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Abstract 

Background Dysregulation of gut microbiota–host bile acid (BA) co-metabolism is a critical pathogenic factor 
of diarrhea-predominant irritable bowel syndrome (IBS-D). Traditional Chinese Medicine (TCM), instructed by pattern 
differentiation, is effective in treating IBS-D, in which liver depression and spleen deficiency (LDSD) is the most preva-
lent pattern. Still, it is unclear the linkage between the LDSD pattern and the BA metabolic phenotype.

Purpose This study aimed to uncover the biological basis of the LDSD pattern from the BA metabolic perspective.

Methods Patients with IBS-D completed questionnaires regarding the irritable bowel severity scoring system (IBS-
SSS), stool frequency, Stool Bristol scale, and Self-Rating Scales of mental health. Fasting blood and morning feces 
were collected to analyze the gut metagenome and BA-related indices/metabolites.

Results IBS-D patients with LDSD had a higher incidence of BA overexcretion (41% vs. 23% non-LDSD) with signifi-
cant elevations in fecal total BAs and serum BA precursor 7α-hydroxy-4-cholesten-3-one levels. Compared to con-
trols or non-LDSD patients, LDSD patients had a featured fecal BA profile, with higher proportions of deoxycholic 
acid (DCA), 7-ketodeoxycholic acid, and lithocholic acid. It is consistent with the BA-metabolizing genomic changes 
in the LDSD gut microbiota characterized by overabundances of 7-dehydroxylating bacteria and BA-inducible 
genes (baiCD/E/H). The score of bowel symptoms (stool frequency and abdominal pain) showing greater sever-
ity in the LDSD pattern were positively correlated with bai-expressing bacterial abundances and fecal DCA levels 
separately.

Conclusion We clarified a differed BA metabolic phenotype in IBS patients with LDSD, which closely correlates 
with the severity of bowel symptoms. It demonstrates that gut microbiota and host co-metabolism of BAs would 
provide crucial insight into the biology of the LDSD pattern and its internal relationship with IBS progression.
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Introduction
Irritable bowel syndrome (IBS) characterized by 
abdominal pain and altered stool habits is one of the 
functional gastrointestinal disorders (FGIDs), affect-
ing 11% of the global population and 6% of the Chi-
nese population [1]. IBS is grouped into four subtypes, 
including diarrhea-predominant IBS (IBS-D), consti-
pation-predominant IBS (IBS-C), mixed IBS (IBS-M), 
and un-subtyped IBS (IBS-U), among which IBS-D 
is more prevalent in China [2]. As a result of complex 
etiologies and incompletely understood pathogeneses, 
mainstream medications are symptom-focused and 
generally have unsatisfactory efficacy [3, 4]. There is an 
increasing demand for alternative medicine in treating 
IBS.

Herbal medicine is a frequently chosen alternative 
approach for the Chinese population. Cohort studies 
have reported that herbal formulas instructed by Tradi-
tional Chinese Medicine (TCM) pattern differentiation 
are substantially effective in relieving global bowel symp-
toms of IBS-D, diarrhea, and abdominal pain/distention 
[5–7]. Liver Depression and Spleen Deficiency (LDSD) is 
the most general TCM pattern in IBS-D; herbal formulas 
with liver-soothing and spleen-strengthening properties 
(e.g., Tong-Xie-Yao-Fang and Xiao-Yao-San) are widely 
applied to treat IBS-D [8, 9]. Nevertheless, the biologi-
cal foundation of the LDSD pattern is yet to be clarified, 
which restricts the development of pharmacology and 
clinical application of liver-soothing and spleen-strength-
ening herbal medication.

IBS-D can be triggered by multiple external and inter-
nal factors, which include an excess of irritants, e.g., bile 
acids (BAs), exposure in the colon [10, 11]. BA overex-
cretion was reported to affect around 30% of IBS-D 
patients, who exhibit more severe bowel dysfunction, 
poorer quality of life, and a higher depression score than 
those with normal BA excretion [12]. Excessive BA excre-
tion in IBS-D has been thought to be caused by increased 
hepatic BA synthesis (marked by a higher level of serum 
BA synthetic intermediate 7α-hydroxy-4-cholesten-3-
one) [13–15]. We further uncovered that the Clostridia-
rich gut microbiota also contribute to intraluminal BA 
metabolic disturbance and thus suppress intestinal BA 
feedback control of BA synthesis, leading to diarrhea 
[16]. Hence, the dysregulated gut microbiota–host BA 
metabolism is a critical promotor of IBS-D. Given that 
the BA pool has been reported to be changed in specific 
TCM patterns of GI diseases [17–19], we suppose that 
the BA metabolic phenotype should be altered with the 
LDSD pattern of IBS-D.

This study enrolled 221 IBS-D patients with the LDSD 
or non-LDSD pattern and 80 matched healthy controls. 
Serum BA indices, fecal BA, and fecal microbiota profiles 

were individually tested to obtain LDSD-related BA met-
abolic phenotype.

Materials and methods
Subject recruitment and pattern differentiation
Adults (18–65  years) meeting the Rome IV criteria for 
IBS-D [20, 21] were recruited at Chinese medicine clin-
ics affiliated with the School of Chinese Medicine, Hong 
Kong Baptist University. By referring to the TCM pattern 
differentiation criteria previously published [22], each 
patient was grouped into LDSD or non-LDSD (includ-
ing spleen-stomach heat-dampness, spleen-kidney yang 
deficiency and spleen deficiency with dampness) based 
on the phenotypes of tongue coating, and the conditions 
of defecation, fatigue, cold-fearing and emotion. Addi-
tional age-and sex-matched healthy volunteers without 
gastrointestinal diseases, BA-related diseases (e.g., meta-
bolic diseases, cardiovascular diseases, psychiatric illness 
and neurodegenerative diseases) and no surgical histories 
of gallbladder removal, GI tract, and cerebral cranium 
were recruited. This study was approved by the Ethics 
Committee on the Use of Human & Animal Subjects in 
Teaching & Research of HKBU (Approval no. HASC/15-
16/0300 and HASC/16-17/0027), and all recruits signed 
the written consent form.

Participants meeting the above recruitment criteria 
were required to complete questionnaires related to IBS-
SSS, daily defecation frequency, Bristol Stool Scale, Self-
Rating Depression Scale (SDS) and Self-Rating Anxiety 
Scale (SAS) when the interview with physicians before 
sampling. The IBS-SSS score was obtained from a 5-item 
questionnaire measuring the frequency and intensity of 
abdominal pain, the severity of abdominal distension, 
dissatisfaction with bowel habits, and the interference 
of IBS with daily life [23]. The 20-item questionnaires of 
SAS or SDS developed by Zung et al. [24, 25] were used 
to evaluate the severity of anxiety or depression, in which 
the SAS score cut-off value is 50 and the SDS score cut-
off value is 53.

Each participant was instructed to provide fasting 
blood samples and morning first feces once (between 
6:00 a.m. and 9 a.m.), required to stop using antibiotics, 
probiotics, prebiotics and other microbiota-related sup-
plements at least 1 month before sampling. In order to 
minimize the extra- and intra-individual variation in the 
stool sampling and BA quantification, all participants 
were asked to collect the mid-section part of the stool, 
and each stool sample was fully stirred by technicians 
before preparing BA extracts.

Determination of serum BA‑related indices
Serum total BAs and fibroblast growth factor 19 (FGF19) 
were determined by commercial Assay Kit (Thermo 
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scientific, Waltham, MA, USA). Serum 7α-hydroxy-
4-cholesten-3-one (C4) was tested based on the liquid 
chromatography coupled with mass spectrum (LC/MS) 
as our previously described [16].

LC/MS‑based quantification of fecal BA metabolites
A total of 36 BA standards were purchased from Sigma-
Aldrich (St. Louis, MO, USA) and Santa Cruz Bio-
technology (Santa Cruz, CA, USA). The isotopic BA 
deoxycholic acid-2,2,4,4-d4 (DCA-d4) was used as 
internal standard and was obtained from CDN isotopes 
(Pointe-Claire, Quebec, Canada). HPLC grade organic 
reagents for mass spectrometric analysis were purchased 
from Sigma-Aldrich (St. Louis, MO, USA). BA stand-
ards were dissolved in methanol as a stock solution with 
a concentration of 5 mg/ml. A mixed stock solution was 
prepared by mixing individual standard stock solution. 
The standard curves and regression coefficients were 
gained based on IS adjustment. The signals of each BA 
metabolites were found in individual measured ranges.

As previously described [16], the fecal sample weighted 
100  mg was homogenized with tenfold volume of cold 
water and then extracted again with another tenfold 
volume of cold methanol. Supernatants from the two 
extracts were combined and centrifugated for further 
BA quantification analysis. fecal BAs were quantified 
by an LC/MS analytic platform (Agilent UHPLC 1290 
and Agilent QQQ-MS 6438, USA) with a single 26-min 
acquisition with positive/negative ion switching method 
under multiple reaction monitoring mode. Sample injec-
tion and flow rate were set at 2  μl and 0.35  ml/min for 
each sample, respectively. Bile acid metabolites were 
separated using an ACQUITY BEH C18 column (1.7 μm, 
100 mm × 2.1 mm) with a linear gradient of 0.1% formic 
acid (FA) in water (A) and 0.1% FA in acetonitrile (B). The 
gradient program was: 25% to 40% B for the first 6 min, 
40% to 70% B for 14 min, 70% to 100% B for 0.1 min, held 
at 100% B for 2.9 min, then re-equilibration at 25% B for 
0.1 min, and held at 25% B for 2.9 min. The column tem-
perature was maintained at 45 °C. The capillary voltage of 
mass spectrometer was 3.5 kV and 4 kV in positive and 
negative modes. The acquisition data was analyzed using 
Agilent MassHunter Workstation Software for peak inte-
gration, calibration equations and quantification of indi-
vidual BAs. Fecal total BA levels of included subjects 
were obtained by accumulation of all testing BAs.

Fecal metagenomic sequencing
Microbial DNA was extracted from morning stools 
(200  mg) with the QIAamp DNA Stool Mini Kit (Qia-
gen, Hilden, Germany) according to the manufactures’ 
instructions. The DNA library was established using a 
TruSeq DNA HT Sample Prep Kit and sequenced by 

the Illumina Hiseq 2000 at BGI-Shenzhen. By removing 
low quality bases and human genome, the high-quality 
sequences were mapped using the published gene cata-
log database of the human gut microbiome [26]. Micro-
bial diversity was determined, and taxa were identified as 
described previously [27, 28]. Functional orthologs (KOs) 
were predicted against the KEGG gene database (v79) by 
BLASTP with the highest scoring annotated hits. The rel-
ative abundances of phyla, genera, species and KOs were 
calculated from the relative abundances of their respec-
tive genes.

Statistical analysis
Variations of clinical characteristics, bowel symptom 
severity scores, BA-related indices, fecal BA metabolites 
were analyzed by the nonparametric Kruskal–Wallis 
tests for comparison of multiple groups while the Mann–
Whitney test was employed for comparison of two 
groups. Differential taxa and BA-transforming genomes 
were obtained from the Benjamin–Hochberg method 
with the p value less than 0.1. Relationships of bowel 
symptom scores with fecal total BA levels or BA-metab-
olizing species abundances were analyzed by Spear-
man’s correlation based on Prism 9 (GraphPad Software, 
La Jolla, CA). The significance difference for all of tests 
except for fecal metagenomic data was set to p < 0.05.

Results
A higher incidence of BA overexcretion with more severity 
of bowel symptoms in the LDSD pattern
The baseline characteristics were summarized in Table 1. 
There was no difference in the sex ratio and the distribu-
tion of BMI, IBS-SSS, SDS and SAS between the LDSD 
and non-LDSD groups except for the indices of age and 
fecal BA excretion (p < 0.05 resulted from the Chi-square 
test). There was a lower proportion of elderly patients 
over 50  years in the LDSD group (19% vs. 34% non-
LDSD). By referring to the 90th percentile of fecal total 
BA levels from healthy subjects [16], a higher incidence 
of BA overexcretion (≥ 10.61  μmol/g) was shown in 
patients with LDSD (41% vs. 23% non-LDSD).

Phenotypic data showed that patients from either 
LDSD or non-LDSD group exhibited diarrheal symp-
toms, marked with increased levels of stool frequency 
and stool Bristol score relative to controls (Fig.  1A, 
B). Although there was no difference in the levels of 
stool Bristol score, IBS-SSS score, and abdominal dis-
tention score between the two IBS-D subgroups, the 
LDSD pattern had more frequent daily defecation and 
a higher abdominal pain score (Fig.  1C–E). As shown 
above, the LDSD pattern exhibits more severe stool fre-
quency, abdominal pain, and a higher incidence of BA 
overexcretion.
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An increase of serum C4 with altered fecal BA profile 
in the LDSD pattern
In consistent with a higher incidence of BA overexcre-
tion, fecal total BA levels was increased in LDSD patients 
relative to controls or non-LDSD patients (Fig. 2A). Also, 
fecal total BA levels were borderline elevated in the non-
LDSD group. But serum total BA levels were unchanged 
in both IBS-D groups (Fig. 2B). Serum C4, a BA precur-
sor as an indicator of BA synthesis [15], was remark-
ably raised in the LDSD group (Fig. 2C), whereas serum 
FGF19 released from the intestine with the function to 
control BA synthesis negatively showed a slight reduction 
without statistical difference (Fig. 2D).

LC/MS-based BA data revealed that both LDSD and 
non-LDSD groups showed remarkable increase in lev-
els of primary BA chenodeoxycholic acid (CDCA) and 
glycochenodeoxycholic acid (GCDCA) in feces (Fig. 2E, 
F). But secondary BA profile was differed between the 
two groups. Glycodeoxycholic acid (GDCA), glyco-
lithocholic acid (GLCA), deoxycholic acid (DCA), litho-
cholic acid (LCA), 7-ketodeoxycholic acid (7-KDCA), 
and 12-ketolithocholic acid (12-KLCA) were elevated 
in LDSD patients compared with controls and/or non-
LDSD patients (Fig.  2E, F). Fecal BA composition data 
consistently showed higher proportions of DCA, LCA 
and 7-KDCA in the LDSD pattern (Fig.  2G). While the 
non-LDSD group had a higher glycoursodeoxycholic acid 
(GUDCA) level and an increased proportion of ursode-
oxycholic acid (UDCA) (Fig.  2E–G). The above results 
suggest an enhanced host BA synthesis for the LDSD pat-
tern, with an altered BA-transforming gut microbiome.

Distinct gut microbiota structures between the LDSD 
and non‑LDSD groups
Fecal metagenome data showed that there was no dif-
ference in total gene numbers and the Shannon index 
among the three groups of control, LDSD and non-LDSD, 
indicating similar gut microbiota α-diversity (Fig.  3A). 
The PCA analysis also revealed similar microbial 
β-diversity among groups (Fig.  3B). Still, the taxonomic 
profile data demonstrated particular differentiation in 
the fecal microbiota structure among groups. At phylum 
level, dominant bacteria in the LDSD group did not dif-
fer statistically from controls, but the ratio of Firmicutes 
to Bacteroidetes was increased (Fig. 3C, D). Non-LDSD 
patients showed increased relative abundances of Proteo-
bacteria and Fusobacteria, while the relative abundance 
of Chloroflexi decreased (Fig. 3C).

Further, the top 30 differed bacteria (p < 0.1 from the 
Kruskal–Wallis test) was focused to obtain the main 
change in the taxonomic composition among groups at 
the genus level (Fig. 3E and Additional file 1: Table S1). 
The gut microbiota of patients from the two IBS-D 
subgroups similarly changed, showing that Bilophila, 
Fusobacterium, Helicobacter, Ornithinibacillus, Rumi-
nococcus, Staphylococcus and Pantoea were overabun-
dant while Victivallis and Porphyromonas were deficient 
(Fig. 3E and Additional file 1: Table S1). Certain bacteria 
altered differentially between the two groups, in which 
genera from Proteobacteria (e.g., Citrobacter, Enterobac-
ter, Yersinia, Pseudomonas, Vibrio, Rahnella, Serratia, 
Thauera) and Fusobacteria (Fusobacterium and Strepto-
bacillus) were highly enriched in the non-LDSD group. 

Table 1 The baseline characteristics of included IBS-D patients with LDSD or non-LDSD pattern

Characteristics LDSD (n = 105) Non‑LDSD (n = 116) Chi‑square value p-value

Age, n (%) 6.808 0.033

 < 30 13 (12%) 16 (14%)

 30–50 72 (69%) 61 (52%)

 > 50 20 (19%) 39 (34%)

Male, n (%) 54 (51%) 52 (45%) 0.962 0.327

BMI, n (%)

 < 25 kg/m2 86 (82%) 93 (80%) 0.171 0.918

 25–29.9 kg/m2 16 (15%) 20 (17%)

 ≥ 30 kg/m2 3 (3%) 3 (3%)

IBS-SSS, n (%) 1.175 0.556

 < 175 12 (11%) 14 (12%)

 175–300 57 (54%) 70 (61%)

 > 300 36 (35%) 32 (27%)

SDS ≥ 53, n (%) 36 (34%) 32 (27%) 1.161 0.281

SAS ≥ 50, n (%) 38 (36%) 39 (34%) 0.160 0.689

BA excretion, n (%)
    ≥ 10.61 μmol/g

43 (41%) 27 (23%) 7.341 0.007
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Holdemania, Mobiluncus and Treponema reversely 
showed reduced relative abundances (Fig. 3E and Addi-
tional file  1: Table  S1). Notably, the LDSD pattern had 
an increased level of Clostridium and decreased levels 
of Odoribacter and Prevotella (Fig.  3E and Additional 
file 1: Table S1). Sequence data demonstrated differed gut 
microbiota signatures between patterns.

LDSD microbiota featured by altered BA deconjugation 
and 7‑dehydroxylation levels
A total of 9 BA-metabolizing genes were identified from 
the metagenome dataset. Three bile acid-inducible (bai) 
genes, including baiCD, baiE and baiH, showed increased 
relative abundances in the LDSD group (Fig.  4A). Such 
three bai genes highly dominated in the LDSD pattern is 
known to encode 7-dehydroxylases that derives second-
ary BA (such as DCA and LCA) from primary BA (such 

as CA and CDCA) [29]. Moreover, the gene bsh, encod-
ing bile salt hydrolase to deconjugate glycine or taurine 
from bile salts, had a lower relative abundance. Such 
genomic results were supported by fecal BA data, a lower 
ratio of CA to CA amino acid-conjugates and a higher 
ratio of DCA to CA shown in the LDSD group suggests 
the LDSD microbiota exerts a reduced bile salt hydrolase 
activity and an elevated 7-dehydroxylase activity (Fig. 4B, 
C).

By searching the open-access database VIRTUAL 
METABOLIC HUMAN (https:// vmh. life/), accumulated 
abundances of bsh-expressing genera from Bacteroidetes, 
Firmicutes, Fusobacteria, Proteobacteria and Actino-
bacteria was lower in the LDSD group (Fig. 4D). The bai 
genes are expressed in a few species, including Clostrid-
ium hylemonae (C. hylemonae), Clostridium hiranonis 
(C. hiranonis), Clostridium scindens (C. scindens) and 

Fig. 1 The severity scores of bowel symptoms in IBS-D patients with LDSD or non-LDSD pattern. A, B The levels of stool frequency and stool 
Bristol score; C–E The levels of IBS-SSS, abdominal pain, and abdominal distention scores. Statistical results were obtained from one-way ANOVA 
with the three-group comparison and unpaired t-test with the two-group comparison (*p < 0.05; ***p < 0.005) and a significant correlation was set 
as p < 0.05

https://vmh.life/
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Eggerthella lenta (E. lenta). Among them, C. hiranonis 
and C. scindens showed increased relative abundances in 
the LDSD pattern (Fig. 4E–H). The LDSD gut microbiota 
enriched by 7-dehydroxylating Clostridium species and 
the bai genomes was in accordance with higher levels of 

DCA, LCA and their glycine conjugations shown in fecal 
BA profile data.

Fig. 2 Altered BA metabolic signature of IBS-D patients with LDSD or non-LDSD pattern. A, B Fecal and serum total BA levels; C, D Levels of serum 
7α-hydroxy-4-cholesten-3-one (C4) and fibroblast growth factor 19 (FGF19); E, F Fecal concentrations of conjugated and free BA metabolites; G 
The percentages of individual BAs in fecal total BA pool. Statistical data was obtained from one-way ANOVA with the three-group comparison 
and unpaired t-test with the two-group comparison (*p < 0.05; **p < 0.01; ***p < 0.005 vs. controls; #p < 0.05; ###p < 0.005 vs. the non-LDSD pattern)
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Fig. 3 Fecal microbiota signature of IBS-D patients with LDSD or non-LDSD pattern. A The levels of gene number and Shannon index; B The 
PCA analysis of fecal microbiota β-diversity; C Relative abundances of dominant phyla; D The ratio of Firmicutes to Bacteroidetes; E The heatmap 
of the top 30 differentiated genera. Statistical results were obtained from one-way ANOVA with the three-group comparison (*p < 0.05 vs. controls; 
#p < 0.05 vs. the non-LDSD pattern)
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Fig. 4 BA-transforming metagenomic signature of IBS-D patients with LDSD or non-LDSD pattern. A Relative abundances of 9 BA-transforming 
genes; B, C Functional estimation of bacterial bile salt hydrolase and 7-de hydroxylase activities based on the ratios of products to substrates 
of the two BA-transforming reactions; D Relative abundances of bsh-expressing genera; E–H Relative abundances of bai-expressing species. 
Statistical results were obtained from one-way ANOVA with the three-group comparison and Mann–Whitney test with the two-group comparison 
(*p < 0.05 vs. controls; #p < 0.05; ##p < 0.01 vs. the non-LDSD pattern)
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LDSD‑related BA metabolic changes linked 
with the severity of bowel symptoms
We further explored the relationships between the BA 
metabolic phenotype and bowel symptom severity. 
Spearman’s correlation data showed that the levels of 
stool frequency and stool Bristol score were positively 
associated with the amounts of serum C4 and fecal total 
BAs (Fig.  5A). Primary BAs (GCA, GCDCA, CA and 
CDCA) had positive relationships with stool frequency 
and stool Bristol scores. DCA, a secondary BA derived 
from microbiota 7-dehydroxylation, showed positive 
relationships with levels of stool frequency and abdomi-
nal pain score (Fig. 5A). Similarly, the relative abundance 
of bai-expressing Clostridium species (accumulated by 

C. scindens and C. hiranonis) was positively associated 
with levels of stool frequency and abdominal pain score 
(Fig. 5B, C). The data demonstrated a particular linkage 
between LDSD-related BA metabolic phenotype and the 
severity of stool frequency and abdominal pain.

Discussion
BA is known to be synthesized in the liver from choles-
terol and stored in the gallbladder, secreted into the small 
intestine when intaking diets, almost reabsorbed from 
the distal ileum into the portal vein and returned back 
to the liver; remaining non-reabsorbed BAs are entered 
into the large intestine and transformed by gut micro-
biota, finally excreted out of the body in feces [30]. BAs 

Fig. 5 The severities of IBS bowel symptoms strongly correlated with the levels of serum/fecal BA indices (A) and bai-expressing Clostridium species 
(B, C) based on the Spearman’s correlation analysis. Significant correlation was set as *p < 0.05; **p < 0.01; ***p < 0.005
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are lost in feces daily, equal to the amount of hepatic syn-
thesis [31]. In terms of the BA metabolic process, the BA 
overexcretion of IBS-D has been thought to be caused 
by dysregulated feedback control of BA synthesis, varied 
genotypes of BA metabolic regulators, increased GI tran-
sit, or combination of above factors [32–35].

This study revealed the linkage between the TCM pat-
tern and the BA metabolism in IBS-D for the first time, 
suggesting that fecal BA overexcretion is associated with 
more than one TCM pattern of IBS-D, with a closer rela-
tion with LDSD. Our data that an increase in the serum 
C4 level indicate that an excess of hepatic BA synthesis 
contributes to the BA overexcretion in the LDSD pat-
tern. A slight decrease without significant difference in 
the serum FGF19 of LDSD patients suggest that the BA 
overexcretion of LDSD might be independent with intes-
tinal feedback signaling. A recent study reported dif-
ferential plasma metabolites related to the primary BA 
biosynthesis in a chronic stress-induced LDSD rats with 
liver cancer [36], suggesting hepatic BA synthesis may 
change following LDSD. Another work with the same rat 
model revealed a tendency of increased gene expression 
of hepatic BA synthase Cyp7b1 [37]. These findings draw 
a hypothesis that LDSD could elevate hepatic BA syn-
thetase expression and thus lead to an enhanced BA bio-
synthetic level, which mechanism deserve to be further 
investigated. We also noted that the LDSD pattern had a 
higher level of stool frequency with increased amounts 
and proportions of fecal free secondary BAs, suggesting 
that a fast colonic transit might be another contributor 
of the enhanced BA synthesis and excretion. A positive 
relationship between the stool frequency level and the 
amount of serum C4 also support the notion. Above evi-
dence suggests that host BA metabolism of the LDSD 
pattern is featured with a higher hepatic synthetic level.

LDSD-related gut microbiota was shown to exhibit 
alteration of BA metabolic function with a reduced level 
of taurine/glycine conjugation (a lower bsh gene level) 
and a higher level of 7-dehydroxylation (overabundances 
of bai genes and bai-expressing Clostridium bacteria). 
The genomic change is indirectly supported by the fecal 
ratios of products to substrates for the two bacterial BA 
transforming reactions, although our work had a study 
limitation in that the comparison of the in  vitro BA-
metabolizing activity of human fecal microbiota between 
IBS groups is lacking. Such microbiota BA metabolic 
change is partially similar to the Clostridia-rich microbi-
ota previously described in an IBS-D cohort [16], exclud-
ing the change in the hdhA gene. The hdhA gene with the 
responsibility of 7-alpha hydroxysteroid dehydrogenase 
(7α-HSDH) coding is mainly expressed in Bacteroides, 
Fusobacterium, Escherichia, Clostridium and Rumino-
coccus [38]. Of them, Fusobacterium, Ruminococcus 

and Escherichia, pathobionts that have been reported 
to trigger GI dysfunction, inflammation and adenoma-
carcinoma progression [39–41], were more enriched in 
the non-LDSD group. It is consistent with an increased 
levels of GUDCA and UDCA, derived from microbiota 
7-HSDH action, shown in the fecal BA profile of the non-
LDSD pattern. Omics data indicate that gut microbiota 
BA metabolism should be varied among TCM patterns.

A study with quantifying LDSD has revealed mental 
phenotypes closely linked with the liver stagnation factor 
and abdominal discomfort phenotypes highly related to 
the spleen deficiency factor [42]. The symptoms of stag-
nation of liver qi have been closely linked with deficiency 
of bile secretion and intestinal malabsorption in the field 
of psychological diseases [43]. Regulator genes involv-
ing in BA synthesis (Hnf4a and CYPs) showed elevated 
expressions in the liver tissue of LDSD rats [37]. Differ-
ential metabolic pathways, such as BA biosynthesis, were 
also shown to closely related to the liver cancer with 
LDSD in rats [36]. Hence, the enhanced host BA synthe-
sis caused by problemed intestinal feedback control or 
fast GI transit shown in the LDSD pattern seems to be 
closely linked with the liver stagnation factor.

Overabundances of Clostridiales or Clostridium spp. 
have been reported in the gut microbiota of subjects with 
spleen-deficient pattern and stress-induced spleen-defi-
cient rodents [44–46]. Reversely, CHM with the spleen-
strengthening property (e.g., Qiweibaizhu Decoction) 
attenuated relative abundance of the Clostridium XlVa 
group [47]. Our data that the increase of Clostridium and 
its produced DCA was found to be positively correlated 
with the severity of stool frequency and abdominal pain 
suggest that alterations in the gut microbiota and its BA 
metabolism are more likely linked with the spleen defi-
ciency factor.

LDSD-related BA metabolic phenotype, particularly 
the increase of Clostridium and its produced DCA, 
showed positive relationships with the severity of diar-
rhea and abdominal pain, suggesting a promotive role 
of gut microbiota BA dysmetabolism in IBS-D progres-
sion. Increased colonic BA exposure can induce stool 
volume and stool habits, particularly the dihydroxy-BAs, 
such as DCA and CDCA, stimulate water secretion and 
accelerates colonic transit, increases stool frequency 
and decreases stool consistency [48, 49]. The underlying 
mechanism is involved in the BA-driven high-amplitude 
colonic contractions and increased water and electro-
lyte secretion. Colonic BA overexposure also promote 
visceral hypersensitivity through inducing mucosal mast 
cell-to-nociceptor signaling that involves the farnesoid X 
receptor/nerve growth factor/transient receptor poten-
tial vanilloid 1 axis [50]. DCA, the potent agonist of BA 
receptor TGR5, could activate subsets of colonic sensory 
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neurons and evoked colonic afferent, thus inducing pro-
nounced visceral hypersensitivity, in a transient receptor 
potential ankyrin 1 (TRPA1)-dependent mechanism [51]. 
The BA metabolic phenotype, at least the part shaped 
by the gut microbiota, is an ideal path to understand 
the internal relationship between the LDSD pattern and 
IBS-D progression.

Conclusion
We reported a featured BA metabolic phenotype of IBS 
patients with LDSD, characterizing enhanced synthesis 
and excretion levels for the host and altered BA-trans-
forming genome levels for the gut microbiota. This study 
targeting the BA metabolism provides foundation toward 
understanding the biological nature of the LDSD pattern 
and the internal linkage between the LDSD pattern and 
IBS progression.
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