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Bojungikgi-tang improves skin barrier 
function and immune response in atopic 
dermatitis mice fed a low aryl hydrocarbon 
receptor ligand diet
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Abstract 

Background The aryl hydrocarbon receptor (AhR) is a transcription factor that plays a crucial role in regulating 
the immune system and maintaining skin barrier function. AhR signaling is pivotal in the pathogenesis of inflamma‑
tory diseases such as atopic dermatitis (AD), and the absence of AhR ligands further contributes to the progression 
or worsening of AD symptoms.

Methods AD was induced with 2,4‑dinitrochlorobenzene (DNCB), and Bojungikgi‑tang (BJIKT) was administered 
orally daily for 10 weeks. Serum IgE, splenocyte IL‑4, and IFN‑γ levels, skin barrier genes, and AhR target gene expres‑
sions were analyzed using RNA‑sequencing analysis. Spleen tissues were extracted for fluorescence‑activated cell 
sorting (FACS) analysis to analyze the effect of BJIKT on immune responses. A correlation analysis was conducted 
to analyze the correlation between immune markers and skin barrier genes and AhR target genes.

Results BJIKT effectively improved AD symptoms in AD mice fed a low AhR ligand diet by reducing neutrophil 
and eosinophil counts, lowering IgE levels in the blood, and decreasing IL‑4 and IFN‑γ levels in the splenocytes. Addi‑
tionally, BJIKT significantly reduced epithelial skin thickness and transepidermal water loss (TEWL) values and reversed 
the decreased expression of skin barrier genes. BJIKT also considerably altered the expression of AhR target genes, 
including Ahr, Ahrr, cytochrome P450 1A1 (CYP1A1), and CYP1B1. Furthermore, AhR target pathway genes were nega‑
tively correlated with immune cell subtypes, including CD4 + and CD8 + T cells and macrophages (CD11b + F4/80 +) 
at the systemic level.

Conclusions BJIKT can regulate AhR activation and may help reduce inflammation in AD by regulating the expres‑
sion of skin barrier genes and immune responses.
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Background
The aryl hydrocarbon receptor (AhR) signaling pathway 
plays a critical role in various physiological processes, 
including immune responses and skin homeostasis [1]. 
Activation of AhR, a ligand-dependent transcription fac-
tor, triggers a cascade of signaling events, regulating gene 
expression and cellular functions.
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In the skin, AhR activation is vital for maintain-
ing a healthy skin barrier under normal physiological 
conditions. It controls the expression of key proteins 
involved in the formation and maintenance of the epi-
dermal barrier, such as filaggrin, involucrin, and loric-
rin [2–4]. These proteins are essential for the proper 
formation of the outer keratinized layer of the skin. 
AhR activation also induces the expression of xeno-
biotic metabolizing enzymes, including cytochrome 
P450 (CYP) 1A1 (CYP1A1) and CYP1B1, which con-
tribute to the regulation of barrier function by metab-
olizing AhR ligands [5]. Moreover, AhR signaling has 
been demonstrated to suppress the production of pro-
inflammatory cytokines, inhibit the abnormal prolif-
eration of keratinocytes, and enhance the expression 
of proteins crucial for maintaining the integrity and 
function of the epidermal barrier [6]. Dysregulation 
or absence of AhR ligands can disrupt these processes, 
leading to immune dysregulation, increased inflamma-
tion, and compromised skin barrier function observed 
in atopic dermatitis (AD) [7, 8].

Tapinarof, an AhR agonist, has been approved for the 
treatment of plaque psoriasis and atopic dermatitis [9]. 
Additionally, compounds such as 6-formylindolo [3,2-
b] carbazole (FICZ) and indole-3-aldehyde (IAld) have 
demonstrated effectiveness in AD treatment via the acti-
vation of the AhR-ARNT-FLG axis [10, 11]. Although 
Bojungikgi-tang (BJIKT), an oriental medicine, has been 
reported to be effective in treating immune diseases, such 
as atopy, allergy, and asthma [12–15], its specific mecha-
nism of action on the skin barrier, AhR target signaling, 
and immune response in AD mice fed a low AhR ligand 
diet remains poorly understood.

Therefore, our study aimed to investigate the impact 
of a low AhR ligand diet on impaired skin barrier func-
tion and immune regulation in AD mice. Furthermore, 
we sought to elucidate the potential therapeutic effects 
and underlying mechanisms of BJIKT. Through a com-
prehensive analysis of these aspects, our study aimed to 
provide valuable insights into the effects of BJIKT on the 
skin barrier, modulation of AhR signaling, and immune 
response in AD mice subjected to a low AhR ligand diet. 
This research enhances our comprehension of novel ther-
apeutic strategies for AD and highlights the promising 
potential of BJIKT as a treatment option.

Methods
Preparation of BJIKT water extract and ultra‑high 
performance liquid chromatography‑quadrupole 
time‑of‑flight mass spectrometry (UHPLC/Q‑TOF–MS) 
analysis
The herbal formula BJIKT is composed of eight herbal 
medicines: astragalus root (300 g), atractylodes rhizome 

white (200  g), ginseng (200  g), licorice (200  g), angelica 
gigas root (100 g), citrus unshiu peel (100 g), bupleurum 
root (60  g), and cimicifuga rhizome (60  g). The dried 
herbs, as mentioned earlier, were chopped and mixed, 
then extracted with distilled water using a crude extrac-
tion system (95 ± 5 °C, 3 h). The insoluble particles were 
removed by passing the extract through a 53  μm mesh 
strainer. The resulting filtrates were concentrated and 
evaporated until dry using a freeze-dryer. The final dried 
BJIKT extracts (0.38 kg, 31.06% yield) were homogenized 
and stored in an airtight container.

A qualitative analysis of BJIKT was performed using 
UHPLC (1290 infinity II LC system, Agilent Technolo-
gies, Santa Clara, CA, USA) combined with a Q-TOF MS 
(6546 Q-TOF, Agilent Technologies) system to identify 
its chemical composition. The dried powder of BJIKT 
was dissolved in a 50% MeOH solution at a concentration 
of 0.1 mg/mL. The recovered signal was separated using a 
Zorbax Extend-C18 column (80 Å, 2.1 × 50 mm, 1.8 µm, 
Agilent Technologies) on a binary gradient system. The 
mobile phase consisted of water containing 0.1% (v/v) 
formic acid (solvent A), and acetonitrile containing 
0.1% (v/v) formic acid (solvent B). The flow rate was set 
to 0.1 mL/min for a total of 30 min of run time, and the 
injection volume of the BJIKT solution was 2 μL. The lin-
ear gradient of UHPLC was as follows: 5% B for 3 min, 5% 
to 50% B from 3 to 5 min, 50% to 85% B from 5 to 20 min, 
and then 85% B from 20 to 25 min, and then equilibra-
tion for 30  min. The mass spectrometer was operated 
in the positive ionization mode with a mass range of 
m/z 50–1700. The MS parameters were set as follows: 
Gas temperature, 325 °C; drying gas, 5 L/min; nebulizer, 
15 psi; fragmentor, 125  V; skimmer, 65  V; and capillary 
voltage, 3500 V. A narrow isolation window (1.3 Da) was 
used to acquire the MS/MS data at a collision energy of 
20 V. The acquired naked data were processed using MS-
Dial software (Ver 4.80, http:// prime. psc. riken. jp/), and 
the chemical constituents of BJIKT were identified based 
on the retention time, m/z of precursor, and the MS frag-
ment pattern using all publicly available mass spectral 
databases obtained from RIKEN (http:// prime. psc. riken. 
jp/ Metabolomics_Software/MS-DIAL/).

Experimental animals
All animal procedures were approved by the Institutional 
Animal Care and Use Committee of the Korea Institute 
of Oriental Medicine (approval number: 20–050) and 
with the NIH Guide for the Care and Use of Laboratory 
Animals. Three-week-old male C57BL/6N mice were 
purchased from Saeron Bio Inc. (Gyeonggi-do, Repub-
lic of Korea). The mice had an adaptation period of one 
week in a specific pathogen-free animal facility at a con-
stant room temperature (20–22 °C), humidity (40–60%), 
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and a 12 h–12 h day and night cycle at the Korea Institute 
of Oriental Medicine. Following the adaptation period, 
the mice were either fed a normal chow diet or a low 
AhR ligand diet (ENVIGO [#TD130959]), and a low AhR 
ligand diet group was provided with AhR ligand-free diet 
paper bedding (#SSP0001, ALPHA-dri, Shepherd Spe-
cialty Papers, Watertown, TN, USA). Mice were fed with 
the low-AhR ligand diet for 12 weeks. After 2 weeks of a 
low AhR ligand diet, AD was induced with 2,4-dinitro-
chlorobenzene (DNCB), and BJIKT (1 g/kg/day in water) 
was administered by oral gavage daily at the same time. 
The specific dosage of BJIKT was determined by referring 
to existing literature, which provided valuable insights 
into the appropriate concentration for the experimental 
setup [16–18]. To induce AD, the dorsal skin of mice was 
treated twice a week with 1% DNCB mixed in a 3:1 ace-
tone/olive oil solution.

Analysis of neutrophils and eosinophils in mouse whole 
blood
Hematological analysis was performed on the blood sam-
ples collected in EDTA-treated tubes (BD  Microtainer® 
365974; BD Biosciences, Franklin Lakes, NJ, USA) using 
capillary tubes (2501, Kimble Chase Life Science, Rock-
wood, TN USA). We utilized a specialized automated 
hematology analyzer, the  HEMAVET® 950FS (Drew Sci-
entific, Miami Lakes, FL, USA), to measure the number 
of neutrophils and eosinophils in whole blood samples 
obtained through cardiac puncture. The  HEMAVET® 
950FS is specifically designed for veterinary use and 
is capable of providing a complete blood count (CBC) 
analysis, including the enumeration of various blood cell 
types, such as neutrophils and eosinophils. This instru-
ment employs diverse techniques, including impedance 
and optical measurements, to differentiate and quantify 
different cell types based on their size, shape, and stain-
ing properties. Following the analysis, the  HEMAVET® 
950FS generates comprehensive results, including the 
counts of neutrophils and eosinophils [19, 20].

Measurement of IgE
Blood samples were drawn from the mice, and the 
plasma was separated by centrifugation (1500×g, 20 min, 
4 °C) and stored at − 80 °C. Plasma total IgE concentra-
tions were measured using kits (Bethyl Laboratories Inc., 
Montgomery, TX, USA), according to the manufacturer’s 
instructions.

Measurement of transepidermal water loss (TEWL)
TEWL, the measurement of the quantity of water that 
passes from inside an animal’s body to the surrounding 
atmosphere through the epidermal layer (skin) via dif-
fusion and evaporation processes, was measured on the 

last day of the experiment (12  weeks). TEWL in mouse 
dorsal skin was measured under specific conditions of 
20–22 °C and 45–55% humidity using a skin evaporative 
water recorder, the Tewameter TM300 (Courage + Khaz-
aka electronic GmbH, Cologne, Germany). Measure-
ments were recorded when the TEWL readings stabilized 
approximately 30  s after the probe was placed on the 
skin. Data were analyzed using a microprocessor and 
expressed in g/m2/h.

Isolation of splenocytes and measurement of cytokines
Splenocytes were isolated as previously described [21]. 
After incubation for 24  h in a  CO2 incubator, culture 
supernatants were assayed for cytokines. Interleukin 
(IL)-4 and interferon-gamma (IFN-γ) levels were ana-
lyzed using the Bio-Plex Pro Mouse Cytokine T helper 
(Th)1/Th2 Assay Kit (Bio-Rad Laboratories, Hercules, 
CA, USA).

Flow cytometry analysis
After the isolation of splenocytes [21], the immune 
population was investigated using flow cytometry. Flow 
cytometry was performed as previously described [22]. 
Briefly, the cells were treated with RBC lysis buffer (Bio-
Legend, San Diego, CA, USA), suspended in a cell-stain-
ing buffer (BioLegend), and non-specific staining was 
blocked using TruStain FcXTM PLUS. Subsequently, 
the cells were incubated for 30  min at 4    C in the dark 
with fluorescence-conjugated antibodies (1:100) obtained 
from BD Biosciences: anti-CD3, anti-CD4, anti-CD8, 
anti-CD69, anti-T-cell receptor (TCR) γδ, anti-CD11b, 
anti-F4/80, and anti-GR1. The cells were washed and 
examined using a BD  LSRFortessa™ X-20 flow cytometer 
(BD Biosciences). All flow cytometric data acquired were 
analyzed with the FlowJo software (Tree Star, Ashland, 
OR, USA).

Histological analysis
The dorsal skin tissues were fixed in a 10% neutral buff-
ered formalin (10% NBF, HT501128; Merck, Darmstadt, 
Hessen, Germany) solution for 24  h. Tissues were fixed 
in paraffin-embedded Sects. (3–4 μm thick) and attached 
to slides. Histopathological changes were observed 
through hematoxylin and eosin (H and E) staining (H and 
E stain, ab245880; Abcam, Cambridge, UK) under light 
microscopy (EVOSTM M5000; Thermo Fisher Scientific, 
Waltham, MA, USA).

RNA isolation and sequencing analysis
Total RNA was isolated from skin tissue using the TRI-
zol reagent (Invitrogen, Carlsbad, CA, USA). Only four 
skin tissue samples were randomly used for each group, 
and analysis was requested by EBIOGEN.  RNA quality 
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was assessed using an Agilent 2100 bioanalyzer with the 
RNA 6000 Nano Chip (Agilent Technologies), and RNA 
quantification was performed using an ND-2000 Spec-
trophotometer (Thermo Fisher Scientific). The cDNA 
library was constructed using the QuantSeq 3’ mRNA-
Seq Library Prep Kit (Lexogen GmbH, Vienna, Austria) 
according to the manufacturer’s instructions. High-
throughput sequencing was performed as single-end 
75 sequencing using a NextSeq 500 (Illumina, Inc., San 
Diego, CA, USA).

Differential expression and ontologies of genes were 
identified using Excel-based Differentially Expressed 
Gene Analysis (ExDEGA) version 4.0.3 (EBIOGEN, 
Cambridge, MA, USA). Gene classification was based 
on searches performed using DAVID (http:// david. abcc. 
ncifc rf. gov/) and Medline databases (http:// www. ncbi. 
nlm. nih. gov/).

Statistical analysis
All experimental data are presented as the mean ± stand-
ard error of the mean (SEM) and were analyzed using 
one-way analysis of variance (ANOVA) followed by Tuk-
ey’s multiple comparison tests. Statistical significance 
between the groups was set at p < 0.05. Data visualiza-
tion was performed using GraphPad Prism (version 9.0; 
GraphPad Prism Software, La Jolla, CA, USA).

Results
Chemical components in BJIKT
The major chemical constituents of BJIKT were deter-
mined based on UHPLC Q-TOF MS analysis according 
to their relative retention time, m/z of the precursor, and 
MS/MS fragments. A total of 1293 naked features were 
detected, and 149 metabolites were putatively matched 
with the reference peaks of the primary and secondary 
metabolites. We identified 18 major compounds, includ-
ing astragaloside IV, atractylenolide III, atractyloside A, 
decursinol angelate, ferulic acid, ginsenoside Rb1, gin-
senoside Rg1, ginsenoside Rg3, glycyrrhizic acid, hes-
peretin, hesperidin, liquiritigenin, liquiritin, apioside, 
narirutin, nodakenin, saikosaponin A, and saikosaponin 
B3, which were derived from each BJIKT extract. To 
standardize the BJIKT extract, we quantified the major 
components present in it, including decursinol angelate, 
hesperidin, nodakenin, liquiritigenin, atractyloside A, and 
saikosaponin A. The respective contents of these compo-
nents were determined as follows: decursinol angelate 
(3.40 ± 0.00  mg/g), hesperidin (7.48 ± 0.01  mg/g), nodak-
enin (3.78 ± 0.12  mg/g), liquiritigenin (0.05 ± 0.04  mg/g), 
atractyloside A (0.06 ± 0.00  mg/g), and saikosaponin A 
(0.78 ± 0.02 mg/g) (Fig. 1).

Effects of BJIKT on DNCB‑induced AD symptoms in AD 
mice fed a low AhR ligand diet
To investigate the effects of BJIKT on AD-like symptoms 
in AD mice fed a low AhR ligand diet, C57BL/6 mice 
were first sensitized with multiple applications of DNCB 
on their dorsal skin and then treated daily with BJIKT for 
10 weeks (Fig. 2A). As a result of checking the final body 
weight, there was no significant difference between each 
group (Fig. 2B).

Repeated application of DNCB to mouse dorsal skin 
induced skin hypersensitivity reactions, such as ery-
thema, hemorrhage, and scarring or dryness (Fig.  2C). 
Compared to the LowAhR group, the LowAhR + AD group 
(p < 0.001) showed significantly increased epidermal 
thickness due to epidermal keratinocyte hyperplasia, 
whereas the LowAhR + AD + BJ group (p < 0.01) showed 
significantly decreased epidermal thickness compared 
to the LowAhR + AD group (Fig. 2C). Among the several 
subtypes of WBC, neutrophils (p < 0.001) and eosino-
phils (p < 0.001) showed that BJIKT suppressed the 
LowAhR + AD-induced increases in the numbers of each 
cell type to similar extents (Fig. 2D, E).

Additionally, IgE levels were significantly higher 
in the LowAhR + AD group (p < 0.001), whereas the 
LowAhR group did not show statistical significance com-
pared to the control group. However, IgE levels in the 
LowAhR + AD + BJ group (p < 0.001) were considerably 
lower than those in the LowAhR + AD group (Fig.  2F). 
Similarly, the substantially increased spleen weight 
in LowAhR + AD mice (p < 0.001) slightly decreased in 
response to treatment with BJIKT treatment; however, 
the difference was not significant (Fig. 2G).

In the culture supernatant of splenocytes, the LowAhR 
and LowAhR + AD groups showed a considerable increase 
in IL-4 (p < 0.05, LowAhR; p < 0.05, LowAhR + AD) and 
IFN-γ (p < 0.05, LowAhR; p < 0.001, LowAhR + AD) levels 
compared to the control group (Fig. 2H, I). However, the 
LowAhR + AD + BJ group showed a significant decrease in 
IL-4 (p < 0.001) and IFN-γ (p < 0.01) levels compared to 
the LowAhR + AD group. These findings demonstrate that 
BJIKT attenuates AD-like symptoms in AD mice fed a 
low AhR ligand diet.

Effects of BJIKT on skin barrier dysfunction in AD mice fed 
a low AhR ligand diet
To evaluate the effect of BJIKT on skin barrier dysfunc-
tion, we measured the TEWL. In general, TEWL is sig-
nificantly increased and skin hydration is decreased in 
AD compared to that in healthy individuals [23]. In this 
study, TEWL values significantly increased in the LowAhR 
(p < 0.001) and LowAhR + AD (p < 0.05) groups compared 
to those in the control group. In contrast, administration 
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Fig. 1 Chemical profiling of Bojungikgi‑tang (BJIKT). A Base peak chromatograms (BPC); B A peak spot graph representing identified metabolites; C 
Extracted ion chromatograms (EIC) of six major constituents in BJIKT; D List of major chemical constituents in BJIKT
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Fig. 2 Effects of BJIKT on 2,4‑dinitrochlorobenzene (DNCB)‑induced atopic dermatitis (AD) symptoms in AD mice fed a low AhR ligand diet. 
A Timeline for AD mice fed a low AhR ligand diet and treatment with BJIKT; B Final body weight was scored 10 weeks after AD induction; C 
Evaluation of the total dorsal skin and epithelial thickness by histological analysis; measurement of the levels of D neutrophils and (E) eosinophils 
by CBC analysis; F IgE plasma levels; G spleen weight; and the levels of H interferon‑gamma (IFN)‑γ and I interleukin (IL)‑4 in splenocytes. Number 
of experiments conducted for group comparisons: Cont, n = 6; LowAhR, n = 6; LowAhR + AD, n = 7; and LowAhR + AD + BJ, n = 6. The values are expressed 
as the means ± standard error of the mean (SEM). *p < 0.05, **p < 0.01, ***p < 0.001 according to a one‑way ANOVA followed by Tukey’s multiple 
comparisons
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of BJIKT (p < 0.001) significantly decreased the TEWL 
value compared to that in the control group (Fig. 3A).

The investigation employed RNA-sequence analysis of 
skin samples to delve into the underlying mechanisms 
pertaining to skin immune response, inflammation, and 
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Fig. 3 Effects of BJIKT on skin barrier dysfunction in AD mice fed a low AhR ligand diet. A Measurement of transepidermal water loss (TEWL) 
was performed at the end of the experiments after sensitization using TM300; RNA‑seq analysis of the expression levels of the differentially 
expressed genes B Activation of the IL‐13/4‐STAT3 axis inhibits the expression of FLG and LOR (downregulation of barrier); C IL4Rα, IL13Rα1, STAT3 
in the skin; D loricrin (LOR), involucrin (IVL), and filaggrin (FLG2) in the skin; E A representative heatmap of the RNA‑seq analysis of skin tissues. 
Number of experiments conducted for group comparisons: Cont, n = 4; LowAhR, n = 4; LowAhR + AD, n = 4; and LowAhR + AD + BJ, n = 4. The values are 
expressed as the means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 according to a one‑way ANOVA followed by Tukey’s multiple comparisons
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skin barrier function, as illustrated in Fig. 3B. The analy-
sis revealed that in the LowAhR + AD group, the IL-4Rα/
IL-13Rα1 and STAT3 pathways were activated. Activa-
tion of these pathways can lead to the downregulation of 
key genes involved in skin barrier function, namely FLG 
(Filaggrin), LOR (Loricrin), and IVL (Involucrin). This 
downregulation of skin barrier genes can compromise 
the integrity of the skin barrier and potentially contrib-
ute to immune responses and skin inflammation [24]. 
However, administration of BJIKT appeared to inhibit 
the expression of IL-4Rα/IL-13Rα1 and STAT3 (Fig. 3C), 
indicating its potential to alleviate immune responses 
and skin inflammation.

Furthermore, a significant upregulation of epider-
mal barrier homeostasis genes (LOR, IVL, and FLG2) 
was observed following BJIKT treatment (p < 0.01, 
LOR; p < 0.01, IVL; p < 0.001, FLG2; Fig.  3D). These 
genes, which were downregulated in the LowAhR and 
LowAhR + AD groups, play critical roles in maintaining 
the skin’s barrier function. Notably, many barrier-related 
molecules expressed in the granular layer are geneti-
cally mapped to the epidermal differentiation complex 
(EDC), including FLG, FLG2, LOR, and IVL. Addition-
ally, the EDC encompasses clustered gene families such 
as the S100A protein genes (S100As) and small proline-
rich protein genes (SPRRs). Significant upregulation 
of SPRRs and S100As was observed in the LowAhR and 
LowAhR + AD groups, and treatment with BJIKT sup-
pressed these increasing expression trends (Fig.  3E). 
These results indicate that BJIKT improves skin barrier 
dysfunction by regulating EDC gene expression in AD 
mice fed a low AhR ligand diet.

BJIKT upregulates AhR target genes in AD mice fed a low 
AhR ligand diet
We evaluated the expression of AhR target genes (Ahr, 
Ahrr, CYP1A1, and CYP1B1) to determine whether the 
effect of BJIKT on the skin barrier function of AD mice 
fed a low AhR ligand diet was mediated by the regulation 
of AhR signaling using RNA-seq analysis (Fig.  4A–D). 
Compared to the control group, AhR expression was 
significantly downregulated in the LowAhR + AD group 
and decreased in the LowAhR group. However, it was sig-
nificantly upregulated in the LowAhR + AD + BJ group. 
Moreover, the expressions of AhR target genes (Ahrr, 
CYP1A1, and CYP1B1) were downregulated in LowAhR 
and LowAhR + AD groups but were strongly upregu-
lated in the LowAhR + AD + BJ group. The heatmap of the 
RNA-seq data showed similar trends in the expression of 
the CYP gene family between the groups (Fig.  4E). The 
expression of CYP genes tended to be downregulated 
in the LowAhR and LowAhR + AD groups, whereas it was 

upregulated in the BJIKT-treated LowAhR + AD group, 
but not significantly. Particularly, BJIKT more specifically 
regulates the CYP1 gene family in AhR signaling, rather 
than all CYP genes. In addition, we identified the AhR 
ligand indole-3-carboxaldehyde as the major constitu-
ent in BJIKT (Fig. 4F). These results indicate that BJIKT 
contains an AhR ligand and regulates AhR signaling by 
upregulating AhR target genes in AD.

The effects of BJIKT in spleen immune cells in AD mice fed 
a low AhR ligand diet
We analyzed alteration in immune cell infiltration in 
the spleen using FACS (Fig.  5A–C). The absolute num-
bers of CD4 + /CD69 + and CD4 + /γδT + cells showed 
a significant increase in the LowAhR and LowAhR + AD 
groups, whereas the LowAhR + AD + BJ group showed 
a significant decrease in the absolute number (CD4 + /
CD69 + , p < 0.05 and CD4 + /γδT + , p < 0.001). How-
ever, there was no difference in the absolute number of 
CD4 + /CD3 + cells among groups. Similarly, the abso-
lute numbers of CD8 + /CD69 + and CD8 + / γδT + sig-
nificantly increased in the LowAhR and LowAhR + AD 
groups, whereas they were significantly decreased in the 
group receiving BJIKT group compared to those in the 
LowAhR + AD group (CD8 + /CD69 + , p < 0.01; CD8 + /
γδT + , p < 0.001). Compared to the LowAhR group, the 
absolute number of CD8 + /CD3 + cells were signifi-
cantly decreased in the LowAhR + AD group and signifi-
cantly increased by treatment with BJIKT (p < 0.05). 
These results suggest that γδT cells, despite being gener-
ally considered immunosuppressive, may exhibit unique 
functional properties that are augmented by a low AhR 
ligand diet and DNCB stimulation [25]. However, further 
experiments are needed to investigate the exact mecha-
nisms underlying this observation.

The percentages of myeloid-derived suppres-
sor cells (MDSCs; CD11b + Gr1 +) and macrophages 
(CD11b + F4/80) were significantly increased in 
the LowAhR and LowAhR + AD groups compared to 
the control group but significantly decreased in the 
LowAhR + AD + BJ group compared to the LowAhR + AD 
group (Fig.  6B, C). These findings indicate that BJIKT 
may also affect immune responses by suppressing sev-
eral immune cell subtypes. We acknowledge the lack of 
significant difference in spleen weight despite changes in 
immune cell populations and propose possible explana-
tions, including alterations in cell distribution, the bal-
ance of immune cell types, and the activation rather than 
proliferation of immune cells [26, 27], which should be 
further investigated.
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BJIKT‑induced alterations in immune markers are 
correlated with the expression levels of skin barrier‑related 
and AhR target genes
A correlation analysis was conducted to analyze the cor-
relation between immune markers and skin barrier genes 
(LOR, IVL, and FLG2) and AhR target genes (Ahr, Ahrr, 
and CYP1A1). Figure 7 shows that the levels of immune 
markers associated with barrier genes (LOR, IVL, and 
FLG2) and AhR target genes (Ahr, Ahrr, and CYP1A1) 
were negatively correlated with immune cell subtypes. 
However, CYP1B1 expression was not significantly asso-
ciated with immune marker expression. These results 

indicate that the immune response induced by BJIKT 
may alter the expression of the skin barrier and AhR tar-
get genes.

Discussion
The role of AhR, a ligand-activated transcription fac-
tor involved in immune regulation and inflammation, 
is closely linked to chronic inflammatory skin diseases 
like AD and psoriasis [28]. We aimed to investigate the 
effects of the herb BJIKT in AD mice fed a diet low in 
AhR ligands, and to understand how AhR signaling 
influences AD development. It is important to note 
that our research has limitations, including the lack 
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of direct comparisons between AD mice fed a normal 
diet and a low AhR ligand diet, as well as the absence 
of comparisons with positive control drugs or clinical 
drugs used for AD treatment. Future studies will aim to 
address these limitations to better evaluate the efficacy 
and limitations of BJIKT as a therapeutic agent for AD, 
thereby enhancing the interpretation and application of 
our findings in the field.

The results of the study demonstrated that BJIKT effec-
tively improved AD symptoms by addressing multiple 
aspects of the condition. It reduced skin thickness, levels 
of blood neutrophils and eosinophils, IgE levels, and cer-
tain cytokines associated with immune response (IFN-γ 
and IL-4) in splenocytes. Additionally, BJIKT enhanced 
skin barrier function by reducing transepidermal water 
loss (TEWL) and modulating the expression of genes 
associated with skin barrier function and AhR signal-
ing, particularly those related to the IL-4Rα/IL-13Rα1 
and STAT3 pathways (Fig. 3C). These effects resulted in 
attenuated immune responses and inflammation [24].

Many protein products of epidermal differentiation 
encoded by EDC genes are differentially affected in AD 

and psoriasis via the AhR pathway [29]. So, we confirmed 
the expression of genes involved in the epidermal differ-
entiation complex (EDC), such as SPRRs and S100As, in 
the skin. They found that these genes were significantly 
upregulated in the LowAhR and LowAhR + AD groups, 
but down-regulated in the BJIKT-treated LowAhR + AD 
group. Moreover, the study revealed that a low AhR 
ligand diet decreased the expression of genes in the 
canonical pathway of AhR signaling, including CYP1A1, 
CYP1B1, and Ahrr. However, BJIKT treatment was able 
to regulate the expression of AhR target genes in the 
canonical pathway and alleviate AD symptoms. These 
findings supported previous research emphasizing the 
role of AhR signaling in regulating genes involved in 
the EDC, which are crucial for skin barrier function and 
inflammation [30].

AhR plays a major role in several immune cell popula-
tions, such as lymphokine-activated killer cells, cytotoxic 
T cells, natural killer cells, B lymphocytes, T lympho-
cytes, and macrophages [31–34]. However, most stud-
ies have focused on immune modulation in the skin and 
intestine, and studies on the systemic immune system 
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are rare. The study revealed that AD mice fed a low AhR 
ligand diet had higher levels of splenic immune cells in 
CD4 + and CD8 + T cells, macrophages, and MDSCs com-
pared to the control group. These high immune cell levels 
were reduced by administration of BJIKT. Furthermore, 

the levels of immune cells negatively correlated with the 
expression levels of genes related to the skin barrier and 
AhR signaling, suggesting a connection between low AhR 
ligand diet, immune response aggravation, and AD. While 
we acknowledge the limitation of not directly assessing 
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immune cells in the skin, we gained insights into the 
involvement of AhR signaling in the skin immune response 
by exploring the expression of AhR and its downstream 
signaling molecules in skin tissue through RNA-seq data.

The study also highlighted the importance of AhR 
ligands in maintaining skin barrier integrity. Previous 
studies have shown that coal tar, an AhR ligand, can 
repair the skin barrier in AD through regulation of the 
AhR pathway [35, 36]. Similarly, we found that BJIKT 
contains an AhR ligand called indole-3-carboxaldehyde, 
which exhibited protective roles against AD and exerted 
anti-inflammatory effects through AhR-CYP1A1 signal-
ing in AD mice fed a low ligand diet.

However, the components of BJIKT, such as hesperi-
din [37], nodakenin [38], and liquiritigenin [39], have been 
shown to be effective against AD through mechanisms 
other than AhR signaling, such as suppressing Th17 activ-
ity or T cell activation. Therefore, the effect of BJIKT on AD 
may not be solely attributed to the regulation of the AhR 
signaling pathway. Further studies are needed to explore the 
combined effects of the AhR ligand and the components of 
BJIKT, as well as the previously reported effects of BJIKT 
components on the AhR signaling pathway, to gain a more 
precise understanding of the underlying mechanisms.

Nevertheless, the findings of this study highlight the 
molecular biological mechanism of AD under low AhR 
ligand diet conditions. The findings provided insights 
into the development of therapeutic agents for AD and 
laid a foundation for future research exploring the use of 
various AhR ligands in the treatment of this condition.

Conclusions
The findings of this study present compelling evidence 
that BJIKT, as a treatment agent, demonstrated protec-
tive effects against AD induced by DNCB in mice fed 
a low AhR ligand diet. These results are particularly 
intriguing because BJIKT not only contributed to main-
taining a healthy skin environment but also exerted its 
effects by modulating the immune response through 
alterations in the AhR pathway.
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