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mechanisms and molecular targets of Inula 
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Abstract 

The pharmacological effects of natural product therapy have received sigificant attention, among which terpenoids 
such as sesquiterpene lactones stand out due to their biological activity and pharmacological potential as anti‑tumor 
drugs. Inula sesquiterpene lactones are a kind of sesquiterpene lactones extracted from Inula species. They have many 
pharmacological activities such as anti‑inflammation, anti‑asthma, anti‑tumor, neuroprotective and anti‑allergic. In 
recent years, more and more studies have proved that they are important candidate drugs for the treatment of a vari‑
ety of cancers because of its good anti‑tumor activity. In this paper, the structure, structure–activity relationship, 
antitumor activities, mechanisms and targets of Inula sesquiterpene lactones reported in recent years were reviewed 
in order to provide clues for the development of novel anticancer drugs.
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Introduction
An important source of antitumor drugs is natural prod-
ucts and their derivatives, which are rich in sources and 
novel in structure, providing many active molecules for 
the research and development of antitumor drugs [1]. 
At present, a number of molecularly targeted antitumor 
drugs derived from natural products or their derivatives 
have been used in tumor therapy, such as paclitaxel, vin-
cristine, and camptocampin. Therefore, the development 
of anti-tumor drugs based on natural products has good 
prospects.

As one of the natural products, the antitumor activity 
and mechanism of Inula have also attracted extensive 
attention. Inula belongs to the family Composite. There 
are approximately 100 species of this genus in the world, 
some of which are widespread species and some are 
endemic, mainly distributed in Europe, Africa and Asia 
[2]. It was first reported in “Shennong’s Herbal Classic” 
and has a long medicinal history. In the 2020 edition of 
the "Pharmacopoeia of the People’s Republic of China", 
the capitula of Inula japonica Thunb. and l.britannica 
L. were included as authentic Inula. Inula contains rich 
chemical components, mainly including sesquiterpenes, 
flavonoids, volatile oils, polysaccharides, steroids, etc. [3]. 
Among them, sesquiterpenoids, especially sesquiterpe-
noid lactones, are the characteristic components of Inula 
and have significant biological activities [4].

Sesquiterpene lactones are of great interest because 
they show great structural diversity and a wide range of 

biological activities, including anti-inflammatory, anti-
tumor, anti-microbial, and antiviral effects [5]. Arte-
misinin [6], parthenolide [7] and thapsigargin [8] are 
representative sesquiterpene lactones, which are prom-
ising anticancer drugs. Similarly, with the development 
of research, the anti-tumor activity of Inula sesquiter-
pene lactones has received more and more attention 
from researchers. They have been found to have a good 
therapeutic effect on a variety of cancers. However, 
there is little literature summarizing the latest research 
progress on their anti-tumor effects. Therefore, this 
review provides a comprehensive overview of the anti-
tumor activity of Inula sesquiterpene lactones, as well 
as its mechanism and target of action, to provide a ref-
erence for further investigation by researchers.

Structure of Inula sesquiterpene lactones
Structure of Inula sesquiterpene lactones
The chemical structure of sesquiterpene lactones is 
based on a skeleton of fifteen carbon atoms and con-
sists of three cyclic isoprene structures, one of which 
is a pentamembered (γ) lactone group (cyclic ester) 
[9]. Based on the type and location of its carboxyl 
skeleton and substituents, sesquiterpene lactones can 
be divided into germacranolides, guaianolides, pseu-
doguaianolides, eudesmanolides, xanthanolides and 
elemanolides (Fig. 1). In Fig. 2, we list the structures of 
several important and representative Inula sesquiter-
pene lactones with antitumor activity.

Graphical abstract
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Structure–activity relationship of Inula sesquiterpene 
lactones
α‑methylene‑gamma‑butyrolactone structure is essential 
for cytotoxic activity
Chitosan derivatives containing an α-methylene-γ-
butyrolactone skeleton have obvious biological activity, 
especially antitumor activity. Due to the double bond 
action of α-methylene-γ-butyrolactone, it can react as 
an electrophilic group with nucleophilic groups on the 
basic groups of some active sites in the organism, thereby 
changing the structure of these active sites and show-
ing different biological effects. It plays an important role 
in cell growth through the reaction of α-methylene-γ-
butyrolactone with sulfhydryl (-SH), which may be a 
potential cytotoxic mechanism of sesquiterpene lactones 
containing α-methylene-γ-butyrolactone rings [10]. 
There was a study that supports this conclusion. Eight 
sesquiterpene lactones were isolated from the genus 
Inula, among which compounds 1 and 2 were germac-
ranolides with a 10-membered ring, compounds 3–6 
were eudesmanolides with a transdecalin (6/6-mem-
bered) ring and compounds 7 and 8 were xanthanolides 
with a 6-membered ring (Fig. 3). The results showed that 
their cytotoxic activity of human lung cancer cells was 
closely related to the carbon skeleton and γ-ectomylene 
in the α-lactone ring. The saturated of α-ecomethylene 
or cleavage of 6/6-membered ring may result in loss or 
reduction of cytotoxic activity [11]. Similarly, another 
result also reached the same conclusion that if C-11 and 

C-13 were saturated, the antitumor activity of the com-
pound would be significantly reduced [12].

6‑OH modification can increase cytotoxic activity
1-O-acetylbritannilactone (ABL) and 1,6-O,O-diacetylb-
ritannilactone (OABL), two sesquiterpene lactones 
extracted from Inula britannica L. Han et  al. modified 
the 6-OH position of ABL and synthesized 19 analogues. 
The relationship between pharmacological activity and 
structure–activity of ABL was studied. It was found that 
when the 6-OH site was acetylated or appropriate lipo-
philic aliphatic chain was introduced, the cytotoxic effect 
was significantly enhanced. Moreover, when the length of 
the introduced aliphatic side chain was 12C, the cytotox-
icity was the highest. This suggests that the introduction 
of appropriately enhanced lipophilic aliphatic chains at 
6-OH of ABL leads to increased activity and the 12C ali-
phatic side chain may be the optimal length for cytotoxic 
activity [13].

Arylation of C‑13 can reduce the cytotoxic activity
Five OABL arylation analogues were synthesized by Heck 
coupling reaction of OABL with readily available aryl 
iodide, that is, aryl was introduced into the α-methylene-
γ-lactone motif of OABL to reduce the nucleophilic activ-
ity of α-methylene-lactone. The results showed that the 
cytotoxicity of these 5 arylated analogues was decreased 
[13].

Fig. 1 Classification of sesquiterpene lactones (a germacranolides, b guaianolides, c pseudoguaianolides, d eudesmanolides, e xanthanolide, f 
elemanolides)
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Fig. 2 Structures of Inula sesquiterpene lactones possessing antitumor activity

Fig. 3 Chemical structures of compounds 1–8 isolated from Inula 
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Antitumor activity of Inula sesquiterpene lactones
Various molecular, cellular and animal studies have 
shown that Inula sesquiterpene lactones can inhibit the 
growth and metastasis of human cancer cells, induce 
apoptosis, autophagy and cell cycle arrest, and increase 
the sensitivity of chemotherapy drugs (summarized in 
Table 1). Their apparent antitumor activity could encour-
age us to use them as potential treatments for oncologic 
diseases, as well as to search for more and more effective 
natural products of Inula sesquiterpene lactones.

Induction of apoptosis
Apoptosis is a form of programmed cell death. Many 
studies have found that apoptosis pathways include 
extrinsic pathways, intrinsic pathways (also known as 
mitochondria-mediated apoptosis pathways) and endo-
plasmic reticulum stress (ERS) pathways [14]. At present, 
intrinsic apoptosis is a relatively clear signaling pathway, 
mainly through the mitochondrial pathway. P53 is a tran-
scription factor of outer mitochondria that can directly 
interact with proapoptotic protein Bax, change the ratio 
of Bax to Bcl-2, destroy the mitochondrial membrane, 
release proteins in mitochondria, and promote apoptosis 
of tumor cells [15]. Extrinsic receptor-mediated apopto-
sis is caused by the activation and connection of death 
receptors of the tumor necrosis factor family. The death 
receptors include Fas receptor, DR and TRAIL receptor. 
They activate the apoptotic proteases caspase-8 and cas-
pase-10 near the membrane, which introduce death sig-
nals into cells and accelerate apoptosis [16].

Gaillardin is a guaiane type sesquiterpene lactone 
isolated from the plant Inula oculus-christi. Gaillardin 
has been shown to be a promising molecule in cancer 
chemoprophylaxis or chemotherapy, that can inhibit the 
proliferation of breast cancer cells by inducing the mito-
chondrial apoptotic pathway. Gaillardin can upregulate 
the proapoptotic proteins Bax and p53 and downregulate 
the anti-apoptotic protein Bcl-2 [17]. The same mecha-
nism of action has been found in alantolactone (ATL), 
a natural sesquiterpene lactone originating from Inula 
helenium L. ATL can also trigger a mitochondria-medi-
ated caspase cascade apoptotic pathway, which is dem-
onstrated by increased Bax/Bcl-2 ratios and cell release 
from mitochondria to cytoplasm [18]. In addition, isocos-
tunolide, a sesquiterpene lactone isolated from the roots 
of Inula helenium., has also been reported to significantly 
induce depolarization of the mitochondrial membrane to 
promote the release of cytochrome c into the cytoplasm, 
thereby activating the mitochondria-mediated apoptosis 
pathway [19].

Isoalantolactone (IATL) is one of the major total 
sesquiterpene lactones isolated from Inula helenium 

L. [20], which has anti-inflammatory, antioxidant 
and neuroprotective pharmacological effects. Previ-
ous studies have shown that it may have potential in 
the prevention and treatment of neurodegenerative 
diseases, inflammatory diseases, and antitumor [21]. 
IATL has been found to activate caspase -3, caspase 
-7, and caspase -10 and upregulate the DR-5. If DR-5 is 
knocked down, the effect of IATL is partially reversed. 
These results suggest that IATL can induce exogenous 
cell apoptosis [22].

Interference with the cell cycle
The cell cycle is a highly regulated process that promotes 
cell growth, replication of genetic material and cell divi-
sion. The cell cycle regulatory system consists of a class of 
genes that are directly or indirectly involved in cell cycle 
regulation, including cyclin, cyclin dependent kinase 
(CDK), CDK-activating kinase (CAK) and CDK inhibitor 
protein (CKI) [23]. The most obvious success in target-
ing the cell cycle mechanism is inhibitors of CDK4 and 
CDK6. With the clinical success of CDK4/6 inhibitors, 
targeting a specific cyclin could become an effective anti-
cancer strategy [24].

Merghoub et al. found that tomentosin, a natural ses-
quiterpene lactone extracted from the flowers of Inula 
viscosa L., can arrest the cell cycle in the G2/M phase 
[25]. Similarly, Rozenblat et  al. found that Tomentosin 
and Inuviscolide can cause cell cycle arrest at G2/M. This 
is because these two natural products can inhibit the 
phosphorylation of CDK1, and the expression levels of 
Cyclin B1 and CDK1 subsequently decrease [26]. It has 
also been shown that britannin can prevent the cell tran-
sition from the S phase of the cell cycle, thereby reduc-
ing the proliferation of acute lymphoblastic leukemia 
cells, which is achieved by upregulation of p27 and p21 
[27]. Rafi et al. isolated and identified two sesquiterpene 
lactones from the plant Inula britannica, O, O-diacetylb-
ritannilactone (OODABL) and O-acetylbritaanilactone 
(OABL). OODABL and OABL can induce the phospho-
rylation of Bcl-2 in breast, ovarian, and prostate cancer 
cell lines and induce G2/M cell cycle arrest [28]. Costu-
nolide, a sesquiterpene lactone derived from Inula hele-
nium, can reduce the expression of Cyclin B1 and CDK2 
and increase the expression of p21, which leads to cycle 
arrest in the G2/M phase of leukemia cells [29]. In addi-
tion to the previously mentioned, other sesquiterpene 
lactones such as Bigelovin and Japonicone A (Jap-A) 
can also arrest the cell cycle in the G0/G1 and S phases, 
respectively [30, 31]. Bigelovin is a sesquiterpene lactone 
compound from the plant Inula helianthus aquatica and 
Jap-A is a dimeric sesquiterpene lactone found in the 
plant Inula japonica Thunb.
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Inhibition of tumor metastasis
Malignant tumors are often accompanied by invasion and 
metastasis, which is also the reason why they are difficult 
to cure. Effectively inhibiting the invasion and metastasis 
of tumor cells is the starting point of many clinical and 
scientific treatments for cancer [32]. It has been found 
that the matrix metalloproteinase family (MMPs), espe-
cially MMP-2 and MMP-9, as common factors promot-
ing invasion and metastasis, play a regulatory role in the 
development of many tumors [33].

Wang et al. found that ATL could inhibit the metastasis 
of esophageal cancer through cell experiments and xeno-
graft tumor models in mice. It may act by regulating the 
Wnt/β-catenin signaling pathway [34]. Bigelovin is cyto-
toxic to colorectal cancer cells in vitro, reducing their cell 
viability. Li et al. studied the progression, metastasis and 
spread of colorectal cancer after Bigelovin treatment by 
using two colon cancer mouse models, tumor allografts 
in  situ and experimental metastasis models. The results 
showed that bigelovin significantly inhibited tumor 
growth and inhibited liver/lung metastasis, possibly by 
interfering with the IL6/STAT3 and cofilin pathways. 
Bigelovin has the potential to be developed as an antitu-
mor and antimetastasis agent in colorectal cancer [35]. 
IATL inhibits breast cancer cell adhesion, migration, and 
invasion via the p38 MAPK/NF-κB signaling pathway, 
and the activity and expression of MMP-2 and MMP-9 
are downregulated by IATL in a dose-dependent manner 
[36]. Britanin is a sesquiterpene lactone compound from 
the plant Inula japonica. Britanin reduces lung metasta-
sis. It specifically binds to ZEB1, promotes the degrada-
tion of ZEB1 protein, and thus downregulates the protein 
expression levels of ZEB1, MMP-9 and CD44 [37]. The 
same results can also be found in another study, Brita-
nin can inhibit the expression of p65 protein and inhibit 
tumor metastasis [38].

Induction of autophagy
Autophagy is an evolutionarily conserved intracellular 
circulatory system and cellular self-degradation process 
that maintains metabolism and homeostasis. In cancer 
biology, autophagy plays a dual role in tumor promo-
tion and inhibition and contributes to the development 
and proliferation of cancer cells. Reduced and abnormal 
autophagy inhibits the degradation of damaged compo-
nents or proteins in oxygen-stressed cells, leading to the 
development of cancer [39]. In recent years, autophagy 
has been a hot topic in the field of tumor therapy. Induc-
ing autophagy in tumor cells is an effective means to treat 
cancer [40].

In vitro experiments in one study showed that bigelovin 
induced the formation of autophagosomes in liver can-
cer cells. After treatment with bigelovin, LC3B-II and 

Beclin-1 levels were significantly increased, while p62 
levels were decreased. In addition, LC3B-II levels were 
down-regulated and p62 levels were up-regulated after 
the addition of autophagy inhibitor 3-MA, indicating that 
bigelovin-induced autophagy was eliminated by 3-MA by 
inhibiting the formation of autophagosomes. Moreover, 
the ability of bigelovin to induce apoptosis was inhib-
ited when 3-MA was added or Beclin-1 was silenced. In 
the HepG2 xenograft tumor model, LC3B-II level was 
upregulated in the tumor tissues of the bigelovin admin-
istration group, indicating that bigelovin can induce the 
activation of autophagy in vivo, thereby playing an anti-
tumor role [41]. Similarly, ATL has been found to cause 
the accumulation of autophagosomes in pancreatic can-
cer cells and can increase LC3B-II levels in a dose—and 
time-dependent manner [42]. One study has shown that 
britanin can induce the upregulation of LC3B-II, p62, 
ATG5 and Beclin-1 and the occurrence of autophagic 
vacuoles, which triggered autophagy in liver cancer 
cells. In addition, the upregulation of LC3-II, p62, ATG5, 
and Beclin1 induced by britanin was reversed when the 
AMPK inhibitor was added. This suggested that bri-
tanin induced autophagy of cells, which was regulated 
by the activation of AMPK. This phenomenon was also 
observed in vivo, where p-AMPK and LC3-II levels were 
upregulated in tumor tissues after administration [43].

Sensitization Activity
Cancer treatment methods include radiotherapy, chem-
otherapy, surgery and cellular immunotherapy, which 
have emerged in recent years. In course of chemotherapy, 
tumor cells often develop drug resistance, which is one of 
the most serious obstacles to tumor chemotherapy [44]. 
A growing number of studies have shown that combining 
natural products with antitumor drugs can lead to better 
therapeutic outcomes [45].

Studies have shown that ergolide can enhance the 
cytotoxicity of vincristine to acute lymphoblastic leu-
kemia cell lines, which indicates the strong synergis-
tic properties of ergolide and vincristine [46]. Another 
study showed that ATL can induce cell cycle arrest and 
inhibit cell growth in lung cancer cells. In combination 
with ATL, the anticancer effect of gemcitabine was sig-
nificantly enhanced. The authors further demonstrated 
that ATL can increase ROS levels, thereby inhibiting the 
AKT/ GSK 3β pathway and ER stress in lung cancer cells. 
Because of this, treatment with ATL makes lung cancer 
cells more sensitive to gemcitabine. The combination 
of ATL and gemcitabine may have potential for clinical 
use in the treatment of lung cancer [47]. Similarly, other 
researchers have found that IATL can make colon cancer 
cells more sensitive to doxorubicin treatment. IATL can 
lead to ROS accumulation, which leads to activation of 
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the JNK signaling pathway. The synergistic effect of IATL 
and doxorubicin may be related to this molecular mech-
anism. Therefore, the combination of IATL and doxo-
rubicin may be a potential treatment for colon cancer 
[48]. Some researchers extracted 25 sesquiterpene lac-
tones from Inula japonica. Among them, compound 24 
showed the highest anti-NSLC activity against the pacli-
taxel- resistant human non-small cell lung cancer cell line 
A549/PTX and could inhibit cell proliferation and induce 
cell apoptosis. Compound 24 can significantly inhibit 
the protein expression of ABCC1, ABCG2 and MDR1, 
thereby reversing the effect of multidrug resistance and 
making cells more sensitive to paclitaxel chemotherapy 
[49].

Antitumor molecular mechanism of Inula 
sesquiterpene lactones
From the previous review, it can be seen that Inula ses-
quiterpene lactones have various antitumor activities. 
But how do they exert these antitumor activities? A large 
number of studies have shown that Inula sesquiterpene 

lactones can achieve antitumor activities by inhibiting 
NF-kB, STAT3 and PI3K/AKT signaling pathways, acti-
vating MAPK signaling pathways and inducing oxidative 
stress (Table 1 and Fig. 4).

Inhibition of the NF‑κB signaling pathway
The NF-κB pathway is closely associated with cancer. 
NF-κB plays a key role in the regulation of cytokine-
induced gene expression. When the cell is subjected to 
various intracellular and extracellular stimuli, the IκB 
kinase is activated, resulting in phosphorylation and 
ubiquitination of the IκB protein, which is then degraded 
and the NF-κB dimer is released. The NF-κB dimer is fur-
ther activated by various post-translational modifications 
and transferred to the nucleus. In the nucleus, it binds to 
the target gene to facilitate its transcription [50, 51].

Wang et al. found that IATL can block the p38 MAPK 
signaling pathway, thereby inhibiting the NF-κB signaling 
pathway and inhibiting the translocation of NF-κB p65 
to the nucleus, resulting in decreased activity of MMP-2 
and MMP-9 and inhibiting the invasion and metastasis of 

Fig. 4 Schematic illustration of the molecular mechanisms underlying the antitumor activity of Inula sesquiterpene lactones. (1) Inula 
sesquiterpene lactones inhibit the STAT3 signaling pathway by inhibiting the activity of JAK2 and phosphorylation of STAT3. (2) Inula sesquiterpene 
lactones inhibit the phosphorylation of IκBα and inhibit the activation and nuclear translocation of NF‑κB signaling pathway. (3) Inula sesquiterpene 
lactones can directly inhibit PI3K activity and inhibit PI3K/AKT signaling pathway by reducing the expression and phosphorylation of AKT. (4) Inula 
sesquiterpene lactones can stimulate the phosphorylation levels of JNK and p38 and increase their activity to activate the MAPK signaling pathway. 
(5) Inula sesquiterpene lactones can induce ROS production, thus inducing oxidative stress



Page 14 of 23Cao et al. Chinese Medicine          (2023) 18:164 

breast cancer [36]. Morever, Di et al. discovered a novel 
mechanism to inhibit the expression of NF-κB p65. The 
mechanism by which IATL inhibits the expression of 
NF-κB p65 involves an increased interaction between 
DR5 and FADD, which is achieved by upregulating DR5, 
FADD, and cleaved caspase 8. Eventually, ROS-depend-
ent apoptosis occurrs in osteosarcoma cells [52]. ATL can 
also activate the p38 MAPK pathway and inhibit NF-κB 
pathway to induce apoptosis of lung cancer and gastric 
cancer cells, respectively [53, 54]. Yuan et  al. analyzed 
RNA-seq and luciferase reports to show that the NF-κB 
signaling pathway was significantly inhibited after treat-
ment with bigelovin. Further studies have shown that 
bigelovin can induce ubiquitination and degradation 
of IKK-β, and reduce the phosphorylation of IκB-α and 
p65, leading to downregulation of NF-κB regulatory gene 
expression [55]. Roozbehani et  al. demonstrated that 
gaillardin exerts its effect by inhibiting the activation 
of NF-κB, leading to the downregulation of genes regu-
lated by NF-κB, such as COX-2, MMP-9, TWIST-1 and 
Bcl-2 [56]. One study indicated that britanin can reduce 
the levels of p65 and phosphorylated p65 and inhibit the 
NF-κB signaling pathway, increasing the level of down-
stream molecule IL-2 and a decrease in the level of the 
IL-10. This suggests that britanin exerts its antitumor 
effects by enhancing the immune response rather than by 
promoting apoptosis [57]. Similarly, another study found 
that britanin inhibits NF-κB activation in pancreatic can-
cer [58]. One study showed that Japonicone A can inhibit 
the activity and nuclear translocation of NF-κB induced 
by TNF-α stimulation and subsequently downregulate 
genes involved in apoptosis (Bcl-2, Bcl-xl, TRAF2) and 
cell cycle-related genes (Cyclin D, MYC). Therefore, 
Japonicone A can inhibit the growth of lymphatic can-
cer in vivo and in vitro [59]. Ergolide is a sesquiterpene 
lactone derived from Inula britannica. Chun et al. dem-
onstrated that ergolide inhibits NF-κB-dependent gene 
transcription in HeLa cells stimulated by z12-O-tetra-
decanoylphorbol 13acetate (TPA) due to inhibition of 
NF-κB DNA binding activity and nuclear translocation of 
NF-κB p65 subunits [60]. In addition, ergolide has been 
shown to significantly inhibit the NF-κB signaling path-
way in Jurkat T cells [61].

Inhibition of the STAT3 signaling pathway
STAT3 was first discovered as an oncogene, that is 
involved in various physiological pathways, such as cell 
growth, differentiation and apoptosis. Phosphorylated 
STAT3 rapidly enters the nucleus, forms homodimers 
or heterodimers from monomers, acts as a transcrip-
tion factor, binds to promoters of target genes, and 
activates transcription. Under the stimulation of car-
cinogenic signals, STAT3 is continuously activated to 

remain in the nucleus in an activated state, continu-
ously activating target genes, and promoting the growth 
of tumor cells [62].

One study extracted the hexane fraction of Inula 
helenium L (HFIH), including alantolactone, isoal-
antolactone, igalan, dugesialactone, and alloantolac-
tone. The results showed that HFIH could selectively 
inhibit the phosphorylation of STAT3 at tyrosine 705 
and thus significantly inhibit the activation of STAT3. 
HFIH can also downregulate the expression of STAT3 
target genes, such as Cyclin D1, MYC and Bcl-2, and 
induce apoptosis mediated by caspase. The researchers 
also conducted in  vivo experiments, which also con-
firmed this conclusion [63]. Ahmad et  al. found that 
ATL can reduce cell viability and induce apoptosis. This 
is because ATL can inhibit the expression of STAT3 
and survival proteins [64]. Bigelovin potently inhib-
its STAT3 signaling by inactivating JAK2 and induces 
apoptosis of a variety of human cancer cells in  vitro 
[65].

Activation of the MAPK signaling pathway
The MAPK signaling pathway is an important pathway 
in the eukaryotic signal transmission network. It plays 
a key role in gene expression regulation and cytoplas-
mic functional activities. Five different MAPK signaling 
pathways have been identified in mammalian organisms. 
The ERK1/2 signal transduction pathway regulates cell 
growth and differentiation, and the JNK and p38 MAPK 
signal transduction pathways play important roles in 
stress responses such as inflammation and apoptosis. 
Abnormalities in MAPK signaling pathways have been 
shown to be associated with various types of cancer [66].

It has been found that IATL can induce apoptosis of 
human hepatocellular carcinoma Hep3B cells by activat-
ing the MAPK signaling pathway. After treatment with 
IATL, levels of p-ERK and p-JNK increased without any 
change in their total proteins. When treated with potent 
JNK inhibitors, the anticancer effects of IATL are sig-
nificantly reduced [67]. Another study has also shown 
that IATL strongly induced p-JNK expression. The cell 
death induced by IATL was also significantly reversed 
when treated with specific JNK inhibitors. When IATL 
combined with doxorubicin, JNK phosphorylation levels 
increased significantly. This suggested that IATL plays an 
antitumor role by activating JNK signaling pathway and 
increases the toxicity of doxorubicin to colorectal cancer 
cells [48]. 1,6-O, O-diacetylbritannilactone (OODBL) is a 
sesquiterpene lactone isolated from Inula Britannica. It 
was found that the activation of the MAPK and JNK sign-
aling pathways may play an important role in OODBL-
induced apoptosis [68].
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Inhibition of the PI3K/AKT signaling pathway
The PI3K/AKT signaling pathway plays an important role 
in regulating a variety of biological responses, including 
metabolism, cell survival and growth. AKT is activated by 
PI3K. Upon activation, AKT targets several downstream 
molecules, altering molecular activity by phosphoryla-
tion or by forming complexes [69].

ATL can enhance the anticancer effects of gemcitabine 
through ROS-mediated activation of the AKT/GSK3β 
pathway [47]. In addition, ATL can exert anti-liver can-
cer activity. When treated with ATL, the phosphorylation 
levels of AKT was decreased. Further studies have shown 
that ATL can induce apoptosis through ROS-mediated 
AKT signaling inhibition and PINK1-mediated mito-
chondrial autophagy [70]. Igalan is one of the sesquit-
erpene lactones found in Inula helenium c, which can 
increase the inactive form of GSK3β and the phospho-
rylated form of AKT [71]. Costunolide, a sesquiterpene 
lactone extracted from Inula helenium L., has antiprolif-
eration effects on several tumor cells [72]. Costunolide 
can significantly enhance the anti-proliferative activity 
of doxorubicin against drug-resistant cell lines by inhib-
iting the PI3K/AKT pathway and downregulating the 
expression of P-glycoprotein [73]. One study showed that 
eupatolide, the sesquiterpene lactone isolated from the 
medicinal plant Inula britannica, can sensitize human 
breast cancer cells to TRAIL-induced apoptosis by down-
regulating the expression of cellular FLICE inhibitory 
protein (c-FLIP) through the inhibition of AKT phospho-
rylation. Euaptolide can inhibit AKT phosphorylation in 
a dose- and time-dependent manner [74]. Tomentosin is 
the most representative sesquiterpene lactone extracted 
by I. viscosa. which can inhibit cell proliferation and 
induce apoptosis through the inhibition of the mTOR/
PI3K/ AKT signaling pathway [75].

Induction of oxidative stress
ROS is the products of normal aerobic metabolism in 
the body and are a general term for a class of substances 
composed of oxygen that are active in nature. ROS plays 
an important role in the maintenance of the cell cycle, 
gene expression and environmental homeostasis in the 
body [76]. Oxidative stress refers to the excessive pro-
duction of highly active molecules such as ROS in the 
body, the degree of oxidation exceeding the removal of 
oxides, and the imbalance between the oxidation system 
and the antioxidant system, resulting in tissue damage 
[77]. To resist these adverse effects, the body has devel-
oped a complex oxidative stress response system to miti-
gate damage to cells. NRF2, as a key transcription factor 
regulating antioxidant stress, plays an important role in 
inducing the body’s antioxidant response [78]. Small 
molecule drugs from different sources, including natural 

small molecule drugs and extracts of traditional Chinese 
medicine, are inducers or scavengers of reactive oxygen 
species, which bring new ideas for artificial intervention 
of intracellular ROS levels.

Some studies have shown that sesquiterpenoids can 
induce oxidative stress and affect tumor progression. 
ATL can induce ROS production and activate the p38 
MAPK pathway by inhibiting TrxR activity, leading to 
apoptosis of gastric cancer cells. However, this effect can 
be reversed when treated with the ROS scavenger. ATL 
can be used in combination with glutathione inhibitors 
to synergistically exert antitumor effects [79]. Similarly, it 
has also been found that the α-methylene-γ-lactone part 
of ATL and the Sec residue in TrxR are essential for ATL 
to target TrxR. The study found that the level of TrxR in 
HeLa cells was significantly increased after treatment 
with ATL, suggesting that ATL induces ROS accumula-
tion and ultimately induces cell apoptosis [80]. Moreo-
ver, ATL can increase ROS levels and the accumulation 
of cellular oxidized guanine (8-oxoG), resulting in oxida-
tive DNA damage. Therefore, the cell cycle is blocked in 
G1 phase and apoptosis is significantly induced [81]. ATL 
can enhance ROS-induced LATS kinase activity, thereby 
increasing YAP1/ TAZ phosphorylation. Therefore, ATL 
can target the ROS-YAP pathway to inhibit tumor cell 
growth [82]. Moreover, similar findings were confirmed 
in B-cell acute lymphoblastic leukemia cells and lung 
cancer cells [83, 84]. 2-α-Hdroxyeudesma-4,11(13)-dien-
8β,12-olide (HEDO), extracted from Inula britannica, 
upregulates intracellular ROS and increases the depolari-
zation of mitochondrial membrane potential, leading to 
cell cycle arrest and apoptosis [85]. In addition, IATL has 
been shown to induce the activity of phase 2 enzyme by 
stimulating the accumulation of NRF2 in the nucleus. In 
this process, the PI3K/AKT/NRF2 signaling pathway may 
be partially involved in the nuclear translocation of NRF2 
[86]. Similarly, Chen et al. found that ATL can also inhibit 
esophageal adenocarcinoma cells by inhibiting NRF2 to 
increase ROS. Knocking down NRF2 enhanced the apop-
tosis-inducing effect of ATL, while overexpression of 
NRF2 reduced the apoptosis-inducing effect of ATL. The 
same results were found in vivo [87].

Molecular targets of Inula sesquiterpene lactones
In recent years, with the rise of the concept of preci-
sion diagnosis and treatment, new antitumor drugs, 
represented by small molecule targeted drugs and large 
molecule monoclonal antibodies, have emerged rap-
idly. Compared with the traditional anti-chemotherapy 
drugs, the new anti-tumor drugs have high specificity 
and less toxic side effects and have a significant effect on 
a variety of malignant tumors. Therefore, the discovery 
and confirmation of drug molecular targets is of great 
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significance for the research and development of innova-
tive drugs. According to the difference of the mechanism 
of target action, the molecular targets of tumor action 
can be divided into targeting the regulatory mechanism 
of tumor formation, targeting the tumor microenviron-
ment, tumor immunotherapy, tumor markers and tar-
geting tumor stem cells. As shown in Table  1, several 
researchers have studied the molecular targets of Inula 
sesquiterpene lactones. These molecular targets will be 
discussed in turn.

Binding to TNF‑α
TNF is a pro-inflammatory cytokine secreted mainly by 
mononuclear macrophages. It is one of the most impor-
tant cytokines in the tumor microenvironment and has 
the strongest antitumor effect known to date [5]. JAP-A 
can directly bind to TNF-α, thereby inhibiting its bind-
ing to TNFR1. Its direct binding to cytokines leads to the 
blocking of downstream signaling events, particularly 
the activation of NF-κB. The results of in  vivo experi-
ments showed that Jap-A protected mice against TNF-α 
/ D-galactosamine-induced acute hepatitis but did not 
affect host antiviral immunity in adenovirus-infected 
mice [88]. Inflammation and persistent infection may 
lead to various human malignancies, so this study has a 
good reference for the antitumor effect of Jap-A. In addi-
tion, Bailly et  al. constructed a molecular model of the 
compound/target interaction. Molecular docking showed 
that the compound can be used as an interfacial ligand, 
which fits well at the junction between two TNF-α subu-
nits and binds to proteins through a series of molecular 
interactions such as hydrogen bonding and van der Waals 
contacts [89].

Binding to MDM2, UbcH5c and Keap1
Ubiquitination (Ub) is a process by which ubiquitin mol-
ecules classify intracellular proteins, select target pro-
tein molecules, and modify target proteins specifically 
under the action of a series of special enzymes. A series 
of enzymes like ubiquitin-activating enzyme (E1), ubiq-
uitin-conjugating enzymes (E2), ubiquitin ligase (E3), and 
deubiquitinating enzymes (DUBs) are involved in ubiqui-
tin signaling, controlling protein post-translational ubiq-
uitination and regulating protein stability [90].

UbcH5c is an E2 ubiquitin-conjugative enzyme. A 
Study have shown that UbcH5c is overexpressed in 
pancreatic cancer and associated with poor prognosis 
of pancreatic cancer [91]. DHPO, one Inula sesquiter-
pene lactone, can directly bind to UbcH5c by forming 
hydrogen bonds with the amino groups of Leucine 86 
and Arginine 90 and inhibit its function, thereby inhib-
iting the NF-κB signaling pathway. It exerts anti-tumor 
effects in vivo and in vitro and provides a candidate drug 

for the treatment of pancreatic cancer [91]. In 2014, the 
team first discovered and reported a natural compound 
IJ-5, a new sesquiterpene lactone component found from 
I. japonica Thunb, which specifically binds to UbcH5 
[92]. The researchers optimized the structure of IJ-5 to 
develop a new generation of more specific UbcH5c inhib-
itor compound called compound 6d which may be used 
to treat inflammatory and autoimmune diseases [93].

MDM2 is an E3 ubiquitin ligase that is frequently 
overexpressed in cancer cells. p53 is a key tumor sup-
pressor gene in human cells, and some oncogenes, such 
as MDM2 can directly bind to p53 protein to form 
p53-MDM2 complex, which can inhibit p53-mediated 
transcriptional activation. Therefore, p53-MDM2 inter-
action has become an important drug target for antican-
cer drugs [94]. Qin et al. found that Jap-A could directly 
bind to MDM2, block MDM2-p53 interaction, promote 
MDM2 ubiquitination and proteasomal degradation 
and inhibit MDM2 gene transcription. In addition, the 
expression level of MDM2 was significantly decreased in 
the presence of Jap-A in the mouse breast cancer MDA-
MB-231 model. Jap-A can competitively bind to the 
hydrophobic pockets of MDM2, thus preventing critical 
p53 residues from binding to them. The ability of JapA to 
bind MDM2 protein was higher than that of p53 residue 
[95]. Bailly et al. further showed that the compound may 
fit between two α-helices and interaction with the protein 
via H-bonds with residues Lysine 51 and Glutamine 24, 
and via several other molecular contacts [89].

Keap1 is a Cullin3(Cul3) -dependent E3 ubiquitin 
ligase complex substrate adaptor protein, which can 
assemble with Cullin3 and Rbx1 to form a functional E3 
ubiquitin ligase complex (Keap1-Cul3-E3) to regulate 
NRF2. Keap1 contains three functional domains, includ-
ing a BTB domain, an IVR domain and a Kelch or DGR 
domain. The BTB domain binds Cul3 and is required 
for Keap1 dimerization. The BTB domain binds Cul3, 
which is required for Keap1 dimerization. The team led 
by Zhang discovered that britanin directly binds to the 
cysteine residue (Cys-151) within the BTB domain of 
Keap1, thereby disrupting Keap1’s role as an adapter for 
the Keap1-Cullin3 ubiquitin ligase complex, ultimately 
resulting in activation of the NRF2 protective path-
way [96]. Under physiological conditions, NRF2 plays 
a crucial role in maintaining cellular reduction–oxi-
dation (REDOX) homeostasis and exerts potent anti-
inflammatory functions as well as additional anti-cancer 
activities, thereby supporting cell survival. Hence, the 
activation of NRF2 is pivotal for cancer chemoprevention 
[97]. However, it should be noted that NRF2 has a dual 
role in cancer. Excessive activation of NRF2 can confer 
various advantages to cancer cells, including protection 
against apoptosis and senescence, promotion of cancer 
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cell metastasis, and development of resistance to chemo-
therapy and radiotherapy [98]. Therefore, further investi-
gation is warranted to elucidate the mechanism by which 
britanin exerts its anti-tumor effect through targeting 
Keap1.

Binding to NLRP3
Inflammatory cytokines mediated by NOD-like receptor 
thermal protein domain associated protein 3 (NLRP3) 
inflammasomes play a dual role in mediating human 
diseases. Although they are deleterious in the pathogen-
esis of inflammatory and metabolic diseases, they have 
beneficial effects in many infectious diseases and some 
cancers. Therefore, fine-tuning NLRP3 inflammasome 
activity is essential to maintain proper cellular homeo-
stasis and health [99]. Ergolide is a potent inhibitor of 
NLRP3-mediated pyroptosis in  vitro and in  vivo. Fur-
thermore, we confirmed that ergolide irreversibly binds 
to the NLRP3 NACHT domain to prevent assembly and 
activation of the NLRP3 inflammasome [100]. Inflamma-
tion and persistent infection may lead to various human 
malignancies. Now there are data showing that NLRP3 
inflammasome polymorphism is associated with differ-
ent malignant tumors such as gastric cancer, colon can-
cer and lung cancer [101]. Therefore, this study is of great 
significance for the study of anti-tumor molecular targets 
of ergolide.

Binding to protein kinas JAK2 and PLK1
Polo-like kinase-1 (PLK1), a serine/threonine protein 
kinase involved in the initiation, maintenance and ter-
mination of mitosis, is highly expressed in a variety of 
cancers. [102]. Racemolactone I is a new sesquiterpene 
lactone isolated from Inula racemosa. One study per-
formed molecular docking and simulation studies to 
confirm that racemolactone I binds to the PLK-1 active 
sites to form a stable complex. The residues that racemo-
lactone I interacted with PLK-1 were mainly Leucine 59, 
Glycine 60, Lysine 61, Glycine 62, etc. [102, 103].

The protein encoded by the JAK2 gene is a non-recep-
tor tyrosine kinase, a member of the Janus kinase family. 
JAK/STAT is a very important signaling pathway. Many 
cytokines and growth factors can induce cell prolifera-
tion, differentiation and apoptosis through this signal-
ing pathway [104]. Zhang et  al. examined the effects of 
bigelovin on JAK2 enzymatic activity in  vitro and dem-
onstrated that bigelovin can inactivate its enzymatic 
activity. These data strongly suggested that bigelovin can 
inhibit the JAK2/STAT3 signaling pathway by directly 
inactivating JAK2. The results of the LC–MS analysis 
suggested that biglovin may react with the cysteine resi-
dues of JAK2, resulting in the inactivation of JAK2 [65].

Binding to PD‑L1
In recent years, immunology oncology therapy has 
become one of the important methods for the treatment 
of advanced malignant tumors. Immunology oncology 
therapy does not directly attack cancer cells but fights 
tumors by activating the body’s own immune system, 
which has good safety and tolerance [105]. Programmed 
death 1 (PD-1), a member of the CD28 superfamily, is an 
important immunosuppressive molecule, and its Ligand 
is programmed cell death-ligand 1 (PD-L1) [106]. PD-1/
PD-L1 inhibitors can combine with PD-1 or PD-L1 to 
block the inhibitory effect of tumor cells on immune 
function, restore the activity of T cells, and enhance the 
immune response. At present, the approved PD-1/PD-L1 
inhibitors are macromolecular antibody drugs. Monoclo-
nal antibodies have many disadvantages, including poor 
oral bioavailability, poor membrane permeability, and 
difficulties in transportation and storage [107]. In order 
to avoid these shortcomings, more and more researchers 
are exploring small-molecule chemicals as PD-1/PD-L1 
inhibitors. These small molecule inhibitors are cur-
rently in various stages of preclinical or clinical research. 
Zhang et al. found that britanin had a significant inhibi-
tory effect on the protein and mRNA levels of PD-L1 in 
HCT116, A549, HeLa and Hep3B cell lines. Britannin can 
inhibit PD-L1 to enhance the activity of cytotoxic T lym-
phocytes and inhibit tumor cell proliferation and angio-
genesis. By using molecular docking assay, they proposed 
that britanin can bound to the PD-L1 binding pocket 
components of Asparagine 131, Alanine 132, Glutamate 
72, and Lysine 89. In vivo and in vitro experiments have 
also shown that britanin can suppress PD-L1 expression 
by blocking the interaction between HIF-1α and MYC. 
This study provides a reference for the development of 
natural small molecule inhibitors of PD-L1 [108].

Summary and prospects
Studies have shown that Inula sesquiterpene lactones 
hold promise as potential antitumor drugs, demonstrat-
ing significant inhibitory effects on gastric cancer, breast 
cancer, cervical cancer, colon cancer, and other types of 
tumors. However, current research on Inula sesquiter-
pene lactones still faces certain limitations. Firstly, most 
of the studies investigating the antitumor mechanism 
have been conducted in  vitro, with relatively limited 
in  vivo experiments. To date, no Inula sesquiterpene 
lactones have been approved by the Food and Drug 
Administration (FDA) for clinical trials. However, other 
sesquiterpene lactones, such as mipsagargin, which was 
synthesized on basis of natural product thapsigargin, 
have been in clinical research. One phase II multicenter, 
single-arm study was designed to evaluate the safety and 
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efficacy of mipsagargin in adult patients with advanced 
hepatocellular carcinoma (HCC) who had progressed 
on or after treatment with sorafenib or were intoler-
ant of sorafenib. The results showed that the regimen 
was well tolerated, stabilized the disease, and prolonged 
time to disease progression (TTP) in patients previously 
treated with sorafenib. This suggests that mipsagargin 
may have clinical activity in HCC, including in patients 
with advanced refractory HCC [109]. Therefore, further 
studies involving more animal experiments are needed to 
verify the antitumor mechanism and evaluate effective-
ness and safety so as to establish a solid foundation for 
future clinical trials. Secondly, there is a scarcity of stud-
ies focusing on the specific molecular targets of Inula 
sesquiterpene lactones, with most investigations being 
limited to certain pathways. In modern drug discov-
ery, it is crucial to identify the specific molecular target 
in order to understand the mechanism of action of the 
drug, assess potential toxicity, and overcome possible 
resistance mechanisms. Therefore, researchers should 
conduct more experiments to explore the molecular tar-
gets of Inula sesquiterpene lactones. Techniques such 
as RNA-seq [110], proteomics [111], CETSA [112], SPR 
[113] and others can be employed to identify and verify 
the binding ability with these targets. Last but not least, 
the relationship between the structure of monomer com-
pounds and their biological activity remains inadequately 
explored. The development story of ZD03 may provide us 
with some insights. Professor Weidong Zhang ’s research 
group at the Naval Medical University discovered the bri-
tanin as a lead compound, which initially demonstrated 
anti-inflammatory activity [96]. Subsequent assessments 
of its pharmacokinetic properties prompted the devel-
opment of the salt form ZD03, leading to significant 
improvements in solubility, bioavailability, and metabolic 
stability compared to the original lead compound. As a 
result, ZD03 successfully advanced to clinical studies. 
To advance drug development, it is crucial for research-
ers to further elucidate the correlation between structure 
and drug efficacy. Purposefully modifying the chemical 
structure of Inula sesquiterpene lactones can yield lead 
compounds that are more effective and less toxic, ulti-
mately suitable for clinical use. By elucidating this rela-
tionship, researchers can pave the way for the creation 
of novel drugs that offer enhanced therapeutic benefits. 
At present, some people have modified the structure of 
Inula sesquiterpene lactones. 1-O-acetyl-6-O-lauroylbri-
tannilactone (ABL-L) is a semi-synthetic analogue of the 
natural product 1-O-acetylbrominolactone (ABL). One 
study has found that the inhibitory effect of ABL-L on 
tumor cell lines is 4–10 times higher than that of ABL. 
The Further study has found that ABL-L has a good anti-
cancer effect on human laryngocarcinoma cells, which 

can induce cell apoptosis and block the cell cycle in G1 
phase [114]. Therefore, ABL-L may be a potential treat-
ment for laryngocarcinoma. ABL-N, another derivative 
of ABL, was also synthesized and studied. The study has 
shown that ABL-N can induce apoptosis of breast cancer 
cells in  vitro, inhibit cell proliferation and significantly 
inhibit tumor growth in vivo. This may work by activating 
the MAPK signaling pathway [115]. Therefore, ABL-N 
may be a potential drug for breast cancer prevention and 
intervention. Studies on the Inula sesquiterpene lactones 
have further demonstrated their potential as antitumor 
agents, but the research in this area is still lacking and 
more researchers are needed to participate.

At present, the problem of drug resistance has made 
the treatment of tumors into a dilemma. It has been 
found that the Inula sesquiterpene lactones can be com-
bined with doxorubicin and other chemotherapy drugs 
to increase their sensitivity and reverse multi-drug 
resistance. More importantly, studies have shown that 
they can also be combined with anti-PD-1 antibodies 
to significantly increase the proportion of CD8 T cells. 
In addition, combination therapy enhanced anti-tumor 
immunity by reducing the number of myeloid suppressor 
cells and increasing the number of M1-like macrophages 
[116]. These results indicate that the Inula sesquiterpene 
lactones have great value in chemotherapy and immuno-
therapy. Therefore, research on them may provide help 
for future cancer prevention and treatment. They may be 
used as excellent anti-cancer drugs in clinical treatment, 
and they may be combined with chemotherapy drugs or 
immunotherapy drugs to prolong the survival of patients 
and improve their survival rates.

In summary, the structure, structure–activity rela-
tionship, anti-tumor activity, mechanism of action and 
molecular targets of Inula sesquiterpene lactones were 
reviewed in this paper. They have anti-tumor activities 
such as promoting cell apoptosis and inducing cell cycle 
arrest. These activities mainly play a role by regulating 
NF-κB, STAT3 and other signaling pathways or induc-
ing oxidative stress. The limitations of the present study 
and the application value of Inula sesquiterpene lactones 
were also discussed in this paper, which can provide ref-
erence for further study of their anti-tumor effects.
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