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A mannitol-modified emodin nano-drug 
restores the intestinal barrier function 
and alleviates inflammation in a mouse model 
of DSS-induced ulcerative colitis
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Abstract 

Background Ulcerative colitis (UC) is an inflammatory disease of the colon that is characterized by mucosal ulcers. 
Given its increasing prevalence worldwide, it is imperative to develop safe and effective drugs for treating UC. Emo‑
din, a natural anthraquinone derivative present in various medicinal herbs, has demonstrated therapeutic effects 
against UC. However, low bioavailability due to poor water solubility limits its clinical applications.

Methods Emodin‑borate nanoparticles (EmB) were synthesized to improve drug solubility, and they modified 
with oligomeric mannitol into microgels (EmB‑MO) for targeted delivery to intestinal macrophages that express man‑
nose receptors. UC was induced in a mouse model using dextran sulfate sodium (DSS), and different drug formula‑
tions were administered to the mice via drinking water. The levels of inflammation‑related factors in the colon tissues 
and fecal matter were measured using enzyme‑linked immunosorbent assay. Intestinal permeability was evaluated 
using fluorescein isothiocyanate dextran. HE staining, in vivo imaging, real‑time PCR, and western blotting were per‑
formed to assess intestinal barrier dysfunction.

Results Both EmB and EmB‑MO markedly alleviated the symptoms of UC, including body weight loss, stool inconsist‑
ency, and bloody stools and restored the levels of pro‑ and anti‑inflammatory cytokines. However, the therapeutic 
effects of EmB‑MO on the macroscopic and immunological indices were stronger than those of EmB and similar 
to those of 5‑aminosalicylic acid. Furthermore, EmB‑MO selectively accumulated in the inflamed colon epithelium 
and restored the levels of the gut barrier proteins such as ZO‑1 and Occludin.

Conclusions EmB‑MO encapsulation significantly improved water solubility, which translated to greater therapeutic 
effects on the immune balance and gut barrier function in mice with DSS‑induced UC. Our findings provide novel 
insights into developing emodin‑derived drugs for the management of UC.
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Introduction
Ulcerative colitis (UC) is a chronic inflammatory bowel 
disease (IBD) that primarily occurs in the colon and 
manifests as mucosal ulcers and progressive destruc-
tion of the intestinal barrier function [1]. It has become a 
global health challenge due to the rapidly increasing inci-
dence rates and the tremendous burden on health care 
systems [2]. Recent studies have shown that the younger 
population is more susceptible to UC [2]. In addition, 
UC patients are more prone to anxiety and depression 
[3], and the risk of neoplastic transformation of ulcera-
tive lesions in UC patients with a disease course longer 
than 10  years is continually increasing [4]. Various fac-
tors have been implicated in the pathogenesis of UC, 
including disordered immune responses, intestinal bar-
rier damage, genetic susceptibility, intestinal dysbiosis, 
and environmental stresses; however, the exact mecha-
nisms are unknown [5–7]. Currently, UC is treated with 
sulfasalazine, glucocorticoids, immunosuppressants, and 
other biological agents, all of which have some disad-
vantages, such as limited efficacy, obvious side effects, or 
high costs [8, 9]. Therefore, it is of utmost importance to 
develop safe and effective drugs to treat UC.

Numerous studies have shown that Chinese herbal 
medicine has promising prospects in the treatment of 
UC owing to its potent anti-inflammatory pharmaco-
logical effects and intestinal mucosal barrier protec-
tive actions [10–13]. Emodin is a natural anthraquinone 
derivative that is present in various medicinal herbs, 
including Rheum palmatum L., Polygonum cuspidatum 
Sieb. et Zucc., and Polygonum multiflorum Thunb. It has 
well-documented anti-inflammatory, antioxidant, anti-
microbial, anti-cancer, hepatoprotective [14–17], and 
other pharmacological properties [18, 19]. A recent study 
showed that Em could alleviate UC symptoms by regu-
lating the flagellin-TLR5 dependent pathway [20–22]. 
However, the low water solubility and rapid metabolism 
of Em in the duodenum and jejunum result in a low bio-
availability of primary oral formulations, which even-
tually limits its therapeutic efficacy [23]. In addition, 
pharmacokinetic analysis in mice with DSS-induced UC 
has shown that the systemic levels of Em increase sig-
nificantly following oral administration, which might 
increase the risk of toxic adverse effects [24]. Therefore, 
it is essential to develop a carrier for the in situ delivery 
of Em to overcome the above shortcomings and achieve 
better therapeutic effects [25].

Oral colon targeted drug delivery system (OCDDS) 
can deliver drugs directly to colon lesions [26], which 

not only optimizes the drug concentration at the target 
site and enhances its therapeutic effects but also reduces 
the drug dose, improves patient compliance [27, 28], 
and minimizes damage to healthy tissues [29]. Intestinal 
macrophages have been reported as a key factor in the 
pathogenesis of UC by exerting a proinflammatory role 
[30, 31]. Macrophages are the most abundant immune 
cells in the intestinal tract [32] and express high lev-
els of mannose receptors [33]. Accumulating evidence 
has demonstrated that under inflammatory conditions, 
macrophages secrete proinflammatory cytokines and 
significantly accelerate the pathological progress of IBD 
[34–37]. Overexpressed mannose receptors on the sur-
face of intestinal macrophages encouraged the develop-
ment of mannosylated OCDDS that could target the 
inflammatory colon lesions of macrophage aggregation. 
Therefore, as a common ligand of mannose receptor, 
oligomeric mannitol was utilized to modify Em, which 
could then selectively bind to intestinal macrophages. As 
macrophages are primary effectors of inflammation, the 
modification of anti-colitis drugs with mannitol can help 
achieve targeted delivery to the inflamed colonic lesions 
[38].

The poor water solubility of Em is a critical problem 
that affects its therapeutic effects. Given the poor water 
solubility of Em, we synthesized water-soluble Em-borate 
nanoparticles (EmB) via the solvent exchange method 
and borate esterification reaction [39]. Despite the dis-
tinctive biological activities, the adverse effects of Em, 
including hepatorenal toxicity and cytotoxicity, are of 
wide concern worldwide [40]. Thus, with the aim of low-
ering the toxicity and enhancing the therapeutic effects, 
we modified EmB with oligomeric mannitol to obtain a 
microgel preparation (EmB-MO) that can target inflam-
matory colon lesions. The therapeutic potential of EmB 
and EmB-MO were tested in a mouse model of dextran 
sulfate sodium (DSS)-induced UC in terms of disease 
activity index (DAI), inflammatory indices, structural 
changes in the colon, and intestinal barrier function.

Materials and methods
Materials
Emodin (Em, Mw ca. 270.24) was purchased from Sigma-
Aldrich. Borax (Mw ca. 381.37, AR grade) was purchased 
from Tianjin Bodi Chemical Co. Ltd. Oligomeric man-
nitol (MGS, Mw ca. 342.3) was obtained from Xi’an 
Lavia Biotechnology Co. Ltd. Cy7-labeled EmB-MO was 
obtained from Xi’an Ruixi Biotechnology Co. Ltd. Other 
chemicals and solvents were of analytical reagent grade 
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and used according to the standards. All experiments 
were performed using deionized water.

Animals
A total of 48 male C57BL/6 mice (SPF grade, 6–8 weeks 
old, body weight 18–20 g) were obtained from the Exper-
imental Animal Center of Xi’an Jiaotong University. The 
experimental procedures were performed as per the 
"Guidelines for the Care and Use of Laboratory Animals" 
and approved by the ethics committee (approval num-
ber: XJTU2019-679). The mice were housed at ambi-
ent temperature and relative humidity (55% ± 5%) under 
normal circadian rhythm, with food and water provided 
ad libitum.

Preparation of EmB nanoparticles
EmB was fabricated as described in our previous study 
[39]. Briefly, 80.5 mg Em was dissolved in 10 mL DMSO, 
and 2.25 mL of this solution was added dropwise to 4 mL 
aqueous borax (50  mM) with intense stirring. The mix-
ture was allowed to react at room temperature in the dark 
for 12  h, and a homogenous hydrosol of EmB (2.9  mg/
mL) was obtained. 

Preparation of EmB‑MO microgels
Briefly, 3  mL of the EmB hydrosol was added dropwise 
into 3 mL aqueous mannitol oligomer solution and con-
stantly stirred for > 4 h at room temperature. The result-
ing EmB-MO microgels were lyophilized.

Characterization of EmB‑MO microgels
The digital images of the microgel samples were captured 
using Nikon D3100 camera. The infrared spectral images 
were obtained on the transform infrared spectrometer 
(Nicolet IS-10). The diluted EmB hydrosol and EmB-
MO (0.29  mg/mL) microgel preparations were poured 
on silicon wafers and observed using a scanning electron 
microscope (SEM, HITACHI S-4800). The hydrodynamic 
diameter and zeta potential of the samples were meas-
ured at room temperature using Malvern ZS90 Zetasizer.

Construction of DSS‑induced UC model
The animals were randomly divided into the healthy 
control, UC model, Em (8  mg/kg/d), EmB-L (3  mg/
kg/d), EmB-H (6  mg/kg/d), EmB-MO-L (3  mg/kg/d), 
EmB-MO-H (6  mg/kg/d), and 5-ASA (100  mg/kg/d) 
groups (n = 6 mice per group). UC was induced by sup-
plementing drinking water with 3% DSS for 7 consecu-
tive days. At the same time, water (equal quantity) was 
administered to the healthy control and UC mice via oral 
gavage. During the dosing period, disease activity index 
(DAI), body weight, stool consistency, and stool blood 
content were monitored daily. On day 8, the animals were 

sacrificed and dissected, and their spleen and colon tis-
sues were weighed. The colon tissues were dissected and 
stored at − 80 °C for further analysis.

Hematoxylin–eosin (H&E) staining
The colon tissues were removed for histological analysis. 
In addition, the heart, liver, spleen, lung, and kidney of 
mice in the control and EmB-MO-H groups were iso-
lated for toxicological assessment. The tissues were fixed 
in 10% formalin for 48 h, dehydrated through an alcohol 
gradient, clarified in xylene, embedded in paraffin, and 
then cut into 3–4  µm thick sections. The sections were 
deparaffinization with xylene and then stained with H&E 
as per standard protocols. The slides were imaged using 
Panoramic DESK (P-MIDI, P250), and the size of the 
ulcers, infiltration of inflammatory cells, and degree of 
tissue damage were evaluated. The pathological score was 
assessed as previously described [41]. In brief, the total 
score was calculated from the inflammatory cell infiltra-
tion score (0–4), mucosal thickening score (0–4), goblet 
cell depletion score (0–4), structure destruction score (0 
or 3–4), and crypt loss score (0 or 3–4). The maximum 
score was 20.

Myeloperoxidase (MPO) assay
MPO activity in the colon tissues was detected using a 
specific kit according to the manufacturer’s instructions. 
The colon tissues were homogenized in PBS and centri-
fuged, and the supernatant was collected for the assay.

Enzyme‑linked immunosorbent assay (ELISA)
The fecal samples and colon tissues were prepared as pre-
viously described[12]. Lipoprotein-2 (Lcn-2) levels in the 
feces and IL-6, IL-1β, TNF-α and IL-10 levels in colon 
homogenates were measured using the respective ELISA 
kits as per the manufacturer’s instructions.

Intestinal permeability assay
Fluorescein isothiocyanate dextran (FITC-dextran) was 
used to measure intestinal permeability as described pre-
viously [12]. Mice were deprived of food and water for 
4 h and then orally administered with 4 kDa FITC-dex-
tran (60 mg/100 g). After 5 h, blood was collected from 
the retro-orbital region and fluorescence intensity was 
measured at 525 nm. The FITC-dextran concentration in 
the serum was then calculated using a standard curve.

Western blotting
Total protein was extracted from colon tissues using 
RIPA lysis buffer and quantified using the BCA method. 
Then, equal amounts of protein per sample were sepa-
rated using 10% SDS-PAGE and transferred to polyvi-
nylidene fluoride membranes. After blocking with 5% 
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fat-free milk in Tris-buffered saline + Tween 20 (TBST), 
the membranes were incubated overnight with primary 
antibodies targeting ZO-1 (1:1000, Cat #ab276131; 
Abcam), Occludin (1:2000, Cat #ab216327; Abcam), and 
GAPDH (1:5000, Cat #ab8245; Abcam) at 4  °C. The fol-
lowing day, the membranes were incubated with second-
ary antibodies and developed using Chemistar High-sig 
ECL Western Blotting Substrate. The density of the bands 
was quantified using Image-Pro Plus 6.0 software.

Real‑time PCR
Total RNA was extracted from colon tissues with TRIzol 
(Invitrogen) and reverse-transcribed to cDNA using the 
Maxima First Strand cDNA Synthesis Kit (Fermentas) 
according to the manufacturer’s instructions. RT-PCR 
was performed on the CFX96 Touch Real-Time PCR 
detector (Bio-Rad, USA). Relative gene expression was 
measured and normalized to that of GADPH using the 
 2−ΔΔCt method. The primers were as follows: (Claudin 1: 
5’-TGG GGA CAA CAT CGT GAC TG-3’ and 5’-CCC CAG 
CAG GAT GCC AAT TA-3’; Claudin 4: 5’-TGG AAC CCT 
TCC GTT GAT TA-3’ and 5’-CAC TGG GCT GCT TCT 
AGG TC-3’; ZO-1: 5’-TTT TTG ACA GGG GGA GTG G-3’ 
and 5’-TGC TGC AGA GGT CAA AGT TCAAG-3’; Occlu-
din: 5’-ATG TCC GGC CGA TGC TCT C-3’ and 5’-TTT 
GGC TGC TCT TGG GTC TGTAT-3’; and GAPDH: 
5’-AGG TCG GTG TGA ACG GAT TTG-3’ and 5’-GGG 
GTC GTT GAT GGC AAC A-3’).

In vivo imaging
The biodistribution of the drugs was analyzed using an 
in vivo imaging system (IVIS). The mice were fasted for 
12 h with water provided ad libitum. After weighing the 
mice, cy7-labeled Em, cy7-labeled EmB, and cy7-labeled 
EmB-MO microgels were administered via oral gavage. 
Twelve hours later, the mice were euthanized and the 
major organs (stomach, colon, and small intestine) were 
removed. The fluorescence signals in the different tissues 
were detected using the IVIS SPECTRUM animal imag-
ing system with excitation wavelength  (Ex) and emission 
wavelength  (Em) of 749 nm and 776 nm, respectively. Liv-
ing Image software was used to analyze the images.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 
8.0 (GraphPad, San Diego, CA). All quantitative data are 
presented as the mean ± standard error of the mean. Dif-
ferences were compared using one-way or two-way anal-
ysis of variance, followed by Tukey’s multiple comparison 
test. P < 0.05 was considered statistically significant.

Results and discussion
Preparation and characterization of EmB and EmB‑MO 
microgels
Despite its excellent antibacterial and anti-inflammatory 
effects [42], the clinical application of Em is limited due 
to low bioavailability and poor water solubility (0.25 μg/
mL) [23]. In a previous study, we synthesized water-sol-
uble EmB that were formed through borate ester bonds 
on the surface of Em. The solubility of EmB increased sig-
nificantly to 2.94 mg/mL [39]. Therefore, 2.9 mg/mL EmB 
were crosslinked with mannitol oligomers via hydrogen 
bonding to generate EmB-MO microgels. The mannitol 
oligomers can achieve targeted delivery of the drugs to 
the macrophages accumulating in the inflamed lesions 
on the intestinal wall by binding with their mannose 
receptors [33]. The synthesis steps of EmB and EmB-
MO microgels are shown in Fig. 1A, and the representa-
tive image of the stable microgel preparation is shown in 
Fig. 1B.

EmB and EmB-MO were characterized using FTIR, 
SEM, DLS, and zeta potential measurements (Fig.  1C–
F). As shown in the FTIR spectra for EmB (curve a) and 
EmB-MO (curve b) in Fig.  1C, the peak correspond-
ing to the phenolic -OH of Em appeared at 3392   cm−1, 
which was also reported in our previous study [39]. 
However, the peak in EmB shifted to 3446   cm−1 owing 
to the formation of hydrogen bonds between the -OH 
groups of Em and borate ions [39], and the peak at 
1676   cm−1 corresponded to the C = O stretching fre-
quency of Em [43]. In the spectrum of EmB-MO micro-
gels, we clearly observed a significant shift of the peak 
at 3446   cm−1 corresponding to the -OH groups of EmB 
to 3157   cm−1, which can be attributed to the hydrogen 
bonding between mannitol oligomers and EmB. Further-
more, the peak at 1676  cm−1 corresponding to the C = O 
stretching frequency of Em was evident in the spectrum 
of the EmB-MO microgels. These results indicated that 
EmB was combined with mannitol oligomers via hydro-
gen bonding. The morphology of the nanoparticles was 
examined using SEM. As shown in Fig. 1D, the EmB-MO 
microgel particles were round with an average diameter 
of approximately 322.6 ± 43.51  nm. In addition, the sur-
face of EmB was covered with mannitol oligomers, indi-
cating the formation of microgels in borax solution. The 
size distribution and zeta potential of EmB-MO micro-
gels in solution were measured using DLS. As shown 
in Fig.  1E, F the average hydrodynamic diameter of the 
EmB-MO microgels was 984.7 ± 144.6  nm. The size of 
the microgels measured via DLS was larger than that 
observed using SEM, which can be explained by the 
expansion of MO chains in water and their contraction 
in the absence of water. The average zeta potential of 
EmB-MO microgels was -11.90 ± 3.26 mV, which further 
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proved that the negatively charged EmB particles were 
successfully crosslinked with MO.

EmB and EmB‑MO alleviated the symptoms 
of DSS‑induced UC
DSS-induced UC simulates the typical symptoms of IBD, 
including bloody stools, diarrhea, and weight loss [44]. 
The mice treated with 3% DSS showed a slower increase 
in body weight than those in the control group, which 
was accompanied by inconsistent and bloody stools. 
Moreover, DAI gradually improved after DSS induc-
tion, indicating the successful induction of UC. By con-
trast, DAI in mice treated with EmB and EmB-MO was 
markedly lower (Fig.  2A), particularly in the EmB-MO 
group. UC is characterized by significant colon shorten-
ing and splenomegaly [45]. Consistently, we recorded 
greater colon weight/length ratio and enlarged spleen 
in the UC group, which was reversed by high doses of 
EmB-MO (Fig.  2B, C). Finally, the pathological exami-
nation of the colon sections revealed inflammatory cell 
infiltration, crypt destruction, and mucosal damage after 
DSS-induced UC, all of which improved remarkably after 

EmB-MO administration (Fig.  3A, B). Taken together, 
EmB and EmB-MO alleviated the pathological changes 
associated with DSS-induced UC, and EmB-MO exhib-
ited better therapeutic effects than EmB.

EmB and EmB‑MO alleviated colonic inflammation 
in DSS‑treated UC mice
Neutrophil infiltration is a parameter of the severity of 
UC, and activated neutrophils release large amounts of 
MPO during inflammation. In addition, the presence of 
Lcn-2 or neutrophil gelatinase-associated lipocalin in 
the feces is a biomarker of intestinal inflammation [46]. 
Consistent with this, MPO activity in the colon and 
Lcn-2 levels in feces were elevated in the UC model. As 
shown in Fig. 4A, Em, EmB, and EmB-MO significantly 
inhibited colonic MPO activity and reduced fecal Lcn-2 
levels in the UC mice. In addition, DSS-induced UC 
was associated with the increased levels of several pro-
inflammatory cytokines, including TNF-α, IL-6 and 
IL-1β, and a concomitant decrease in the anti-inflam-
matory cytokine IL-10 in colon tissues. As expected, 
Em, EmB, and EmB-MO treatment restored the levels 

EmB-MO microgels 
in water 

EmB-MO
EmB

EmB nanoparticle
in water 

MO

Emodin in DMSO

Fig. 1 Preparation and characterization of EmB and EmB‑MO microgels. A Synthesis steps of EmB and EmB‑MO. B Representative images 
of EmB‑MO microgels. C FTIR spectra of EmB and EmB‑MO microgels. D Representative SEM image of EmB‑MO microgels. Particle size and size 
distribution of EmB‑MO microgels in borax solution. F Zeta potential of EmB‑MO microgels in borax solution
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of all inflammation-related cytokines (Fig. 4B). However, 
despite its significant anti-inflammatory effects, Em 
treatment did not lead to the remission of UC symptoms 
such as weight loss, bloody stools, and splenomegaly. 

Therefore, we surmised that the therapeutic effects of 
EmB and EmB-MO are dependent on additional mech-
anisms, such as restoration of the intestinal barrier 
function.
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Fig. 2 EmB‑MO improved the pathological symptoms in mice with DSS‑induced ulcerative colitis. A Daily changes in body weight (A‑1) 
and disease activity index (DAI) (A‑2) in the indicated group. B Macroscopic observation of colon (B‑1) and the ratio of colon weight to length (B‑2). 
C Macroscopic observation of spleen (C‑1) and the ratio of spleen to body weight (C‑2). Data represent the mean ± standard error of the mean 
(n ≥ 6). ***P < 0.001 vs. control group, #P < 0.05, ##P < 0.01, ###P < 0.001 vs. ulcerative colitis group. 5‑ASA: 5‑aminosalicylic acid, 100 mg/kg/d; Em: 
Emodin, 8 mg/kg/d; EmB‑L: Emodin‑borate nanoparticles, 3 mg/kg/d; EmB‑H: 6 mg/kg/d; EmB‑MO‑L: EmB modified with oligomeric mannitol 
into microgels, 3 mg/kg/d; and EmB‑MO‑H: 6 mg/kg/d
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EmB‑MO restored the intestinal barrier function in mice 
with DSS‑induced UC
The remission of the histopathological signs of UC cor-
relates with lower risks of hospitalization, colectomy, 
and colorectal cancer [47, 48]. As mucosal healing has 

been considered a key endpoint in UC therapy, we evalu-
ated the effects of Em, EmB, and EmB-MO on the per-
meability of the intestinal epithelium by measuring 
the efflux of ingested FITC-dextran into the serum. As 
shown in Fig. 5A, the serum levels of FITC-dextran were 
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Fig. 3 EmB‑MO restored the integrity of colon tissue in mice with DSS‑induced ulcerative colitis. A Representative images of hematoxylin and eosin 
(H&E)‑stained colon tissues. Scale bar = 100 µm. B Histological scores of colon tissues in each group. Data represent the mean ± standard error 
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significantly higher in the DSS-induced UC mice than 
those in the control group, indicating that DSS interven-
tion disrupted the intestinal barrier. However, treatment 
with Em, EmB, and EmB-MO led to a marked reduc-
tion in the serum FITC-dextran levels, and the effect was 
more pronounced in mice treated with EmB or EmB-MO. 
Intercellular tight junction (TJ) proteins such as Clau-
dins, ZO-1, and Occludin maintain the intestinal barrier 
integrity. Therefore, we also analyzed the expression lev-
els of Claudin 1, Claudin 4, ZO-1, and Occludin mRNAs 
and proteins in the colon tissues from the different treat-
ment groups. As shown in Fig. 5B, C, all TJ proteins were 
significantly downregulated following DSS intervention, 

which is consistent with previous findings [12]. EmB and 
EmB-MO restored the levels of TJ proteins, and EmB-
MO caused more significant changes than EmB (Fig. 5B, 
C). Taken together, EmB-MO can effectively restore the 
gastrointestinal epithelium and repair intestinal barrier 
function in mice with DSS-induced UC by upregulating 
the TJ proteins.

EmB‑MO selectively accumulated in inflammatory 
intestinal tissues
The targeted accumulation of the different formulations 
was assessed in terms of their fluorescence intensities in 
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Fluorescence intensity in each group. C Representative micrographs of H&E staining in the heart, liver, spleen, lung, and kidney for the evaluation 
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Page 11 of 13Xu et al. Chinese Medicine           (2023) 18:98  

the colon tissues and other organs. As shown in Fig. 6A, 
the fluorescence intensity of the inflamed colon in the 
EmB-MO-H group was apparently higher than the other 
three groups 12 h after the administration of cy7-labeled 
Em, EmB, and EmB-MO. Meanwhile, intense fluores-
cence signals were detected in the small intestine of the 
Em and EmB-H groups, whereas weak fluorescence sig-
nals were detected in the heart, liver, spleen, lung, kidney, 
stomach, and small intestine of the EmB-MO-H group, 
which confirmed the selective accumulation of EmB-MO 
in the inflamed colon tissues. Consistent with the imag-
ing results, the quantification of fluorescence intensi-
ties in the colon also indicated that EmB-MO selectively 
accumulated in the inflamed lesions of the colon with-
out damaging the healthy tissues (Fig. 6B). As EmB-MO 
preferentially bound to the mannose receptor on the 
surface of macrophages via the mannitol oligomers [49], 
the targeted accumulation of EmB-MO in the inflamed 
colon may mitigate macrophage-driven inflammation. 
However, the different receptors on the surface of mac-
rophages interact with each other and exert multiple 
functions [50]. Therefore, the actual mechanism of action 
of EmB-MO needs further clarification.

Considering the several toxic side effects of Em, such as 
hepatoxicity, nephrotoxicity, genotoxicity, and develop-
mental toxicity [51], we assessed the toxicity of EmB-MO 
in healthy tissues. Compared with the control group, no 
typical pathological changes were observed in the heart, 
liver, spleen, lung, and kidney of the EmB-MO-H group 
(Fig.  6C), suggesting that the synthesis of EmB and its 
modification with oligomeric mannitol into microgels 
effectively inhibits systemic absorption and the subse-
quent hepatotoxicity and nephrotoxicity in UC therapy.

Conclusion
The synthesis of EmB greatly improved the drug solubility 
of emodin at the administration site. EmB-MO microgels 
bound to mannose receptors on the surface of intestinal 
macrophages and significantly alleviated colonic inflam-
mation and intestinal barrier defects in mice with DSS-
induced UC, which translated to the mitigation of UC 
symptoms. Thus, EmB-MO is a promising targeted drug 
for UC that can avoid drug damage to healthy tissues 
and overcome the shortcomings of traditional UC drugs. 
Thus, it warrants further development for prospective 
clinical applications.
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