

Results
Screening of P. frutescens active ingredients and targets 
and establishment of the drug‑target‑disease network
328 P. frutescens compounds were screened from TCMSP. 
Twenty-nine active compounds were screened by DL 
parameters (Additional file 1: Table S2). The targets cor-
responding to the active compounds were extracted and 
entered into EXCEL, with removed duplicate entries, 253 
P. frutescens targets were obtained after merging.

A total of 1,262 Tinea targets were collected through 
the CTD database, and several different Tinea dis-
eases were obtained by Tiena search (Additional file  1: 
Table  S3). A total of 99 related targets were obtained 
through the mapping of P. frutescens and Tinea targets. 

Fig. 2 Venn diagram and P. frutescens‑Target‑Tinea network. A Green circles indicate all targets of P. frutescens action; blue circles indicate all targets 
of tinea disease action; the intersection of the two circles is the overlapping targets. B Green circles represent compounds from P. frutescens; blue 
triangles indicate disease targets; yellow quadrilaterals indicate tinea disease. C Molecular structural formula of rosmarinic acid (PubChem CID: 
5281792)
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Intersection of P. frutescens and Tinea targets was then 
plotted into the Venn diagram (Fig. 2A).

In the P. frutescens-target-Tinea network (Fig. 2B), the 
Degree of a single target is the number of the connected 
nodes. The network analysis was made by the Cytoscape, 
and the active compounds were sorted by Degree. The 
top 5 active compounds, namely, progesterone, luteolin, 
apigenin, ursolic acid and rosmarinic acid were listed by 
Betweenness Centrality, Closeness Centrality and Degree 
(Additional file 1: Table S4).

Antifungi activity analysis
In this experiment, MIC refers to the drug concentra-
tion at which the growth rate after drug treatment was 
less than 20% of the blank group. The inhibitory effect of 
luteolin on Trichophyton dermatophytes was shown in 
Fig.  3A, which revealed no significant inhibitory effect 
on all five experimental fungi. Ursolic acid and apigenin 
demonstrated similar inhibitory effects on Trichophyton 
dermatophytes (Fig.  3B, C). With increasing concentra-
tions, the growth rate of 130 and 1413 slowed down but 
had no significant inhibitory effect. The inhibitory effect 
of progesterone on the experimental fungi was shown 
in Fig.  4, with MIC values of 32  μg/mL for 1078, 1079, 
130 and 1413 and 64  μg/mL for ATCC 9533 in a dose-
dependent manner (Fig.  4A, B). It was considered that 
the drug concentration for no colony growthte incuba-
tion, it was found that colonies still grew on the plate, 
indicating that progesterone could only inhibit fungal 
growth, but had no bactericidal activity. The inhibitory 
effect of rosmarinic acid on the experimental fungi was 
shown in Fig. 5 in a dose-dependent manner, with MIC 
values of 1000 μg/mL for 1078 and 1079, 125 μg/mL for 
130  μg/mL and 250  μg/mL for 1413 (Fig.  5A, B). MBC 
values of 2000  μg/mL for rosmarinic acid against 1078 
and 1079, 250  μg/mL for 130 and 250  μg/mL for 1413 
were observed after plate incubation (Fig. 5C).  

Transcriptomic analysis
To explore the inhibitory mechanism of Trichophyton 
mentagrophytes by rosmarinic acid, RNA-seq was used to 
identify differential mRNA expression. The base quality 
values measured by Illumina sequencing platform were 
expressed as Phred scores (Additional file 1: Fig. S1 and 
Table S5). The quality score of reads was Q30 (base rec-
ognition accuracy ≥ 99.9%) and the error rate of single 
base sequencing was < 0.1% (Additional file 1: Table S6). 
Since the first few bases at the 5’ end of the reads were 
random primer sequences with some bias, there was a 
significant fluctuation in the front end of the base dis-
tribution map (Additional file  1: Fig. S2)0.15,946 Uni-
gene and 38,006 transcripts were obtained using Trinity 
assembly (Additional file 1: Fig. S3 and Table S7). A total 

of 32,798 annotated transcripts were obtained by com-
paring transcripts with eggNOG database using the egg-
NOG-Mapper tool (Additional file 1: Table S8). The reads 
obtained by sequencing were compared with Unigene 
library with Bowtie. Based on the comparison results, 
RSEM was used to estimate the expression level, and 
the expression abundance of the corresponding Unigene 
was represented by the trimmed mean of M values value 
(Additional file 1: Fig. S4, S5).

There were significant differences in gene expres-
sion between the control group and the rosmarinic acid 
treatment group. The genes were clustered according to 
the same or similar expression patterns (Fig. 6A), where 
the color-key abscissa bar indicates the multiple differ-
ence of the normalized genes and the larger absolute 
value indicates the more obvious differential expression. 
The ordinate represents the density of differential gene 
enrichment in the corresponding value and the trend 
line in the heat map represents the degree of gene devia-
tion from the median value. The volcano plot showed the 
differential gene expression versus priority, where each 
point represents a gene, and the negative value of the log-
arithm of the difference Fold (horizontal coordinate:  log2 
Fold Change) indicates a decrease of gene expression, 
while the positive number indicates an increase (Fig. 6B 
and Additional file 1: Table S9). The larger logarithm of 
error incidence (vertical coordinate:  log10 FDR) indicates 
higher confidence in the results.

DEGs were mapped to the GO database. The enrich-
ment results of DEGs were obtained from Biological 
Process (BP), Cellular Component (CC), and Molecular 
Function (MF) of GO terms (Fig.  7A). There were 110 
statistically significant GO terms, including 83 BP terms, 
7 CC terms and 20 MF terms. DEGs in BP were mainly 
enriched in detoxification, cell modified amino acid 
metabolism and glutathione metabolism; DEGs in CC 
were mainly enriched in plasma membrane, mitochon-
drial nuclear mass and integral components of mitochon-
drial tricarboxylic acid cycle enzyme complex; DEGs in 
MF were mainly enriched in oxidoreductase activity, 
cation transmembrane transporter activity and proton 
transmembrane transporter activity.

The topGO R package was used to rank the pathways 
to visualize the GO nodes and their hierarchical rela-
tionships for differential gene enrichment. The most 
significant nodes were the hexose catabolic process, 
siderophore metabolic process, and iron assimilation 
under the homeostatic process. Based on the directed 
acyclic graph of CC, the most significant DEGs enrich-
ment nodes were found in mitochondrial nucleocapsid 
and plasma membrane components. The directed acy-
clic graph of MF showed that the main enriched nodes of 
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Fig. 3 Inhibitory effects of luteolin, apigenin, and ursolic acid on Trichophyton dermatophytes. A Growth curve and inhibition rate of 
dermatophytes under the action of luteolin. B Growth curve and inhibition rate of Trichophyton dermatophytes under the act of apigenin. C Growth 
curve and inhibition rate of Trichophyton dermatophytes under the action of ursolic acid. Data were shown as mean ± SEM (n = 3)
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Fig. 4 Inhibitory effect of progesterone on Trichophyton dermatophytes. A Growth curve, with an increase of progesterone concentration, the fungal growth 
was gradually inhibited. B Inhibition rate, the ratio of each concentration of progesterone treatment group to control group on the sixth day. C Fungal growth 
on the plate after six days by each concentration of progesterone treatment, there is no significant difference in the fungicidal effect after the increase of 
progesterone concentration. Data were shown as mean ± SEM (n = 3)
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Fig. 5 Inhibitory effect of rosmarinic acid on Trichophyton dermatophytes. A Growth curve, with increasing concentration of rosmarinic acid, the 
growth of the fungi was gradually inhibited. B Inhibition rate, the ratio of each concentration of rosmarinic acid treatment group to the control 
group on the sixth day. C Fungal activity after six days of growth on the plates treated with each concentration of the drug, with increasing 
concentrations of rosmarinic acid, its fungicidal activity gradually increased. Data were shown as mean ± SEM (n = 3)
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DEGs were oxidoreductase activity and transmembrane 
transporter activity (Fig. 7B–D).

Figure  8A showed the top 10 pathways of KEGG 
pathway terms, most of which were related to metabo-
lisms, such as the metabolisms of Glutathione, cysteine, 
methionine, amino sugar, nucleotide sugar, starch and 
sucrose. The significantly enriched metabolic pathways in 
KEGG were selected and analyzed by Gene Set Enrich-
ment Analysis. The results exhibited that the expression 
of genes enriched in glutathione metabolic pathway in 
the blank group was higher than that in the rosmarinic 
acid treatment group, while the expression levels of genes 
enriched in other metabolic pathways, such as amino 
acid sugar and nucleotide sugar metabolism, biosynthesis 
of secondary metabolites and carbohydrate metabolism, 
were lower in the blank group than in the rosmarinic acid 
treatment group (Fig. 8B).

Proteomic analysis
A large number of protein bands were found to disappear 
or appear around 75  kDa, 55  kDa, 42  kDa, and 30  kDa 
after treatment with rosmarinic acid compared to the 
control group by SDS-PAGE electrophoresis (Fig.  9A), 
which was possibly related to the inhibition of fungal 
growth caused by the increased or decreased expres-
sion of these proteins. SDS-PAGE subjected to qualita-
tive proteomic assays further clarifies the mechanism of 

rosmarinic acid action. 17 of all 35 proteins were iden-
tified as differentially expressed, including 4 down-regu-
lated proteins and 13 up-regulated ones (Fig. 9B).

The GO and KEGG pathway analysis were then used 
to further investigate the mechanism of rosmarinic acid 
against Trichophyton mentagrophytes (fold change ≥ 2 
and P < 0.05). There were 221 statistically significant GO 
terms in Fig.  9C, including 190 BP terms, 20 CC terms 
and 11 MF terms. Differential proteins in BP were mainly 
enriched in glucose catabolism, NADH regeneration, 
fructose-6-phosphate glycolysis and glucose-6-phos-
phate glycolysis; differential proteins in CC were mainly 
enriched in fungal cell wall, cell wall, outer envelope 
structure and extracellular region; the differential pro-
teins in MF were mainly enriched in glyceraldehyde-
3-phosphate dehydrogenase (NAD +) (phosphorylation) 
activity, glyceraldehyde-3-phosphate dehydrogenase 
(NAD (P) +) (phosphorylation) activity and promoter 
specific chromatin binding and oxidoreductase activity.

Among the top 10 pathways of KEGG pathway terms 
(Fig. 9D), the glycolysis/glucose production pathway was 
highlighted. The significantly down-regulated differen-
tially expressed protein X5CH36 in Additional file  1: 
Table S10 was shown on Uniport as triglyceride 2-phos-
phodehydrase, another name for enolase.

Fig. 6 Screening of differentially expressed genes. A Cluster heat map of differentially expressed genes; CT1, CT2 and CT3 denote the three 
groups of normally growing ATCC 9533; RA1, RA2 and RA3 denote the three groups of ATCC 9533 using rosmarinic acid intervention. B The volcano 
plot was obtained by DESeq2 computational differential expression analysis of the control and rosmarinic acid treatment group with 105 genes 
up‑regulated in expression (red) and 155 genes down‑regulated in expression (green)
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Fig. 7 GO enrichment. A Biological process, cellular component and molecular function enrichment results. B BP‑directed acyclic graph. C 
CC‑directed acyclic graph. D MF‑directed acyclic graph
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Real‑time PCR verification results
Comparison of real-time PCR and transcriptomics 
results showed that the expression trends of genes in gly-
colytic, carbon metabolism and glutathione metabolic 
pathways were identical (Fig. 10). Real-time PCR results 
of genes in the rosmarinic acid treatment group showed 
significant low or high fold changes compared with 
the control group, although no significant differences 
between these groups were observed in some transcrip-
tomics results (Fig.  10). Therefore, the transcriptomics 
results can be considered reliable.

Molecular docking studies
Molecular docking was used to explore the possible 
binding sites and modes of action between enolase and 
the active compounds including AP-III-a4, Hex, D-(-)-
3-Phosphoglyceric acid disodium, POMHEX and ros-
marinic acid. As shown in Table 1, the binding energies 
of Hex, POMHEX and Rosmarinic acid with enolase 
were all less than −  5.0  kcal/mol, indicating their good 
binding affinity with enolase. Moreover, rosmarinic acid 
showed better binding affinity than AP-III-a4, Hex, D-(-
)-3-Phosphoglyceric acid disodium and POMHEX. The 
3D and 2D interaction diagrams of the compounds with 
enolase were shown in Fig. 11.

Discussion
Although many drugs are clinically available to treat der-
matophytes, the emergence of drug-resistant fungi has 
reduced efficacy of existing drugs and even caused recur-
rent skin tinea disease. This may be caused by the mas-
sive abuse of existing drugs, or related to the fact that 
mutations in genes in the ergosterol pathway cause their 
resistance [8]. Therefore, it is necessary to discover more 
effective compounds from Traditional Chinese medicine 
to provide new treatment protocols. However, the com-
plex composition of Traditional Chinese medicine makes 
it challenging to discover such effective compounds. 
With the rapid development of genomic technologies 
such as genomics, transcriptomics, proteomics and 
metabolomics, it has become possible to elucidate com-
plex biological phenomena and obtain large amounts of 
genetic data, which can help explore natural compounds 
from Traditional Chinese medicine in treating dermato-
phytes [48]. In this study, the TCMSP database was used 
to screen potentially active compounds and transcrip-
tomics and proteomics to make predictions about the 
inhibitory mechanisms of Trichophyton mentagrophytes 
growth.

P. frutescens is a medicinal and edible plant widely 
distributed in subtropical regions. P. frutescens is used 

Fig. 8 KEGG and GESA enrichment. A Top 10 KEGG enrichment pathways. B GESA analysis of critical pathways
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as a medicine in China, Japan and Southeast Asian 
countries due to its significant medicinal functions 
and minor adverse effects. Rosmarinic acid is the most 
abundant bioactive polyphenolic component of P. frute-
scens leaves [49]. The important effects of rosmarinic 
acid and its derivatives on human health have been 
demonstrated in quite several in  vitro/in vivo phar-
maceutical and clinical studies. In recent years, the 

biological activity of rosmarinic acid has drawn wide-
spread attention from the academic community, as it 
doesn’t merely inhibit the growth of methicillin-resist-
ant Staphylococcus aureus, but also the growth of other 
drug-resistant fungi through its combined use with 
antibiotics. Besides, studies have also exhibited that 
rosmarinic acid has certain inhibitory effects on some 
fungi [28]. This study found that rosmarinic acid from 

Fig. 9 Proteomic results. A Total fungal protein SDS‑PAGE. Lanes 1, 3, 5, 7, 9 are 1078, 1079, 130, 1413, and ATCC 9533 in the control group; lanes 
2, 4, 6, 8, 10 are 1078, 1079, 130, 1413, and ATCC 9533 treated with 1MIC rosmarinic acid in the treatment group. B Volcano plot. Expression of 
13 proteins is up‑regulated (red), and Expression of 4 proteins is down‑regulated (green). C BP, CC and MF in GO enrichment. D KEGG pathway 
enrichment
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P. frutescens could inhibit the average growth of Tricho-
phyton mentagrophytes by affecting their metabolism.

Inhibition assays in vitro are commonly used to assess 
the ability of drugs of inhibiting microorganisms. In line 
with other studies, MIC and MBC are the main param-
eters for evaluating the antimicrobial ability of drugs 
[50]. In this study, among five compounds screened by 
network pharmacology: progesterone, luteolin, apigenin, 
ursolic acid and rosmarinic acid, only progesterone 

and rosmarinic acid exhibited desired antifungal abil-
ity in  vitro. The results of MIC and spot test indicated 
that progesterone has a lower MIC but no MBC (Fig. 4), 
which is consistent with the previous study[51]. However, 
the rosmarinic acid could not only inhibit the growth of 
Trichophyton mentagrophytes, which is one of filamen-
tous fungi, in a dose-dependent manner, but also killed it 
at a concentration of 2MIC (Fig. 5). The previous studies 
indicated the rosmarinic acid could play a significant role 

Fig. 10 Real‑time PCR. A The DN705_c0_g1_i2 gene. B The DN572_c3_g1_i1 gene. C The DN7_c4_g1_i8 gene. D The DN19_c5_g4_i2 gene. E The 
DN2177_c0_g1_i1 gene. F The DN884_c0_g1_i4 gene. G The DN494_c5_g1_i2 gene. Significant differences were found between the treatment 
group and the control group. Data were shown as mean ± SEM (n = 3). *P < 0.05, **P < 0.01, ****P < 0.0001
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in inhibiting the growth of filamentous fungi, and fila-
mentous fungi treated with high concentrations of ros-
marinic acid cannot grow on nutrient-rich plates [28]. It 
is consistent with the results of the study.

At present, commercially available antifungal drugs 
usually work by interfering with ergosterol synthesis, 
formation of water channels by ergosterol binding on 
cell membranes to interfere with cell wall synthesis and 
interference with nucleic acid replication [52]. How-
ever, the recent emergence of drug-resistant fungi in 
the world is mainly due to mutations in the squalene 
epoxidase gene and squalene epoxidase is a key link 
in the ergosterol synthesis pathway [7–9]. Therefore, 
there are significant implications in the antifungal field 
by developing a new pathway. As we all known, there 
was no report of antifungal drugs through affecting 
enolase expression. However, the proteomic results 
in this study indicated that the expression of enolase 
significantly decreased while Trichophyton mentagro-
phytes treated with rosmarinic acid (Fig. 9). There were 
studies shown that inhibition of enolase could have sig-
nificant effects on cell growth [53]. Enolase is a key gly-
colytic metalloenzyme involved in carbon metabolism 
and is mainly responsible for the key step of catalyzing 
the conversion of 2-phosphoglycerate (2-PG) to phos-
phoenolpyruvate (PEP) in glycolysis, which provides 
substrate support for subsequent oxidative phospho-
rylation and is an important protein in glycolysis [54]. 
Most of the substrates they react to are carbohydrates 
or their derivatives, such as glycolic acid and amino 
acid [55]. In addition, the activation of the mitogen-
activated protein kinase MAPK pathway could increase 
the expression of enolase [56]. The results of this study 
showed that there were 52 transcripts enriched in the 
MAPK pathway, and they were highly expressed in the 
rosmarinic acid treatment group (Fig. 8B). These results 
suggested rosmarinic acid could decrease the expres-
sion of enolase by blocking the upstream pathway 

of enolase synthesis. Related results were shown in 
Table S10 in Additional file 1.

Enolase serves as a prototype for metalloenzymes 
with labile metal ions that play a key role in catalytic 
turnover [57]. In the present study, the molecular 
docking results suggested that rosmarinic acid and 
the substrate-competitive inhibitor of enolase Hex 
and POMHEX could bind with the Magnesium ion in 
enolase via metal-acceptor interaction (Fig.  11). The 
reported studies have showed that the amino acid resi-
dues GLU211, LYS345, HIS159, GLU168 and ASP246 
could be potential binding sites of the substrate 2-PG 
and enolase [57, 58]. Meanwhile, in the present study, 
the hydrogen bond interaction formed the rosmarinic 
acid and HIS159 residue. The bond of the GLU168, 
ASP246 and ASP323 residue with the benzene ring of 
rosmarinic acid was affected by Pi-anion and Pi-cation 
interaction. The hydrogen bond interaction formed 
the Hex and the GLU211 residue. And the bond of the 
HIS159 residue with the Hex and POMHEX were all 
affected by Pi-Alkyl interaction (Table 1). These results 
suggested that rosmarinic acid could be a substrate-
competitive inhibitor of enolase.

Conclusion
The findings of this study demonstrated that rosmarinic 
acid has a certain degree of inhibition and lethal effect 
on the growth of Trichophyton mentagrophytes. And the 
preliminary mechanisms exploration indicated that the 
rosmarinic acid might affect the normal metabolism and 
glycolysis of Trichophyton mentagrophytes by inhibit-
ing the expression of enolase, resulting in an insufficient 
intracellular supply of energy to fungi, thus inhibiting the 
growth of Trichophyton mentagrophytes due to insuf-
ficient energy supply for normal physiological activities 
(Fig. 12). This provided more extensive research ideas for 
the development of antifungal drugs.

Table 1 Molecular docking results of enolase and the compounds

Compounds Binding 
Energy (kcal/
mol)

Hydrogen Bonds Other Amino Acid Residues Metal ion

AP‑III‑a4 23.01 GLY42, HIS159, GLN167, GLU297, ASP322, ASP323,SER377 GLU168, ALA248, LYS398,  Mg2+ –

Hex − 5.88 GLN167, GLU211, ASP322, LYS347, HIS375, ARG376,SER377,LYS398 HIS159‑ Mg2+

D‑(‑)‑3‑Phos‑
phoglyceric acid 
disodium

− 3.2 ARG15, SER37, SER40, GLN167, LYS347, ARG376,SER377 – –

POMHEX − 5.88 GLN167, ASP298, LYS347, ARG376, SER377 HIS159, HIS375, ASP322, LYS398 Mg2+

Rosmarinic acid − 6.75 HIS159, ALA248, SER250, GLU297, ASP298, ASP322, LYS347, 
SER374, ARG376, SER377

GLU168, ASP246, ASP323 Mg2+
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Fig. 11 Binding modes and interactions. A AP‑III‑a4. B Hex. C D‑(‑)‑3‑Phosphoglyceric acid disodium. D POMHEX. E Rosmarinic acid
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