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Salvianolic acid B ameliorates myocardial 
fibrosis in diabetic cardiomyopathy 
by deubiquitinating Smad7
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Abstract 

Background Salvianolic acid B (Sal B), a water-soluble phenolic compound derived from Salvia miltiorrhiza Bunge, 
is commonly used in Traditional Chinese Medicine to treat cardiovascular disease. In our previous study, Sal B pro-
tected against myocardial fibrosis induced by diabetic cardiomyopathy (DCM). This study aimed to investigate 
the ameliorative effects and potential mechanisms of Sal B in mitigating myocardial fibrosis induced by DCM.

Methods Various methods were used to investigate the effects of Sal B on myocardial fibrosis induced by DCM 
in vivo and in vitro. These methods included blood glucose measurement, echocardiography, HE staining, Masson’s 
trichrome staining, Sirius red staining, cell proliferation assessment, determination of hydroxyproline levels, immu-
nohistochemical staining, evaluation of fibrosis-related protein expression (Collagen-I, Collagen-III, TGF-β1, p-Smad3, 
Smad3, Smad7, and α-smooth muscle actin), analysis of Smad7 gene expression, and analysis of Smad7 ubiquitin 
modification.

Results The animal test results indicated that Sal B significantly improved cardiac function, inhibited collagen deposi-
tion and phenotypic transformation, and ameliorated myocardial fibrosis in DCM by upregulating Smad7, thereby 
inhibiting the TGF-β1 signaling pathway. In addition, cell experiments demonstrated that Sal B significantly inhibited 
the proliferation, migration, phenotypic transformation, and collagen secretion of cardiac fibroblasts (CFs) induced 
by high glucose (HG). Sal B significantly decreased the ubiquitination of Smad7 and stabilized the protein expression 
of Smad7, thereby increasing the protein expression of Smad7 in CFs and inhibiting the TGF-β1 signaling pathway, 
which may be the potential mechanism by which Sal B mitigates myocardial fibrosis induced by DCM.

Conclusion This study revealed that Sal B can improve myocardial fibrosis in DCM by deubiquitinating Smad7, stabi-
lizing the protein expression of Smad7, and blocking the TGF-β1 signaling pathway.

Keywords Salvianolic acid B, Diabetic cardiomyopathy, Myocardial fibrosis, TGF-β1 signaling pathway, 
Deubiquitinating Smad7
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Background
Since the 1950s, the incidence of diabetes mellitus (DM) 
has increased dramatically worldwide and has become 
a major public health concern. In China, there were 
140.9 million diabetes patients in 2021, which means one 
in five people to be diabetic [1]. Diabetic cardiomyopa-
thy (DCM), caused by DM, is one of the most common 
causes of morbidity and mortality globally, contribut-
ing to over 50% of diabetes-related deaths [2]. Myocar-
dial fibrosis is the primary pathological change in DCM 
[3, 4]. The pathological features of myocardial fibrosis 
involve excess deposition of extracellular matrix (ECM) 
[5], resulting in the thickening and stiffness of the car-
diac walls increased, leads to heart failure, cardiac dys-
function, arrhythmias, and heart attacks, and eventually 
cardiovascular death. [6, 7]. Cardiac fibroblasts (CFs) are 
one of the main effectors in fibrotic scar formation in the 
heart, owing to their role in ECM turnover [8]. When 
myocardial fibrosis occurs, CFs proliferation, migration, 
phenotypic transformation, and collagen secretion sig-
nificantly increase [9, 10]. The differentiation of CFs into 
myofibroblasts is a crucial process in myocardial fibro-
sis, with α-smooth muscle actin (α-SMA) considered 
a marker of myofibroblast differentiation [11]. Myofi-
broblasts play key roles in collagen deposition during 
fibrogenesis [12]. Inhibiting the proliferation, migration, 
phenotypic transformation, and collagen secretion of CFs 
is a dominant strategy for attenuating myocardial fibro-
sis [13, 14]. Additionally, the TGF-β1 signaling pathway 
is the most important target in DCM fibrosis pathogen-
esis [15]. Inhibition of the TGF-β1 signaling pathway can 
significantly ameliorate myocardial fibrosis in DCM [16]. 
Mothers Against decapentaplegic homolog 7 (Smad7) is a 
crucial negative feedback factor in the TGF-β1 signaling 
pathway [17, 18]. Smad7 can block the TGF-β1 signaling 
pathway by inhibiting the phosphorylation of receptor-
regulated Smads, such as Smad3 [19]. Substantial evi-
dence has shown that downregulating the expression of 
Smad7, myocardial fibrosis significantly deteriorate [20]. 
However, there are no effective treatment options for 
myocardial fibrosis induced by DCM currently. Salvinolic 
acid B (Sal B) is a phenolic compound found in Salvia 
miltiorrhiza Bunge [21], which is commonly used to treat 
cardiovascular diseases in Traditional Chinese Medicine. 
Sal B consists of three tanshinol molecules and one caf-
feic acid molecule [22]. It exhibits antioxidant proper-
ties because its structure contains multiple phenolic 
hydroxyls [23]. Our previous studies have shown that Sal 
B exhibits potential protective effects against myocardial 
fibrosis induced by DCM. In this study, we investigated 
the ameliorative effects and potential mechanism of Sal B 
on myocardial fibrosis in DCM in vivo and in vitro, pro-
viding evidence that Sal B ameliorates myocardial fibrosis 

induced by DCM, thus encouraging the use of Tradi-
tional Chinese Medicine in clinical applications.

Materials and methods
Chemicals and reagents
Sal B (purity 98%) was purchased from Chengdu Puruifa 
Technology Co., Ltd. (Chengdu, China). A high-fat and 
high-sucrose diet (60% k cal fat, D12492i) was obtained 
from Research Diets Co., Ltd. (New Jersey, USA). The 
Streptozotocin was purchased from Solaibao Biological 
Technology Co., Ltd. (Beijing, China). Metformin was 
purchased from Shanghai Yisheng Biotechnology Co., 
Ltd. (Shanghai, China). A mouse insulin ELISA test kit 
was purchased from Shanghai Overtone Biotechnology 
Co., Ltd. (Shanghai, China). Cycloheximide (CHX) was 
obtained from Master of Bioactive Molecules Biotech-
nology Co. Ltd. (New Jersey, USA). Vimentin, GAPDH, 
TGF-β1, Col-I, Col-III, and α-SMA antibodies were 
obtained from Wuhan Boster Biological Technology Co., 
Ltd. (Wuhan, China). The ubiquitin antibody and coralite 
594-conjugated goat anti-rabbit IgG was obtained from 
Proteintech Co., Ltd. (Wuhan, China).

Animal protocol
Healthy male C57BL/6J mice (body weight, 18–20 g) were 
obtained from Sibeifu Biotechnology Co., Ltd. (Beijing, 
China) and housed under controlled temperature (25 °C) 
and photoperiod (12 h:12 h light-dark cycle) conditions. 
The animal protocols were conducted in accordance with 
the NIH Guide for the Care and Use of Laboratory Ani-
mals (NIH Publication 85-23, revised 1996). The mice 
were randomly divided into control (n = 20) and DCM 
(n = 100) groups. During the 3-month period, DCM 
mice were fed a high-fat and high-sucrose diet, while 
control mice were fed a normal chow diet. Glucose tol-
erance tests (GTTs) and enzyme-linked immunosorb-
ent assay (ELISA) were performed to measure the blood 
glucose level and serum fasting insulin level to confirm 
that the mice had developed insulin resistance. A mouse 
model of type 2 diabetes was established using strepto-
zotocin (30  mg/kg/time, intraperitoneal injection every 
other day). Mouse blood glucose levels were measured 
after the last induction for 1 month when blood glucose 
levels were stably maintained. Type 2 diabetes was con-
firmed by fasting glucose levels above 11.1 mmol/L [24]. 
The type 2 diabetic mice were randomly divided into four 
groups: diabetic cardiomyopathy model group (DCM, 
normal saline 10 mL/kg/day, ig), Sal B low-dose group 
(Sal B. L, 1.5 mg/kg/day, ig), Sal B high-dose group (Sal 
B. H, 3 mg/kg/day, ig), metformin group (Met, 200 mg/
kg/day, ig), mice fed a normal chow diet were used as the 
control group (Control, normal saline 10 mL/kg/day, ig). 
All interventions were administered by gavage 6 days/
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week. The ejection fraction (EF) of the control and DCM 
groups was assessed monthly, and the DCM model was 
successfully established when the EF of the DCM group 
was significantly lower than that of the control group 
[25].

Echocardiographic recordings
Echocardiographic measurement was performed at the 
end of the study period. A 2D M-mode echocardiograph 
equipped with a 30  MHz linear transducer echocar-
diographic system (Vinno, China) was used to evaluate 
cardiac morphology and function [26]. The key meas-
urements were evaluated: left ventricular end diastolic 
volume (LVEDV), left ventricular end systolic volume 
(LVESV), fractional shortening (FS), and ejection fraction 
(EF).

Histological analysis
At the end of the experiment, the mice were anesthetized 
by inhaling isoflurane, the hearts of the mice in each 
group were collected, part of the heart tissue was used 
for analysis of protein expression, and part of the tissue 
was fixed in 4% paraformaldehyde solution in a 0.1  M 
phosphate buffer for 48 h. Following fixation, tissues were 
dehydrated and embedded in paraffin. Tissue sections 
of 4 μm thickness were prepared and mounted on glass 
slides. To evaluate the extent of fibrosis in the heart tis-
sues, histological staining techniques such as hematoxy-
lin and eosin (HE) staining, Masson’s trichrome staining, 
and Sirius red staining as described previously were used 
[27]. Quantification of fibrotic regions and total tissue 
area was performed using Image-Pro Plus (version 6.0). 
The degree of fibrosis was determined by calculating the 
ratio between the area exhibiting fibrosis and the total 
tissue area, expressed as a percentage [% fibrosis = (area 
exhibiting fibrosis/total area) * 100].

Isolation and culture of neonatal rat CFs
Neonatal rat CFs were obtained using the tryptic diges-
tion method. Briefly, hearts from neonatal Sprague Daw-
ley rats aged 1–3 d old were digested with 0.125% trypsin 
(Solaibao, T1300) at 4  °C for 6  h, followed by a 5  min 
digestion at 37  °C. This digestion process was repeated 
4–6 times. To separate CFs from cardiomyocytes, a dif-
ferential adhesion technique was employed for 90  min, 
as CFs and cardiomyocytes adhere to surfaces at differ-
ent rates [28]. The isolated CFs were cultured in Dul-
becco’s modified Eagle’s medium supplemented with 15% 
fetal bovine serum at 37 °C in a 5%  CO2 atmosphere. The 
resulting primary neonatal rat CFs were used for subcul-
turing. The second or third passage of CFs was used for 
further experiments.

Immunofluorescence staining
Immunofluorescence staining of CFs with anti-vimen-
tin and anti-Smad7 antibodies was performed to iden-
tify cells and observe the effect of Sal B on Smad7 
expression as described previously [29]. CFs were cul-
tured in 6-well plates for 24 h and incubated with dif-
ferent concentrations of glucose and Sal B medium for 
24 h or not. Cells were fixed with 4% paraformaldehyde 
for 30  min. After washing three times using PBS, the 
plate was infiltrated with 0.2% Triton-X100 (Solaibao, 
IT9100) for 20  min and blocked with 2% BSA (Solai-
bao, A8010) for 30 min. Then, the cells were incubated 
with primary antibodies (vimentin and Smad7, 1:500) 
overnight at 4  °C, washed three times using PBS and 
incubated with a secondary antibody (coralite 594-con-
jugated goat anti-rabbit IgG, 1:500) for 1 h in the dark. 
Nuclei were stained with DAPI (Solaibao, C0065) for 
5  min. Images of cells were captured by fluorescence 
microscopy (Leica, Germany). Quantification of fluo-
rescence intensity was performed using Image-Pro Plus 
software (version 6.0).

Cell proliferation evaluation
This study utilized the xCELLigence Real-Time Cell 
Analyzer system (Agilent, USA), which employs sen-
sor impedance technology to assess the cell status 
through a unitless parameter known as the cell index. 
The cell index reflects cell status by measuring the rela-
tive changes in electrical impedance in the presence 
and absence of cells in the wells [30]. The xCELLigence 
Real-Time Cell Analyzer was used to optimize the con-
centration of high glucose (HG)-induced CF prolifera-
tion and evaluate the inhibitory effect of Sal B on the 
proliferation of CFs induced by HG. Briefly, CFs were 
seeded onto E-plates (Agilent, USA) for 24  h at 37  °C 
in 100 µL of medium. The cell index of CFs was meas-
ured every 15 min after incubation with different con-
centrations of glucose and Sal B medium for 120 h. To 
eliminate any influence of differences in osmotic pres-
sure changed by HG, mannitol (Solaibao, IM0040) was 
used as a control group of osmotic pressure. The cell 
morphology was observed by HE staining as described 
previously. Briefly, CFs were seeded onto 12-well plates 
for 24  h, added to different concentrations of glucose 
and Sal B medium for 24 h, and washed with PBS three 
times. CFs were fixed with 4% paraformaldehyde for 
30 min after washing three times using PBS. HE stain-
ing was performed using an HE Staining Kit (Solaibao, 
G1120) according to the manufacturer’s protocols. 
Images of cells were captured by inverted microscope 
(Olympus, Japan).
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Cell scratch assay
CF migration was assessed by a cell scratch assay. CFs 
were cultured in 6-well plates for 24 h, the scratch area 
was made using a 100  µL pipette tip, 40 mM glucose 
and different concentrations of Sal B medium were 
added, and the plates were incubated for 24  h. Cell 
scratches were imaged via microscopy at 0 and 24  h. 
From five averaged regions, the width of the cell scratch 
area was measured by Image-Pro Plus (version 6.0). 
Migration distances after 24  h were subtracted from 
baseline distances. The relative migrating distance of 
the cells was measured as the distance of cell migration 
and the wound distance at 0 h, expressed as a percent-
age [% migration = [(wound distance at T0 h − wound 
distance at T24 h)/wound distance at 0 h)] × 100%.

Myocardial hydroxyproline concentration
The hydroxyproline (Hyp) content of the cell superna-
tants was quantified using a Hyp assay kit (Jiancheng, 
A030) according to the manufacturer’s protocols as 
described previously [31]. Microplate reader ELX800 
(Biotek, USA) was used to measure the OD values of 
the samples at 550  nm. The results were expressed as 
µg/mL of total protein.

Western blotting analysis
Protein samples were extracted from mouse heart tis-
sues and CFs. Briefly, myocardial tissue was lysed in 
200 µL of ice-cold RIPA buffer (Solaibao, R0010) con-
taining 0.2 mM PMSF (Solarbio, P0100). CFs were 
lysed using the same lysate. BCA Protein Assay Kits 
(Solarbio, PC0020) were used to determine the total 
protein concentration. Proteins were separated by 12% 
sodium dodecylsulfate-polyacrylamide gel electropho-
resis (Epizyme Biotech, PG213) and then transferred 
from the gel to polyvinylidene difluoride membranes 
(Millipore, IPVH00010). An overnight incubation with 
primary antibodies (Col-I, Col-III, α-SMA, TGF-β1, 
Smad3, Smad7, 1:1000) was performed after block-
ing the membrane with 5% bovine serum albumin. The 
membranes were incubated with the appropriate sec-
ondary antibody (1:10,000) for 1 h at room temperature 
(20 ± 5  °C). An ECL kit (Millipore, WBKLS0500) was 
used to detect bands. GAPDH (1:10,000) was used as a 
reference for total cell protein, and protein bands were 
scanned and analyzed using Image-Pro Plus (version 
6.0) for gray values. Relative protein expression = gray 
value of the target proteins/gray value of the GAPDH 
protein bands.

RNA extraction and quantitative real‑time polymerase 
chain reaction
qRT-PCR was used to investigate the mechanisms by 
which Sal B enhances the expression of Smad7 [32, 33]. 
In accordance with the standard protocol, total cellular 
RNA was extracted from CFs using the Total RNA Kit 
I. RNA (Omega, R6834) was reverse-transcribed into 
complementary DNA (cDNA) using the PrimeScript™ 
RT reagent kit (Takara, RR037A) and SimpliAmp Ther-
mal Cycler (Life Technologies,USA). CFX Manager 
3.0 A Real-Time PCR System (Bio-Rad, USA) was used 
to perform quantitative real-time PCR using SYBR® 
Premix Ex TaqTM II (Takara, RR820A). GAPDH was 
used as an internal control for mRNA expression. The 
primers were designed as follows (Table 1):

Immunoprecipitation analysis of Smad7
The inhibitory effect of Sal B on the ubiquitination of 
Smad7 was investigated by immunoprecipitation using the 
Classic Magnetic Protein A/G IP/Co-IP Kit (Epizyme Bio-
tech, YJ201) [34, 35]. CFs were divided into four groups: 
control group (5.5 mM glucose), HG group (40 mM glu-
cose), HG (40 mM glucose) + Sal B (25 µM) groups, and 
IgG negative control group, incubated for 24  h. The pro-
teasome inhibitor MG132 (Beyotime, S1748) was used at 
a final concentration of 2 µM. Cells were lysed in 500 µL 
of lysis buffer. Total protein was extracted from the cul-
tured cells using a previously described method. The 
extracted proteins were incubated with Smad7 antibodies, 
and the negative control group was incubated with rab-
bit IgG (Beyotime, A7016). The mixture was incubated at 
4 °C overnight with gent shaking to form antibody-antigen 
complexes. To obtain the antigen-antibody-magnetic bead 
mixture, pretreated magnetic beads were added to the 
antigen-antibody mixture and incubated overnight at 4 °C. 
Finally, the antigen-antibody complex was eluted from the 
mixture, and the beads were boiled for 5 min. The super-
natant was collected for western blot analysis. Smad7 was 
detected using an anti-ubiquitin antibody (1:1000).

Statistical analysis
The data were analyzed using GraphPad Prism statis-
tical software (version 5.0). Data are presented as the 
mean ± standard deviation (SD). To assess the significant 
differences among the groups, an analysis of variance 

Table 1 Primer sequences for qRT-PCR

Gene Forward 5′–3′ Reverse 5′–3′

Smad7 GTG GCA TAC TGG GAG GAG AA AGC TGA CTC TTG TTG TCC GA

GAPDH GAC ATG CCG CCT GGA GAA AC AGC CCA GGA TGC CCT TTA GT
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(ANOVA) with Tukey’s post hoc test was conducted. Sta-
tistical significance was set at p < 0.05.

Results
Sal B improved cardiac function in DCM mice
The type 2 diabetes model was established using 
a high-fat and high-sucrose diet combined with 

low-dose STZ. Compared to the control group, mice 
fed a high-fat and high-sucrose diet showed signifi-
cantly impaired glucose tolerance and insulin resist-
ance (Fig.  1A–C). After STZ induction, the blood 
levels of glucose increased remarkably (Fig.  1D), and 
type 2 diabetes was confirmed by the presence of 
blood glucose concentrations > 11.1 mmol/L. The type 

Fig. 1 Effects of Sal B on cardiac dysfunction in DCM mice. A Intraperitoneal glucose tolerance test (IPGTT); B area under curve (AUC) of the blood 
glucose; C insulin resistance was observed in rats after HFS diet feeding for 3 months (HOMA-IR); D blood glucose level of type 2 diabetes 
model; E anatomical image of DCM mice; F Heart viscera index of DCM mice; G representative images of 2D and M-mode echocardiography; 
H–K quantitative results of LVESV, LVEDV, EF, FS of mice heart. N = 8. Data are presented as the mean ± SD. One-way ANOVA was employed 
for comparisons among multiple groups, followed by Tukey’s test. #p < 0.05, ##p < 0.01 vs. the control group, *p < 0.05, **p < 0.01 vs. the DCM group
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2 diabetes model was considered successfully estab-
lished. Compared to the control group, EF decreased 
after 8 weeks of placement, and the DCM mouse 
model was reproduced successfully (Fig. 1J). Left ven-
tricular hypertrophy and dilated left ventricles were 
observed in DCM mouse hearts (Fig. 1E, G). The heart 
viscera index of DCM mice was significantly increased 
in the DCM group (Fig. 1F). However, after Sal B and 
Met treatment, heart hypertrophy and left ventricular 
dilation were significantly improved (Fig.  1E, G), and 
the heart viscera index of Sal B- and Met-treated mice 
was significantly lower than that of the DCM group 
(Fig.  1F). Cardiac ultrasound results showed that in 
DCM mouse hearts, the LVESV and LVEDV were sig-
nificantly increased, and the EF and FS were signifi-
cantly decreased, which improved after Sal B and Met 
treatment (Fig.  1H–K). Taken together, these results 
indicated that Sal B significantly improved the cardiac 
function of DCM mice.

Sal B inhibits inflammatory cell infiltration, collagen 
deposition, phenotypic transformation, and the TGF‑β1 
signaling pathway in DCM mice
Histological examinations revealed significant myocar-
dial hypertrophy and inflammatory cell infiltration in 
DCM mice; however, after treatment with Sal B and Met, 
a notable improvement in myocardial hypertrophy and 
inflammatory cell infiltration was observed (Fig.  2A). 
Myocardial fibrosis is characterized by excessive deposi-
tion of fibrotic extracellular matrix proteins, especially 
collagen I (Col-I) and collagen-III (Col-III) [36]. Masson 
and Sirius red staining showed a large amount of collagen 
deposition in the myocardial tissue of mice with DCM. 
Sal B and Met treatment significantly decreased colla-
gen deposition (Fig. 2B, C). Cardiac fibrosis was quanti-
fied by calculating the ratio between the area exhibiting 
fibrosis and the total tissue area after Masson trichrome 
staining. The results showed that the ratio increased sig-
nificantly in the myocardial tissue of the DCM group 
compared with the Sal B and Met groups (Fig. 2D). West-
ern blot results consistently showed that the expres-
sion of Col-I and Col-III was significantly upregulated 

Fig. 2 Effects of Sal B on inflammatory cell infiltration and collagen deposition in DCM mice. A–C Hematoxylin and eosin (HE), Masson staining 
and Sirius red staining of heart tissue; D quantitative Masson trichromatic analysis of collagen area; E expression level of myocardial fibrosis-related 
proteins; F, G quantitative results of protein expression. The expression of all proteins was normalized to GAPDH. N = 8. Data are presented 
as the mean ± SD. One-way ANOVA was employed for comparisons among multiple groups, followed by Tukey’s test. #p < 0.05, ##p < 0.01 vs. 
the control group, *p < 0.05, **p < 0.01 vs. the DCM group
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in the myocardial tissue of DCM mice. After Sal B and 
Met treatment, the expression of Col-I and Col-III in 
mouse myocardial tissue was significantly downregu-
lated (Fig.  2E, F), indicating that Sal B can significantly 
decrease collagen secretion. Myofibroblasts produce 
more collagen during fibrogenesis and are responsible for 
collagen deposition [37]. The differentiation of fibroblasts 
into myofibroblasts was assessed by Western blot analysis 
for α-SMA expression. Western blotting results showed 
that the expression of α-SMA in the myocardial tissue 
of DCM mice was significantly upregulated. After Sal B 
and Met treatment, α-SMA expression in mouse myocar-
dial tissue was significantly downregulated (Fig.  2E, F), 
which indicated that Sal B significantly decreased pheno-
typic transformation in DCM mice. In addition, western 
blotting results showed that the expression of TGF-β1, 
p-Smad3 and Smad3 in the myocardial tissue of DCM 
mice was significantly upregulated and that of Smad7 
was significantly downregulated (Fig. 2E, G). After Sal B 
and Met treatment, the expression of TGF-β1, p-Smad3, 
and Smad3 in mouse myocardial tissue was significantly 
downregulated, whereas Smad7 was significantly upregu-
lated (Fig. 2E, G), which indicated that Sal B significantly 
improved myocardial fibrosis in DCM mice by upregulat-
ing Smad7 to inhibit the TGF-β1 signaling pathway.

Identification and morphology of primary neonatal rat CFs
Under the microscope, neonatal rat CFs appeared as 
spindle-shaped cells with multiple projecting processes 
(Fig.  3A). Vimentin, a specific marker for CFs, was 
detected using immunocytochemistry, revealing its fila-
mentous structure [38]. Control cells treated with PBS 
instead of the anti-vimentin antibody showed no red 
fluorescence and only blue nucleus staining (Fig. 3B). In 
contrast, primary cells stained with the anti-vimentin 
antibody exhibited strong red fluorescence along with 
blue nucleus staining, confirming the presence of vimen-
tin (Fig.  3C). Quantitative analysis demonstrated that 
95% of the cells were positive for vimentin.

Sal B inhibits the proliferation of CFs induced by HG
Compared to the control group, the proliferation of CFs 
was significantly increased by 40 mM and 45 mM glu-
cose. Previous studies suggested that 40 mM glucose is 
the optimal concentration for inducing CF prolifera-
tion (Fig.  4A) [39]. The results of cell proliferation and 
HE staining indicated that Sal B (12.5–50 µM) signifi-
cantly inhibited the proliferation of CFs induced by HG 
(Fig. 4B–D).

Sal B decreased the migration and hydroxyproline 
secretion of CFs
Cell scratch assays were performed to determine the 
effects of Sal B on migration CFs induced by HG. Com-
pared to the control group, HG significantly increased 
the migration of CFs, and Sal B significantly inhibited 
the migration ability of CFs induced by HG (Fig. 5A, B). 
Myocardial collagen content was estimated by measuring 
myocardial hydroxyproline concentrations. Compared to 
the control group, HG significantly increased the secre-
tion of hydroxyproline by CFs induced by HG. Sal B sig-
nificantly inhibited the secretion of hydroxyproline from 
CFs induced by HG (Fig. 5C).

Sal B inhibited myocardial fibrosis and TGF‑β1 signaling 
pathway‑related proteins and increased the expression 
of Smad7 in CFs induced by HG
Compared to the control group, the protein levels of Col-
I, Col-III, TGF-β1, p-Smad3, Smad3 and α-SMA in CFs 
induced by HG were significantly increased, and Sal B 
significantly decreased these protein levels (Fig.  6A–C). 
The results indicated that Sal B significantly increased the 
expression of Smad7 in CFs induced by HG and inhib-
ited the TGF-β1 signaling pathway. Sal B significantly 
increased the expression of Smad7, which was consistent 
with the immunofluorescence staining results (Fig.  6D, 
E).

Fig. 3 Identification and morphology of primary neonatal rat CFs. A CFs grow after three days; B negative control; C vimentin-positive cells



Page 8 of 13Luo et al. Chinese Medicine          (2023) 18:161 

Fig. 4 Effects of Sal B on the proliferation of CFs induced by HG. A Dose-effect relationship of cardiac fibroblast proliferation induced by HG; B 
effect of Sal B on the HG-induced CF cell index by an xCELLigence Real-Time Cell Analyzer (0–120 h); C effect of Sal B on the HG-induced CF cell 
index (24 h); D HE staining. The cell experiment was repeated three times. Data are expressed as the mean ± SD. One-way ANOVA was applied 
for comparisons among multiple groups, followed by Tukey’s test. #p < 0.05, ##p < 0.01 vs. the control group, *p < 0.05, **p < 0.01 vs. the DCM group

Fig. 5 Effects of Sal B on migration and hydroxyproline secretion of CFs induced by HG. A Effects of Sal B on the migration of neonatal rat CFs 
induced by HG (24 h); B quantitative migration results; C effect of Sal B on hydroxyproline secretion from CFs induced by HG. The cell experiment 
was repeated three times. Data are expressed as the mean ± SD. One-way ANOVA was applied for comparisons among multiple groups, followed 
by Tukey’s test. #p < 0.05, ##p < 0.01 vs. the control group, *p < 0.05, **p < 0.01 vs. the DCM group
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Sal B improved myocardial fibrosis by deubiquitinating 
Smad7 and stabilizing Smad7 protein expression
We hypothesized that Sal B increased the expression of 
Smad7 although gene transcription, and qRT-PCR was 
used to explore the effect of Sal B on Smad7 mRNA 
expression in CFs induced by HG. Compared to the con-
trol group, the mRNA expression levels of Smad7 were 
slightly decreased in the HG group, but the difference was 
not statistically significant. After Sal B treatment, Smad7 
mRNA levels increased slightly; however, the difference 
was not statistically significant (Fig.  7A–C). The results 
showed that Sal B did not increase the mRNA expression 
of Smad7. Therefore, we speculated that Sal B may inhibit 
the degradation of Smad7. To determine the effect of Sal 
B on the stabilization of Smad7 protein levels, the protein 
synthesis inhibitor CHX was used to inhibit the synthe-
sis of new proteins. The protein expression of Smad7 was 
detected at 1, 2, 4, 8 and 12 h after CHX treatment (20 
µM). Smad7 expression gradually decreased in the HG 
group. The expression of Smad7 in the Sal B group was 
highest at 1 h and was maintained at a high level. There 
were significant differences in Smad7 expression at 2  h, 

4 h, 8 and 12 h, indicating that Sal B significantly stabi-
lized Smad7 expression in CFs (Fig.  7D–F). According 
to previous reports, myocardial fibrosis promotes the 
ubiquitination of Smad7 and reduces its stability, which 
results in decreased expression of Smad7. We confirmed 
that Sal B could prevent the ubiquitination of Smad7 to 
improve myocardial fibrosis in DCM. Immunoprecipita-
tion was performed to observe the inhibitory effect of Sal 
B on the ubiquitination of Smad7. Compared to the con-
trol group, Sal B significantly reduced the ubiquitination 
of Smad7 (Fig.  7G). These results confirmed that Sal B 
acts as an antifibrotic agent by inhibiting the ubiquitina-
tion of Smad7.

Discussion
Myocardial fibrosis is the primary pathologic feature in 
DCM. However, the underlying molecular mechanism 
remains unclear. Currently, there are no available treat-
ments for DCM fibrosis. The discovery and development 
of drugs that improve myocardial fibrosis are important 
for DCM. Excessive collagen deposition is the main fea-
ture of myocardial fibrosis. Inhabiting myocardial fibrosis 

Fig. 6 Effects of Sal B on the expression of myocardial fibrosis-related proteins in CFs induced by HG. A Expression level of myocardial fibrosis 
and TGF-β1 signaling pathway related-proteins; B quantitative analysis of myocardial fibrosis proteins related-expression. The expression 
of all proteins was normalized to GAPDH. C Quantitative analysis of TGF-β1 signaling pathway-related proteins. The expression of all proteins 
was normalized to GAPDH. D Effects of Sal B on Smad7 expression in CFs induced by HG. E Quantitative analysis of Smad7 expression. The cell 
experiment was repeated three times. Data are expressed as the mean ± SD. One-way ANOVA was applied for comparisons among multiple groups, 
followed by Tukey’s test. #p < 0.05, ##p < 0.01 vs. the control group, *p < 0.05, **p < 0.01 vs. the DCM group
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in DCM through suppressing TGF-β1 induced CFs pro-
liferation and excessive accumulation of Col-I and III as 
a potential anti-fibrogenic strategies. The results of study 
showed a large number of deposition of collagen fibers in 
the myocardium tissue of DCM, which lead to the dete-
rioration of cardiac function. It is well known that Smad7 
antagonizes TGF-β1 signaling through negative-feedback 
actions. Studies have identified the increased expression 
of Smad7 in CFs as a critical strategy for improving myo-
cardial fibrosis in DCM. Therefore, Smad7 has emerged 
as a potential hotspot [40]. Sal B, which is extracted from 
Salvia miltiorrhiza Bunge, has shown a potential protec-
tive effect on myocardial fibrosis induced by DCM. The 
results of the animal test indicated that Sal B significantly 
ameliorated inflammatory cell infiltration and cardiac 
function and decreased collagen deposition in the myo-
cardial tissue of DCM. The results of the cell test showed 

that Sal B could inhibit HG-induced CF proliferation, 
CF migration, phenotypic transformation, and collagen 
secretion. These results indicate that Sal B can amelio-
rate myocardial fibrosis induced by DCM was correlated 
to Sal B significantly increased the protein expression of 
Smad7. However, the mechanism through which Sal B 
affects Smad7 expression remains unclear.

After a series of experiments, we demonstrated that 
Sal B did not regulate Smad7 expression at the tran-
scriptional level but instead inhibited the degradation of 
Smad7, thus stabilizing Smad7 protein expression. The 
immunoprecipitation results indicated that Sal B acts as 
an antifibrotic agent by inhibiting Smad7 ubiquitination 
(Fig. 8). However, owing to time limitations, comprehen-
sive investigations of the impact of Sal B on the ubiqui-
tination of Smad7 were not conducted. We speculate 
that Sal B may decrease the ubiquitination of Smad7 by 

Fig. 7 Mechanisms of Sal B on Smad7 expression. A Amplification curve of Smad7 and GAPDH; B melting curve of Smad7 and GAPDH; C 
quantitative analysis of Sal B-induced Smad7 mRNA expression. The expression of Smad7 mRNA levels was normalized to GAPDH  (2−△△Ct); 
D expression level of Smad7 induced by HG at different time points; E Expression level of Smad7 induced by Sal B at different time points; F 
quantitative results of Smad7 protein expression. The Smad7 protein levels were normalized to GAPDH. G Effect of Sal B on Smad7 ubiquitination. 
The cell experiment was repeated three times. Data are expressed as the mean ± SD. One-way ANOVA was applied for comparisons among multiple 
groups, followed by Tukey’s test. #p < 0.05, ##p < 0.01 vs. the control group, *p < 0.05, **p < 0.01 vs. the DCM group
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suppressing the expression and activity of key enzymes 
involved in Smad7 ubiquitination, such as Smurf1 and 
Smurf2 [41, 42]. Alternatively, Sal B may enhance the 
deubiquitination of Smad7 by increasing the expression 
and activity of deubiquitination enzymes such as USP2 
and OTUD1 [43, 44].

It is imperative to recognize a noteworthy constraint: 
the examination of the mechanism by which Sal B 
improves myocardial fibrosis in this study has exclusively 
focused on animal and cellular levels, specifically involv-
ing Smad7. However, the specific target directly affected 
by Sal B remains unclear, and further investigation will be 
conducted to ascertain its directly target.

Conclusion
In summary, we demonstrated the partial amelioration 
of myocardial fibrosis by Sal B in a DCM mouse model 
by inhibiting collagen formation and deposition through 
the classical TGF-β/Smad pathway. Furthermore, 8 weeks 
of treatment with Sal B improved the structure and func-
tion of the left ventricle in diabetic mice. Therefore, Sal 
B is a promising therapeutic agent for DCM-induced 
myocardial fibrosis. However, additional clinical data are 
necessary to confirm the safety and effectiveness of Sal B 
in treating patients with DCM, and further investigations 
are needed to elucidate its potential mechanism.
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