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Abstract 

Background Expansins (EXP) are important enzymes that are involved in the extension of plant cells and regula-
tion of root configurations, which play important roles in resisting various stresses. As a model medicinal plant, Salvia 
miltiorrhiza is well recognized for treating coronary heart disease, myocardial infection, and other cardiovascular 
and cerebrovascular diseases; however, the SmEXP gene family has not yet been analyzed.

Methods The SmEXP family was systematically analyzed using bioinformatics. Quantitative real-time PCR 
was employed to analyze the tissue expression patterns of the SmEXP family, as well as its expression under abscisic 
acid (ABA) treatment and abiotic stress. Subcellular localization assay revealed the localization of SmEXLA1, SmEXLB1, 
and SmEXPA2.

Results This study identified 29 SmEXP that belonged to four different subfamilies. SmEXP promoter analysis sug-
gested that it may be involved in the growth, development, and stress adaptation of S. miltiorrhiza. An analysis 
of the expression patterns of SmEXP revealed that ABA,  Cu2+, and NaCl had regulatory effects on its expression. 
A subcellular localization assay showed that SmEXLA1 and SmEXLB1 were located on the nucleus and cell membrane, 
while SmEXPA2 was located on the cell wall.

Conclusion For this study, the SmEXP family was systematically analyzed for the first time, which lays a foundation 
for further elucidating its physiological and biological functionality.
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Introduction
Salvia miltiorrhiza Bunge (S. miltiorrhiza) is a well-rec-
ognized model medicinal plant, the dried roots of which 
are used for the treatment of cardiovascular and cerebro-
vascular diseases [1–4]. Plant cell walls are dynamic and 

complex structures that determine the shapes and sizes 
of plant cells by controlling the degree and direction of 
cell elongation [5]. Through a combination of cell wall 
loosening and cell expansion, plant cells have the capac-
ity grow to more than 100 times the size of their initial 
meristem [6].

EXPANSIN (EXP) is a key regulator of cell wall elonga-
tion during plant growth [7, 8], which can be divided into 
four subfamilies: EXPA (Expansin A), EXPB (Expansin B), 
EXLA (Expansin-like A), and EXLB (Expansin-like B) [9]. 
EXP are a multi-gene family that are widely distributed 
in angiosperms, gymnosperms, ferns, and bryophytes. 
To date, the genome-wide identification and functional 
verification of EXP has been conducted for many plants, 
including Arabidopsis thaliana, Oryza sativa [10], Nico-
tiana tabacum [11], Solanum lycopersicum [12], Populus 

*Correspondence:
Donghao Wang
wangdonghao@snnu.edu.cn
Zhezhi Wang
zzwang@snnu.edu.cn
1 Key Laboratory of the Ministry of Education for Medicinal Resources 
and Natural Pharmaceutical Chemistry, National Engineering Laboratory 
for Resource Development of Endangered Crude Drugs in Northwest 
of China, Shaanxi Normal University, Xi’an 710062, China
2 Xi’an Botanical Garden of Shaanxi Province (Institute of Botany 
of Shaanxi Province), Xi’an, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13020-023-00867-w&domain=pdf
http://orcid.org/0000-0002-6111-1551


Page 2 of 15Li et al. Chinese Medicine           (2024) 19:22 

[13], Triticum aestivum [14], Glycine max [15], and 
Malus domestica [16].

EXP was initially discovered in Cucumis sativus in 
1992. EXP can induce heat deactivated cell walls to 
stretch again; however, the stretching process is influ-
enced by pH with the highest activity of this expansive 
protein occurring in the range of from pH 4.5–6. For 
example, AtEXPA1 requires low pH activation to exert 
the relaxation of cell wall activities [17]. There is ample 
evidence that EXP can relax and stretch the cell wall, 
albeit the mechanism is not clear. Currently, there are 
two hypotheses regarding the kinetics of EXP, with one 
being the acid growth theory and the other, the mecha-
nistic non-enzymatic action model [10, 18].

The primary function of EXP is to cleave the non-cova-
lent bonds between cellulose and other polysaccharides 
in the cell wall, such that it becomes relaxed and increas-
ingly flexible to regulate plant growth and development 
[19, 20]. In addition to relaxing cellular walls, EXP also 
plays an important role in seed germination [21], leaf and 
stem development [22, 23], root elongation [24], fruit rip-
ening [25], and plant stress resistance [26, 27].

It was found that the overexpression of NtEXPA1 in 
tobacco resulted in increased leaf and stem sizes [28]. 
OsEXPB2 affects root structures and plant heights by 
inhibiting cell growth [29]. Interference with OsEXPA8 
in rice results in shorter primary fibrous roots and fewer 
lateral roots [30]. Other root hair EXPAs (OsEXPA30 and 
AtEXPA7) can complement the OsEXPA17 mutant to 
restore root hair elongation [31]. GmEXPB2 can adapt 
soybean to low phosphorus stress by modifying lateral 
root development and it configurations [32]. HvEXPB7 
has also been shown to be associated with root hair for-
mation in Hordeum vulgare, which was significantly 
inhibited after HvEXPB7 silencing [33]. Another study 
showed that SlEXP1 expression was closely related to 
the degree of fruit softening during fruit ripening [34]. 
ZmEXPB15, ZmNAC11, and ZmNAC29 impact the early 
development of corn kernels and regulates the grain size 
and weight by promoting the elimination of nucellar tis-
sue [35]. Further, GhEXPA3-1 promotes fibrocyte elon-
gation through the brassinolide signaling pathway [36].

Studies have revealed that EXP plays an important 
role in plant responses to abiotic stress. Compared with 
wild-type tobacco, NtEXPA11 overexpressed strains had 
strong roots, significantly increased leaf and internode 
length, greater cell wall flexibility, and improved toler-
ance to drought and salt stress [37]. The overexpression 
of EXPA4 in tobacco confers greater tolerance to salt and 
drought stress, which results in less cell damage and a 
higher fresh weight [38]. The overexpression of TaEXPA2 
increased drought stress tolerance in transgenic tobacco 
[39] as well as wheat [40]. CqEXPA50 plays an important 

role in the exposure of quinoa seedlings to salt stress 
[41]. The overexpression of AtEXP3 and AtEXPB1 can 
enhance the sensitivity of Arabidopsis to salt stress [42]. 
OsEXPA7 enhances salt stress tolerance by coordinating 
sodium transport, ROS clearance, and cell wall loosening 
[43]. Further, plant cell walls can prevent heavy metals 
from entering its interior [44, 45].

Multiple studies have indicated that EXP can affect 
almost every plant growth stage. Meanwhile, S. miltior-
rhiza is affected by several abiotic stress factors such 
as salt, drought, and heavy metals in the soil during its 
growth process. As the first barrier against external 
environmental stress, cell walls play a critical role in cell 
responses to external stress. Thus, it is essential to iden-
tify and analyze SmEXP to establish a foundation for the 
further study of its functionality.

Materials and methods
Identification and characterization of SmEXPs
The AtEXPs sequence was obtained from the TAIR 
database (https:// www. arabi dopsis. org/) [46], while 
the OsEXPs sequence was acquired through the Rice 
Genome Annotation Project (http:/ /rice.plantbiology.
msu.edu/). The S. miltiorrhiza genome file was obtained 
from the China Traditional Chinese Medicine Data 
Center (https:// ngdc. cncb. ac. cn/). BioEdit software 
(Borland, Scotts Valley, CA, USA) was used to compare 
AtEXPs with the S. miltiorrhiza protein database to 
obtain candidate proteins. The candidate SmEXPs pro-
tein sequences were submitted to InterProScan (https:// 
www. ebi. ac. uk/ inter pro/), and a CD search (https:// www. 
ncbi. nlm. nih. gov/ cdd/) was conducted to further con-
firm whether Pollen_allerg_1 (PF01357) and DPBB_1 
(PF03330) domains existed in the retrieved candidate 
SmEXPs protein sequences. It was confirmed that there 
were 29 SmEXPs in S. miltiorrhiza.

Phylogenetic analysis and cis‑elements analysis
The phylogenetic tree of AtEXPs, OsEXPs, and SmEXPs 
proteins was constructed using MEGA X [47], which was 
beautified with the online website Evolview (http:// www. 
evolg enius. info/ evolv iew/).

Promoter sequences of 29 SmEXPs (−  1000  bp) were 
used to predict the cis-elements of the SmEXPs pro-
moter region using PlantCARE (http:// bioin forma tics. 
psb. ugent. be/ webto ols/ plant care/ htmL/) [48], whereas 
Tbtools v1.089 software (Chengjie Chen et  al., China) 
[49] was used for visualization.

Physicochemical properties, gene structure, and Ka/Ks 
analysis
The SmEXP sequences were submitted to the Prot-
Param tool website (https:// web. expasy. org/ protp aram/) 
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[50] for an analysis of their amino acid numbers (AA), 
molecular weights (Mw), protein instability indices, iso-
electric points (pH), and grand average of hydropathic-
ity (GRAVY) and aliphatic indices. Plant-mPLoc (http:// 
www. csbio. sjtu. edu. cn/ bioinf/ plant- multi/) was used for 
subcellular localization analysis. The gene structures and 
motifs of the SmEXPs were studied by Tbtools, and the 
Ka and Ks values were calculated using TBtools.

GO analysis and prediction of protein interactions
GO and KEGG analysis was performed using OmicShare 
tools, a free online platform for data analysis (https:// www. 
omics hare. com/ tools). The Orthovenn2 website (https:// 
ortho venn2. bioin fotoo lkits. net/ home) was employed to 
search for the homologous EXP genes of A. thaliana and 
S. miltiorrhiza, while the sequence consistencies of AtEXP 

and SmEXP were calculated using DNAMAN (Lynnon-
Biosoft, USA). The homologous genes of Arabidopsis that 
corresponded to SmEXPs were uploaded to the String10 
website (http:// string- db. org/) to visualize the interaction 
network.

Plant materials and treatments
Salvia miltiorrhiza plants were grown in a field nursery. 
The four tissue components of two-year-old S. miltior-
rhiza plants (roots, stems, leavess, and flowers) were 
obtained from a resource nursery. The 2-month-old S. 
miltiorrhiza tissue culture seedlings were employed 
for hormone and stress treatments. The 2-month-old 
S. miltiorrhiza plants were sprayed with 100  μM ABA, 
100 mm NaCl, and 200 μM  Cu2+, respectively, and then 
sampled according to selected time points.

Table 1 Physicochemical properties of SmEXPs. Nomenclature, peptide lengths, molecular weights (MW), theoretical isoelectric 
points (pI), instability indices, aliphatic indices, Grand Average of Hydropathicity (gravy)

Gene name AA Mw(kDa) pI Instability index Aliphatic index GRAVY

SmEXPA1 247 26.57 7.54 31.96 71.94 − 0.011

SmEXPA2 253 26.99 8.96 32.57 70.28 − 0.011

SmEXPA3 245 26.37 9.57 36.58 62.94 − 0.214

SmEXPA4 247 26.64 8.66 28.37 70.73 − 0.134

SmEXPA5 255 27.12 8.07 33.17 66.27 − 0.196

SmEXPA6 248 27.01 9.63 39.47 72.74 − 0.019

SmEXPA7 248 26.24 9.53 39.43 69.72 − 0.077

SmEXPA8 247 26.05 9.25 37.59 62.87 − 0.106

SmEXPA9 263 28.22 9.3 29.92 71.33 − 0.003

SmEXPA10 261 28.00 9.64 29.33 72.95 − 0.012

SmEXPA11 261 28.09 9.59 33.07 72.22 − 0.025

SmEXPA12 256 27.87 9.46 33.92 65.98 − 0.082

SmEXPA13 251 26.74 9.21 43.61 60.32 − 0.11

SmEXPA14 255 27.65 8.95 30.02 60.82 − 0.177

SmEXPA15 256 27.82 9.33 30.86 61.02 − 0.141

SmEXPA16 264 28.47 8.77 37.54 81.36 0.013

SmEXPA17 250 27.32 8.16 36.39 74.2 − 0.104

SmEXPA18 260 28.26 6.79 30.72 70.08 − 0.072

SmEXPA19 265 28.44 9.05 21.73 65.92 0.026

SmEXPA20 252 27.43 9.21 23.88 63.17 − 0.015

SmEXPA21 328 36.19 6.45 37.15 53.29 − 0.787

SmEXLA1 263 28.47 8.47 41.54 82.81 − 0.059

SmEXLB1 256 28.03 6.29 26.26 81.13 − 0.075

SmEXLB2 257 27.87 4.83 36.61 72.92 − 0.184

SmEXPB1 253 27.08 8.45 38.69 75.97 − 0.051

SmEXPB2 250 26.52 7.45 34.8 79.28 0.088

SmEXPB3 262 28.81 5.42 42.17 70.34 − 0.307

SmEXPB4 267 28.33 5.25 43.2 65.84 − 0.153

SmEXPB5 241 26.12 8.89 43.89 72.86 − 0.188

http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/
http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/
https://www.omicshare.com/tools
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RNA extraction and quantitative real‑time PCR (qRT‑PCR) 
analysis
For qRT-PCR analysis, the total RNA was extracted from 
the S. miltiorrhiza plants using Plant Total RNA isolation 
kits (Aidlab, Beijing, China). Reverse transcriptase was 
employed to reverse transcribe the whole RNA to cDNA 
(Invitrogen, Waltham, MA, USA).

All qPCR assays were performed with the CFX96 real-
time system (Bio-Rad, USA) using S. miltiorrhiza β-actin 
(DQ243702) [51] as the internal control, and quantifica-
tion was performed by SYBR (Takara, Japan). Each reac-
tion had three biological and technical replicates, using 

40-fold diluted cDNA as a template. The expression of 
SmEXPs was calculated via the comparative CT method 
 (2−ΔΔCT) [52]. One-way ANOVA was employed to exam-
ine the statistical significance of the data. The primer 
sequences used in this study are listed in Additional file 1: 
Table S1.

Subcellular localization of SmEXPA2, SmEXLA1, 
and SmEXLB1
The SmEXPA2, SmEXLA1, and SmEXLB1 without 
stop codons were cloned into the pEarleyGate103 
(35-GFP) vector to obtain the recombinant vector 

Fig. 1 Phylogenetic relationships between EXP sequences. The full-length amino acid sequences of SmEXP, AtEXP, and OsEXP were used 
to construct the phylogenetic tree using MEGA X via the neighbor-joining (NJ) method. The value at the branch is the confidence level determined 
by performing 1000 bootstrap tests
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GFP-SmEXPA2/SmEXLA1/SmEXLB1. The recombi-
nant vector GFP-SmEXPA2/SmEXLA1/SmEXLB1 and 
35-GFP were transformed to Agrobacterium EHA105. 
The bacterial solution carrying GFP-SmEXPA2/
SmEXLA1/SmEXLB1 and 35-GFP were impregnated 
with onion epidermis and cultured for 2  days, respec-
tively. After soaking, the onion skin was cultured in the 
dark on MS medium for 2 days, and then observed with 
a fluorescence microscope (Leica DM6000B, Wetzlar, 
Germany).

Result
Identification of SmEXP family
A total of 29 SmEXPs in the S. miltiorrhiza genome 
were found to contain both Pollen_allerg_1(PF01357) 
and DPBB_1(PF03330) domains. The sequences of each 
SmEXPs are shown in Additional file  2. The physico-
chemical properties of SmEXPs were then further ana-
lyzed (Table  1). The number of amino acids encoded 
by SmEXPs ranged from 241 to 328  aa, whereas the 
molecular weights of the proteins ranged from 26.05 
to 36.19  kDa. The SmEXPs had a pI that ranged from 
between 4.83 and 9.64.

Furthermore, the GRAVY of SmEXPs was predicted to 
determine the hydrophilic and hydrophobic properties 
of the SmEXPs. The analysis revealed that 26 SmEXPs 
belonged to hydrophilic proteins, and three SmEXPs 
were hydrophobic proteins. SmEXPA21 exhibited the 
strongest hydrophilicity, while SmEXPB2 showed the 
greatest hydrophobicity. There were 24 SmEXPs with a 
low Instability index (Instability index < 40), indicating 
that most SmEXPs were stable, which is necessary for 
their functionality and the maintenance of normal plant 
growth. Subcellular localization prediction showed that 
all SmEXPs were localized to the cell wall.

Phylogenetic and Ka/Ks analyses
To explore the phylogenetic relationships between the 
SmEXPs, AtEXPs, and OsEXPs, 136 protein sequences 
were compared and phylogenetic trees were constructed 
(Fig. 1). The results revealed that the EXP members of S. 
miltiorrhiza, A. thaliana, and O. sativa could be divided 
into EXPA, EXPB, EXLA, and EXLB subfamilies. The 
SmEXPA subfamily, with the highest number, included 
21 members. Next, the SmEXPB subfamily had five 
members, the SmEXLA subfamily had one member, and 
the SmEXLB subfamily had two members.

According to the sequence similarity of the SmEXP 
family, 11 homologous gene pairs were selected for pre-
diction (Table  2). It was predicted that the Ka/Ks ratio 
of all gene pairs were less than 1. This indicated a strong 
purifying selection in the evolution of the SmEXP fam-
ily that tended to be more stable, which was conducive 
to maintaining the conservation of gene family function-
ality. The Ka/Ks ratio of the SmEXPA12&SmEXPA13 
group was highest, which indicated that the evolution 
rate of this group was faster. Conversely, the Ka/Ks ratio 
of the SmEXPA6&SmEXPA7 group was lowest, which 
implied that the amino acid sites in this group were more 
conserved and not easily changed.

Motif and gene structure analyses
The gene structures and conserved motifs within each 
subfamily were almost consistent (Fig. 2A). Motif 5 was 
present in all subfamilies, while motif 6 was present in all 
SmEXPA subfamilies (except SmEXPA21). Motif 7 was 
present in all SmEXPB proteins (except for SmEXPB4) 
(Fig.  2B). The motif analysis revealed that the proteins 
translated from genes in the same subfamily had simi-
lar amino acid structures, which may have been related 
to tandem repetition, random repetition, and insertion 
during the genome evolution process. Most SmEXPs 
contained one-four introns, SmEXPA tended to have 
two introns, and SmEXPB tended to have three introns 
(Fig. 2C).

Cis‑element SmEXP analysis
A total of 12 cis-elements were predicted, while the 
GATA-motif was associated with light response. The 
ABRE, TGACG-motif, P-box, and TCA-element were 
associated with hormone responses, and the WUN-
motif was associated with wound response. Circadian 
was associated with circadian control, whereas CAT-
box and CCG TCC -box were associated with tissue-
specific and developmental associations, whereas 
MBS, Myb-binding sites, and LTR were correlated 
with abiotic stress (Fig.  3). The analysis results sug-
gested that SmEXPs may have played important roles 

Table 2 Ka/Ks values of homologous SmEXP gene pairs

Seq_1 Seq_2 Ka Ks Ka/Ks Purify 
selection

SmEXPA1 SmEXPA2 0.120933521 0.971354874 0.124499834 Yes

SmEXPA1 SmEXPA3 0.137213793 1.49460299 0.091806181 Yes

SmEXPA2 SmEXPA3 0.14271441 1.63256906 0.087417074 Yes

SmEXPA6 SmEXPA7 0.136601905 2.091241878 0.065320949 Yes

SmEXPA6 SmEXPA8 0.182700541 2.074914015 0.088052102 Yes

SmEXPA7 SmEXPA8 0.087005787 0.74967307 0.116058306 Yes

SmEXPA9 SmEXPA10 0.097360801 0.490746045 0.198393451 Yes

SmEXPA12 SmEXPA13 0.055819961 0.088892722 0.627947487 Yes

SmEXPA14 SmEXPA15 0.137684079 1.800801653 0.076457104 Yes

SmEXPA19 SmEXPA20 0.148863933 0.841209287 0.176964205 Yes

SmEXPB2 SmEXPB3 0.348582239 0.966533627 0.360651952 Yes
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in the photoresponse, hormonal response, abiotic stress 
response-related, tissue-specific, and developmental 
responses.

GO annotation and prediction of protein interactions
The GO annotation was divided into three levels 
(molecular function (MF), biological process (BP), and 
cellular component (CC)). The SmEXPs had only bio-
logical process and cellular component annotations 
and GO annotation assisted with understanding the 
functions of proteins at the molecular level. At the CC 

level, the SmEXPs were primarily enriched in the extra-
cellular region, while at the BP level the SmEXPs were 
primarily enriched in cellular processes, cellular com-
ponent organization, or biogenesis (Fig. 4A).

Orthologous genes often have similar functions 
[53]; thus, the Arabidopsis interaction network to was 
used to map the potential interactive SmEXP network. 
OrthoVenn2 was employed to screen the ortholo-
gous genes of SmEXP in the Arabidopsis database 
(Table  3). The sequence alignment results of ortholo-
gous genes are shown in Additional file 3: Fig. S1. The 

Fig. 2 Evolutionary tree, conserved motifs, and gene structures of SmEXP family. A Phylogenetic relationship between SmEXPs. B Conserved motifs 
of SmEXPs. C Exon–intron structure of SmEXP. Yellow rectangles refer to UTR, and green rectangles refer to CDS
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results indicated that the sequence consistency of these 
13 pairs of orthologous genes was > 50%. The results 
showed that AtEXPA4 could interact with AtEXPB3, 
and AtEXPA8 could interact with AtEXPA11. The 
interactive network of AtEXP18 was rich, and AtEXP18 
could interact with another 10 genes to facilitate its 
functions (Fig. 4B).

Analysis of SmEXP tissue expression patterns
To explore the tissue expression patterns of SmEXPs, 
qRT-PCR was used to detect the expression levels of 18 
SmEXPs members in four organs (roots, stems, leaves, 
and flowers) of S. miltiorrhiza (Fig.  5). The results 
showed that although SmEXP members were expressed 
in roots, stems, leaves, and flowers, their expression 
levels generally varied. The same genes had significant 
differences in their expressions in the four organs, and 
most SmEXPs had low expression levels in roots and 
high expression levels in flowers.

The SmEXPA5 expression level was highest in the 
leaves and flowers, which indicated that it played 

important roles in their growth. The expression levels of 
SmEXPA2 and SmEXLA1 were highest in the root, imply-
ing their important roles in this organ.

Analysis of SmEXP expression patterns under ABA 
treatments
The analysis of cis-acting elements based on SmEXP 
promoters revealed that SmEXP members had a large 
number of ABA responsive elements. S. miltiorrhiza was 
treated with 100 μM of ABA and sampled at 0 h, 10 min, 
30 min, 1 h, 3 h, 6 h, 12 h, and 24 h. The expression levels 
of 21 SmEXPs genes were detected by qRT-PCR (Fig. 6).

The results revealed that all 21 SmEXPs responded to 
ABA treatments, and ABA could negatively regulate 
the expressions of genes such as SmEXPA1, SmEXPA3, 
SmEXPA5, SmEXPA7, SmEXPA8, SmEXPA10, 
SmEXPA11, SmEXPA14, and SmEXPB5, etc. After 6  h 
of ABA treatment, the expression level of SmEXPA5 
decreased ~ 1341 times, while after 1 h of ABA treatment 
the expression level of SmEXLA1 increased ~ 32 times. 
These results indicated that SmEXPA5 and SmEXLA1 
played a more important role in responding to ABA 
treatments in contrast to other SmEXPs.

Fig. 3 Predicted cis-elements in the SmEXPs prompters (− 1000 bp). Different cis-elements are represented by different colors
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Analysis of SmEXP expression patterns under NaCl 
treatments
After S. miltiorrhiza was treated with 100 mM NaCl for 
0 h, 10 min, 1 h, 3 h, 6 h, 12 h, and 24 h, and the gene 
expression levels of 21 SmEXPs members were detected 
by qRT-PCR (Fig.  7). The results indicated that after 
the 100  mM NaCl treatment (except for SmEXPB5) the 

expression levels of the other SmEXP were not signifi-
cantly altered, as were most of the upregulated genes. 
The expression levels of SmEXPA2, SmEXPA4, and 
SmEXPA21 were upregulated ~ 149-fold, 246-fold, and 
170-fold respectively at 24 h, whereas the expression level 
of SmEXPA3 was downregulated by ~ 36-fold at 30 min. 
These results indicated that the SmEXPA2, SmEXPA4, 
SmEXPA21, and SmEXPA3 played more important roles 
in the responses of the SmEXP family under salt stress.

Analysis of SmEXPs expression patterns under  Cu2+ 
treatments
Following the treatment of S. miltiorrhiza with 200  μM 
 Cu2+ for 0 h, 10 min, 30 min, 1 h, 3 h, 12 h and 24 h, the 
gene expression levels of 19 SmEXPs members were 
detected by qRT-PCR (Fig.  8). Following the exogenous 
application of  Cu2+ (except for SmEXPA15) the expression 
levels of most SmEXPs exhibited significant changes. The 
expression level of SmEXPA3 decreased ~ 42 times after 
1  h of treatment with  Cu2+, while the expression level of 
SmEXLB1 increased 22 times after 24 h of treatment. These 
results indicated that SmEXPA3 and SmEXLB1 played 
important roles in the SmEXP family when S. miltiorrhiza 
was contaminated with heavy metals.

Fig. 4 Functional analysis. A GO terms enriched with SmEXPs. B Protein–protein interaction networks of SmEXPs. The strength of the protein 
interaction is shown by the line’s thickness

Table 3 Orthologous SmEXP and AtEXP genes

SmEXP Name AtEXP Name AtGene ID Sequence identity

SmEXPA1 AtEXPA8 AT2G40610 75.10%

SmEXPA14 AtEXPA11 AT1G20190 69.80%

SmEXPA19 AtEXPA18 AT1G62980 60.38%

SmEXPB4 AtEXPB2 AT1G65680 53.09

SmEXPA7 AtEXPA15 AT2G03090 81.03%

SmEXPA12 AtEXPA6 AT2G28950 80.54%

SmEXPA11 AtEXPA4 AT2G39700 79.69%

SmEXPA16 AtEXPA13 AT3G03220 71.91%

SmEXLB1 AtEXLB1 AT4G17030 57.75%

SmEXPB1 AtEXPB3 AT4G28250 51.52%

SmEXPA17 AtEXPA20 AT4G38210 54.47%

SmEXLA1 AtEXLA2 AT4G38400 62.41%

SmEXPA18 AtEXPA23 AT5G39280 50.36%
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Subcellular localization of SmEXLA1, SmEXLB1, 
and SmEXPA2
To reveal the potential functions of SmEXLA1, SmEX-
LB1m, and SmEXPA2 we developed GFP-SmEXLA1, 
GFP-SmEXLB1, and GFP-SmEXPA2 protein expres-
sion vectors, and used 35-GFP vector as positive con-
trol. These vectors were then transferred into the inner 
epidermis of onion and the transient expression was 
observed under laser confocal microscopy. The positive 
control 35-GFP was expressed in the cytoplasm and 
nucleus, which was consistent with the biological state. 
The results confirmed that SmEXLA1 and SmEXLB1 

were localized in the nucleus and cell membrane, and 
SmEXPA2 was localized in the cell wall (Fig. 9).

Discussion
EXP is a protein that has the capacity to relax the cell 
walls of plants, which is extensively found in various 
plants and widely regarded as a key regulator of cell wall 
extension during the growth of plants [8]. In this study, 
SmEXP was identified and analyzed at the whole genome 
level. A total of 29 SmEXPs were identified based on the 
criteria containing both Pollen_allerg_1 and DPPB_1 
domains [9].

Fig. 5 Expression levels of SmEXP in roots, stems, leaves, and flowers. The transcript levels were analyzed using the qRT-PCR. Data are shown 
as means ± SD, n = 3. Asterisks indicate significance differences from roots, as determined by the one-way ANOVA Dunnett’s test (*P < 0.05; **P < 0.01)
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Through phylogenetic analysis, SmEXPs were found 
to be distributed among four subfamilies, 21 SmEXPA, 5 
SmEXPB, 1 SmEXLA, and 2 SmEXLB, which is similar 
to the subfamily proportions of most species. However, 
the number of SmEXP was generally lower than that of 
other plants [e.g., A. thaliana (35), O. sativa (58), Moso 
Bamboo (82) [54], Solanum tuberosum [55] (34), and Zea 
mays (88)] [56]. This indicated that repetitive events or 
the double amplification of EXP in the genome occurred 
less frequently during the evolutionary process of S. 

miltiorrhiza, which resulted in fewer members of the 
gene family.

Orthologous genes typically retain similar biological 
functions; thus, the identification of orthologous genes is 
very important in terms of the functional data of model 
plants to predict the functionalities of non-model plant 
genes [57]. Through a comparative investigation, 13 pairs 
of orthologous genes were selected from SmEXP and 
AtEXP, with a sequence consistency of > 50%. SmEXPA11 
and AtEXPA4 were orthologous genes with a sequence 

Fig. 6 Expression of SmEXP treated with 100 μM ABA for 0 h, 10 min, 30 min, 1 h, 3 h, 6 h, 12 h, and 24 h, as determined by RT-qPCR. Data are shown 
as means ± SD, n = 3. Asterisks indicate significance differences from 0 min, as determined by a one-way ANOVA Dunnett’s test (*P < 0.05; **P < 0.01)
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consistency of 79.69%, where AtEXPA4 was observed to 
affect root growth [58]. The overexpression of AtEXPA4 
can enhance the elongation of primary roots, while 
knocking out AtEXPA4 decelerates the growth rate of the 
primary root, which may also affect the root growth of S. 
miltiorrhiza in SmEXPA11.

AtEXPA18 is associated with root hair-specific 13 
(RHS13), Peroxidase 7 (PER7), Proline-rich protein 3 
(PRP3), Xyloglucan 14 (XTH14 endotransglucosylase/

hydrolase protein), Pollen Ole e 1 allergen, extensin fam-
ily protein (T30B22. 16), Probable 46 (PME46 pectinest-
erase/pectinesterase inhibitor), Peroxidase (PER73) 
73, Putative pectinesterase/pectinesterase inhibitor 24 
(PME24), Pollen Ole e 1 allergen, extensin family pro-
tein (MOP10), Leucine-rich repeat Extensin-like protein 
10 genes (including 1 (LRX1)), which interacted with 
each other. These genes were associated with cell wall 
construction and root hair morphology. This prediction 

Fig. 7 Expression levels of SmEXP treated with 100 mM NaCl for 0 h, 10 min, 1 h, 3 h, 6 h, 12 h, and 24 h, as determined by RT-qPCR. Data are shown 
as means ± SD, n = 3. Asterisks indicate significant differences from 0 h, as determined by one-way ANOVA Dunnett’s test (*P < 0.05; **P < 0.01)
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Fig. 8 Expression of SmEXP treated with 200 μM  Cu2+ for 0 h, 10 min, 30 min, 1 h, 3 h, 12 h, and 24 h. As determined by RT-qPCR. Data are shown 
as means ± SD, n = 3. An asterisk indicates significance differences from 0 h, as determined by one-way ANOVA Dunnett’s test (*P < 0.05; **P < 0.01)

Fig. 9 Subcellular localization analysis of GFP-SmEXLA1, GFP-SmEXLB1, and GFP-SmEXPA2. With 35S-GFP as a positive control, the localization 
of GFP-SmEXLA1, GFP-SmEXLB1, and GFP-SmEXPA2 in onion was confirmed by fluorescence microscopy (Scale bar = 50 μm)
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suggested that SmEXPA19 (a orthologous gene of 
AtEXPA18) may also play an important role in cell wall 
development and root hair growth.

An exploration of the expression patterns of SmEXPs 
in different tissues is of great significance for func-
tional analysis. SmEXPs are expressed in the roots, 
stems, leaves, and flowers of S. miltiorrhiza, indicat-
ing that SmEXPs are broadly involved in its growth and 
development. Numerous ABA responsive elements 
were predicted for the SmEXPs promoter, and experi-
ments revelaed that all 21 SmEXPs responded to ABA 
treatments.

The large accumulation of  Na+ in soil can lead to the 
decreased water absorption capacities of plant roots, 
as well as damage to leaf cells through transpiration, 
which affects plant growth and, in severe cases, can lead 
to plant death [59–61]. When plant roots are subjected 
to salt stress, the earliest signals of this condition are 
received by the cell wall sensing system [62]. In response 
to salt stress, most SmEXP are activated, among which 
SmEXPA3 and SmEXPA4 have the strongest responses, 
and play the most important roles.

Under heavy metal stress, plants engage inherent 
mechanisms to reduce the absorption and accumulation 
of heavy metals. Excessive copper ions can alter the com-
positions and distribution of sugars in the cell walls of 
Arabidopsis roots, and copper can increase the contents 
of cellulose, hemicellulose, and pectin, which thicken cell 
walls to prevent harmful heavy metal ions from enter-
ing the cell [63]. It was found that  Cu2+ can induce most 
SmEXP expression; however, the kinetics that drive the 
exogenous  Cu2+ induction of SmEXP differential expres-
sions require further in depth investigation.

Subcellular localization prediction results revealed that 
all SmEXPs were located on the cell wall. It was verified 
through subsequent experiments that SmEXPA2 was 
indeed located on the cell wall and belonged to its com-
plement of proteins. However, SmEXLA1 and SmEXLB1 
were not present on the cell wall as predicted, but on the 
nuclear membrane. Due to the diversity of EXPANSIN 
gene functions, all candidate SmEXPs will require further 
analysis to verify their functions during the growth and 
development of S. miltiorrhiza.

Conclusion
For this study, 29 SmEXPs of S. miltiorrhiza were iden-
tified and analyzed at the whole genome level. They 
were analyzed from the aspects of systematic evolu-
tion, gene structure, protein characteristics, promoter 
analysis, tissue expression patterns, and cell locali-
zation. This revealed the basic characteristics of the 
SmEXP family and predicted their potential functions 

in biological processes, which lays a foundation for fur-
ther research on specific functions. Further, we investi-
gated the responses of SmEXP family members under 
various ABA and stress treatments, which is of great 
significance for the breeding and large scale production 
of S. miltiorrhiza.
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