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Abstract 

Background Determination of batch-to-batch consistency of botanical drugs (BDs) has long been the bottleneck 
in quality evaluation primarily due to the chemical diversity inherent in BDs. This diversity presents an obstacle 
to achieving comprehensive standardization for BDs. Basically, a single detection mode likely leads to substandard 
analysis results as different classes of structures always possess distinct physicochemical properties. Whereas rep-
resenting a workaround for multi-target standardization using multi-modal data, data processing for information 
from diverse sources is of great importance for the accuracy of classification.

Methods In this research, multi-modal data of 78 batches of Guhong injections (GHIs) consisting of 52 normal and 26 
abnormal samples were acquired by employing HPLC-UV, -ELSD, and quantitative 1H NMR  (q1HNMR), of which data 
obtained was then individually used for Pearson correlation coefficient (PCC) calculation and partial least square-
discriminant analysis (PLS-DA). Then, a mid-level data fusion method with data containing qualitative and quantitative 
information to establish a support vector machine (SVM) model for evaluating the batch-to-batch consistency of GHIs.

Results The resulting outcomes showed that datasets from one detection mode (e.g., data from UV detectors only) 
are inadequate for accurately assessing the product’s quality. The mid-level data fusion strategy for the quality evalua-
tion enabled the classification of normal and abnormal batches of GHIs at 100% accuracy.

Conclusions A quality assessment strategy was successfully developed by leveraging a mid-level data fusion 
method for the batch-to-batch consistency evaluation of GHIs. This study highlights the promising utility of data 
from different detection modes for the quality evaluation of BDs. It also reminds manufacturers and researchers 
about the advantages of involving data fusion to handle multi-modal data. Especially when done jointly, this strategy 
can significantly increase the accuracy of product classification and serve as a capable tool for studies of other BDs.
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Introduction
According to the report, over 800 botanical investiga-
tory new drug (IND) applications and pre-IND meeting 
requests have been submitted to nearly every review divi-
sion of the FDA from 1984 to 2018 [1], and the World 
Health Organization (WHO) has estimated that perhaps 
80% of people are dependent largely on botanical prod-
ucts for their primary health care needs [2]. However, to 
date, only two botanical drugs (BDs) have been approved 
by FDA for marketing as prescription drugs. One of the 
main contributing factors impeding the approval pro-
cess of botanical products is the chemical complexity, for 
which metabolomic analysis constantly requires labori-
ous efforts. In addition, BDs purportedly exert thera-
peutic effects by means of synergistic interactions, so 
reaching a comprehensive chemical analysis is a prereq-
uisite to ensure the potency of BDs.

Despite the rapid advances in analytical methods, 
holistic standardization of botanical products continues 
to be a major challenge, as different types of compounds 
always encompass distinct physicochemical proper-
ties. As a result, the standardization of BDs increasingly 
entails the combination of analytical techniques featur-
ing different principles to capture botanical constituents 
to the greatest extent. In practice, LC-based methods, for 
instance, LC-UV, are the most used approaches by virtue 
of the relatively abundant instrumentation along with the 
high sensitivity of UV [3, 4]. A large number of research 
for the quality evaluation of BDs have been carried out 
using LC-based methodologies [5–7]. Nonetheless, it 
is often considered impractical to fulfill comprehensive 
chemical analysis for BDs as there is a need for identical 
reference materials (RMs) for the identification of ana-
lytes. Basically, BDs integrity increases with the number 
of markers measured qualitatively and quantitatively. In 
contrast to LC-based methods, the requirement of iden-
tical RMs does not exist in NMR. NMR is regarded as 
a relatively insensitive method, which possesses more 
universal detection ability and is capable of performing 
multi-target analysis on a single sample [8–10]. Owing 
to the increasing availability of NMR, indeed, there are 
some reports involving the integration of LC-UV, -MS, 
and NMR for the standardization of complex matri-
ces [11, 12, 28]. However, from a perspective of the gap 
between the high demand for healthcare products and 
the quality consistency of different batches of BDs, the 
combination of commonly used methods (e.g., LC-based 
pharmaceutical quality control) and emerging techniques 
[e.g., quantitative 1H NMR  (q1HNMR)] for providing sci-
entific evidence to the development of BDs is still consid-
ered underexplored [27].

On the other hand, concomitant with the combina-
tion is the effective processing of experimental datasets 

generated by different analytical techniques. In the field 
of quality assessment of BDs, data fusion has proven to 
be a powerful approach for integrating different kinds 
of information to assist in the overall understanding of a 
product. Mid-level data fusion, as one of three level data 
fusion methods (low, mid, and high), in which multi-type 
features are often extracted from processed data and 
fused into a new array to find complementary informa-
tion [13]. Some studies have utilized the mid-level data 
fusion strategy for classification. Chang et al. [14] estab-
lished a mid-level data fusion encompassing GC-FID, 
UV-Vis, ATR-FT-IR, and HPLC-DAD to produce a bet-
ter classification result than that from a single technique 
in the quality assessment of belamcandae rhizome anti-
viral injection. Zhang et al. [15] collected NIR and MIR 
spectra, from which the data was organized via low- and 
mid-level data fusion methods, to rapidly detect the 
extraction process of a traditional Chinese medicine 
called Xiao’er Xiaoji Zhike Oral Liquid. Additionally, with 
the rapid development of artificial intelligence, machine 
learning algorithms, including but not limited to ran-
dom forest (RF) [16, 17], support vector machine (SVM) 
[18], k-nearest neighbor (KNN) [19], have been adopted 
as powerful tools for feature extraction and data fusion. 
Of note, previous studies regarding data fusion mainly 
involved techniques which unveil functional groups of 
compounds of interest. The present study also applied 
magnetic examination (e.g., NMR) to provide an alterna-
tive for characterizing structures from a point of view of 
whole molecule.

As a proof of concept, this study developed a qual-
ity assessment method that utilizes a mid-level data 
fusion strategy to integrate data containing qualitative 
and quantitative information for the standardization of 
Guhong injection (GHI) that is a botanical drug derived 
from a sterile aqueous solution made of safflower extract 
and aceglutamide used for treating ischemic stroke [20, 
21]. First, HPLC-UV and -ELSD were used for the quali-
tative analysis with the help of identical RMs, while 
 q1HNMR was applied for the qualitative and quantitative 
detection of constituents. Notably, some of the constitu-
ents (e.g., amino acids) identified in this study by NMR 
are in large part undetectable to UV and ELSD detectors. 
Secondly, qualitative features extracted from chromato-
graphic fingerprints and quantitative features obtained 
from  q1HNMR were used for Pearson correlation coef-
ficient (PCC) analysis and partial least square-discrimi-
nant analysis (PLS-DA). SVM, a typical machine learning 
approach, was used to solve the problem of binary clas-
sification like discrimination of normal and abnormal 
samples [22]. Finally, both extracted qualitative and quan-
titative features were organized as a new dataset for SVM 
modeling. Compared with PCC analysis and PLS-DA of 
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individual features from HPLC-UV, HPLC-ELSD, and 
 q1HNMR, SVM with fused features reached a classifica-
tion accuracy of 100% for classifying normal batches and 
individually prepared abnormal samples of GHIs. This 
quality control strategy can be not only regarded as a reli-
able approach for identifying chemical components and 
distinguishing abnormal batches of GHIs but also serve 
as a useful tool for the standardization of other BDs fea-
turing complex matrices.

Materials and methods
Reagents
Normal batches of GHIs were provided by Guhong Phar-
maceutical Co., Ltd. (Tonghua, China), labeled from N1 
to N52 (Additional file  1: Table  S1). Half of the normal 
batches were added with HCl or fructose manually as 
abnormal batches (also see Additional file  1: Table  S2 
for details). HPLC-grade solvents were purchased from 
Merck (Darmstadt, Germany), and methanol-d4 (99.8 
atom %D) with 0.03% (v/v) tetramethylsilane (TMS) 
was purchased from Cambridge Isotope Laboratories 
Inc. (Andover, MA, USA). Methyl 3,5-dinitrobenzoate 
(99.40%) was purchased from Sigma-Aldrich Co.LLC 
(Switzerland) as the internal calibrant for  q1HNMR anal-
ysis. Chemical reference standards were purchased from 
Yuanye Biotechnology Co. Ltd (Shanghai, China) and 
Sigma-Aldrich Co. LLC (Switzerland).

Sample preparation
Sample preparation for HPLC‑UV analysis
Guhong injection (1.0 mL) was diluted by 20% methanol 
(4.0 mL), and centrifuged for 10 min at 10000 rpm·min−1. 
The supernatant was used for HPLC-UV analysis.

Sample preparation for HPLC‑ELSD analysis
Guhong injection (1.0  mL) was diluted by 70% ace-
tonitrile (4.0  mL), and centrifuged for 10  min at 
10000  rpm   min−1. The supernatant was then used for 
HPLC-ELSD analysis.

Sample preparation for  q1HNMR analysis
6.03  mg of methyl 3,5-dinitrobenzoate was accurately 
weighed and dissolved in 10 mL of methanol-d4. 600 μL 
of the prepared deuterated solution was added to freeze-
dried GHIs, which were transferred into 5  mm NMR 
tubes for subsequent  q1HNMR analysis.

HPLC–UV analysis
Agilent 1100 HPLC system (Agilent Co., USA) equipped 
with VWD detector was used for HPLC–UV analy-
sis. The chromatographic separation was accomplished 
with Waters Altantis@T3 column (4.6 × 250 mm, 5 μm), 
and the mobile phase consisted of 0.1% formic acid 

(A) and 70% acetonitrile (B). The gradient elution was 
programmed as follows: 0–12  min, 4% B; 12–20  min, 
4–18% B; 20–30 min, 18–19% B; 30–43 min, 19–34% B; 
43–47 min, 34–48% B; 47–56 min, 48–100%B. The total 
run time was 70  min. The flow rate was 0.9  mL·min−1, 
the column temperature was maintained at 35 ℃, and the 
injection volume was 10 μL.

The HPLC-UV analysis method was validated by preci-
sion, repeatability, and stability tests, where the relative 
standard deviation (RSD) of the average relative reten-
tion time (RRT) and relative peak area (RPA) of each 
characteristic peak with respect to the reference peak 
were employed for evaluation. To be specific, precision 
was determined by analyzing the same sample six times. 
Repeatability was evaluated by the analysis of six parallel 
prepared samples consecutively. Stability was confirmed 
by testing the same sample at the time intervals of 0, 3, 6, 
12, 18, and 24 h.

HPLC‑ELSD analysis
HPLC-ELSD analysis was performed on an Agilent 1260 
HPLC system (Agilent Co., USA). A Prevail Carbohy-
drate-ES (250 × 4.6  mm, 5  μm) column was used for 
chromatographic separation. Deionized  H2O (A) and 
acetonitrile (B) were used as mobile phases. The gradient 
was as follows: 0–25 min, 88–85% B; 25–45 min, 85–70% 
B; 45–49  min, 70–60% B; 49–50  min, 60–50% B and 
50–55 min, 50% B. The flow rate was set at 0.7 mL  min−1 
and the column temperature was set at 35 °C. The evapo-
rator temperature was 60 °C and the nebulizer tempera-
ture was 50 °C for ELSD, respectively. The nitrogen flow 
rate was set as 1.2 L  min−1 and the gain value was 1.

Method validation was accomplished by investigat-
ing precision, repeatability, and stability. Precision was 
estimated by six consecutive injections of a sample. 
Repeatability was also evaluated by analyzing six parallel 
prepared samples consecutively. Stability was assessed by 
testing the same sample at the time points of 0, 4, 8, 12, 
20, and 24 h.

q1HNMR analysis
q1HNMR analysis was performed on JEOL ECZ-500 
(Akishima, Tokyo, Japan). Automatic shimming and 
adjusting 90° pulse length before each sample acquisition. 
The 1HNMR spectra parameters were set as follows: the 
number of scans was 16, acquisition time (AQ) was 3.2 s, 
and pulse width was 20.0 ppm. To ensure fully quantita-
tive conditions for the target signals, the relaxation delay 
time  (D1) was set to 60.0 s.

The  q1HNMR spectra were phase-adjusted, base-
line-corrected, and unified to TMS at 0.000  ppm using 
MestReNova 14.0.0 software from Mestrelab Research 
S.L. (Santiago de Compostela, Spain). Due to the complex 
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chemical composition and additives’ interference of 
injections that caused the overlap of spectra peaks, eight 
main characteristic peaks were selected for quantifica-
tion. The obtained peak areas were utilized to calculate 
the content of the components according to Eq. (1) [23].

where N represents the number of integrated hydrogens, 
A is the absolute integral value, M is the molar mass, C 
represents the mass concentration, IC is the internal cali-
brant, and x is the target analyte or molecule.

Feature processing
RPA was calculated by dividing the area under the curve 
(AUC) of the target peak by the AUC of the reference 
peak in HPLC-UV chromatograms, while the log value 
of the relative peak area (RLPA) was obtained by divid-
ing the log value of the AUC of the target peak by the log 
value of the AUC of the reference peak (see Figs. 1 and 2 

(1)Cx=

NIC ∗ Ax ∗Mx

Nx ∗ AIC ∗MIC

∗ CIC

and the text for details). RPA and RLPA from each batch 
were separately utilized for creating qualitative feature 
tables for subsequent analysis and modeling.

The effective chemical shift ranges of each  q1HNMR 
spectrum were determined after phase adjusting and 
baseline correction. Compounds were characterized 
based on 1&2D NMR in conjunction with reference 
standards. The characteristic peaks (see Table  1 for 
details) of identified compounds were used for the con-
tent calculation by an internal standard method (see 
Fig. 3, Table 1, and the text for details). The content cal-
culated of the identified compounds from each batch was 
tabulated for further analysis and modeling.

PCC analysis and PLS‑DA
In this study, RPA, RLPA, and the content of character-
ized compounds were separately used for PCC analysis to 
determine the similarity between each batch.

Fig. 1 HPLC–UV data analysis. A Comparison of aceglutamide (peak 2) and hydroxysafflor yellow A (peak 16) between normal (N25) and abnormal 
(A1) batches, the data showed that the peak shape of peak 2 and the absolute integral values of peak 16 were significantly changed. B Peak 16 
was used as the reference peak and relative peak area (RPA) was calculated as the value of the AUC of the target peak  (At) dividing by the AUC 
of the reference peak  (As). C Pearson correlation coefficient between batches was analyzed by involving the RPA values calculated. It showed 
that only sample A20 was recognized as the abnormal sample by setting the threshold value at 0.9. D PLS-DA using the RPA values: nine normal 
samples (in the dashed ellipse) were out of the cluster (green area) along with one normal (N31) and two abnormal (A24 and A26) samples falling 
outside of the 95% confidence interval
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(2)r =

N
∑

i=1

(Ai − A) ∗ (Bi − B)

√

N
∑

i=1

(Ai − A)2 ∗

√

N
∑

i=1

(Bi − B)2

r represents Pearson correlation coefficient, Ai represents 
the reference value and Bi represents the target value, A 
and B represent the mean value of the standards and tar-
get compounds, respectively.

Apart from PCC analysis, RPA, RLPA, and the con-
tent of characterized compounds of each batch were also 
input into SIMCA software (version 14.1, MKS Umetrics 
AB, Umeå, Sweden) to accomplish PLS-DA to evaluate 
the classification effect of different types between batches 
from an overall perspective.

Mid‑level data fusion
In this study, a mid-level data fusion strategy was estab-
lished aimed at improving classification accuracy for 
distinguishing abnormal batches. The strategy of feature 
extraction and mid-level data fusion was summarized in 
Scheme 1. First of all, multi-batch samples were prepared 
and analyzed by HPLC-UV, HPLC-ELSD, and NMR to 
obtain chromatographic fingerprints and nuclear mag-
netic spectra. Second, RPA and RLPA as qualitative fea-
tures of HPLC-UV and -ELSD, respectively, along with 
content of compounds identified as quantitative features 

Fig. 2 HPLC-ELSD data analysis. A HPLC-ELSD profiles of the normal and abnormal samples along with the sugars (peak 1 and peak 2) 
and glycosides (peak 3 and peak 4) identified. B Peak 1 was selected as the reference peak and RLPA was calculated as the value of the AUC 
of the target peak  (At) dividing by the AUC of the reference peak  (As). C Pearson correlation coefficient between batches was analyzed using 
the RLPA values. Two normal samples (N9 and N12) were characterized unexpectedly less similar to both normal and abnormal samples. D 
PLS-DA of the ELSD data using the RLPA values. One abnormal and six normal samples (in the dashed ellipses) were out of the individual clusters 
along with normal sample (N51) and abnormal sample (A10) falling outside of the 95% confidence interval

Table 1 Characterized compounds by  q1HNMR and their 
characteristic signals

* Components quantified

No Chemical compounds δH (multiplicity, J in Hz)

1* Adenosine 8.18 (s)

2* Hydroxysafflor yellow A 7.58 (d, J = 15.8 Hz)

3 Uridine 5.70 (d, J = 7.9 Hz), 8.01 (d, J = 7.9 Hz)

4a* α-Glucose 5.10 (d, J = 3.7 Hz)

4b* β-Glucose 4.47 (d, J = 7.8 Hz)

5* Aceglutamide 1.98 (s)

6* Alanine 1.46 (d, J = 7.2 Hz)

7* 1,2-Propanediol 1.13 (d, J = 6.3 Hz)

8* Valine 1.06 (d, J = 7.0 Hz)

9 Isoleucine 1.03 (d, J = 6.9 Hz)
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Fig. 3 q1HNMR data analysis of the normal and abnormal samples. A The representative  q1HNMR spectrum of GHI and characteristic signals 
selected. In total, nine compounds were identified (also see Table 1 for details). B Comparison of chemical shifts changing and occurrence 
of unexpected peaks of aceglutamide and alanine between the normal and abnormal batches. C Among the identified compounds, seven of them 
were selected for further content determination as a result of the availability of well resolved signals for quantification. D Pearson correlation 
coefficient between 78 batches was analyzed by using the content values obtained from  q1HNMR data. The results indicated that all the samples 
were showed excellent similarities when setting the threshold value at 0.9. E PLS-DA was employed for classifying the normal and abnormal 
samples based on the  q1HNMR data. One abnormal and eleven normal samples were out of the individual clusters along with one normal sample 
(N43) falling outside of the 95% confidence interval
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of  q1HNMR, were extracted for creating feature tables. 
Third, the qualitative and quantitative features of each 
batch were fused as a new data matrix for subsequent 
modeling analysis. Machine learning is an advisable 
choice to enhance the efficiency of data processing and 
the accuracy of classification. Moreover, SVM, a classic 
machine learning method, is commonly used for deal-
ing with the problem of binary classification. Collectively, 
SVM was applied in this study to deal with the multi-
modal data for a more accurate quality evaluation of BDs. 
The SVM model was established by MATLAB (Version: 
R2023a). All input data was taken by data normaliza-
tion, and radial basis function was applied for training 
the SVM classifier. Tenfold cross-validation was used for 
the model validation and a hyperparameter was found to 
minimize tenfold cross-validation losses by using auto-
matic hyperparameter optimization.

Results and discussion
HPLC‑UV analysis
In our previous study, the HPLC-UV fingerprint of GHI 
was established with a total of 27 peaks labeled, among 
them, 26 ones were identified by LC-MS [21]. As a con-
tinuous work for the standardization of BDs, the present 
study acquired the HPLC-UV chromatograms (Addi-
tional file  1: Fig. S1) of another 52 normal and 26 in-
house developed abnormal batches of GHIs according to 
the previously established method. As shown in Fig. 1A, 
the peak shape of peak 2 in the abnormal batch was dis-
torted, while the AUC of peak 16 significantly changed 

between the normal and abnormal batches with a relative 
deviation of 9.12%. In addition, peak 16, which stands 
for the main bioactive marker of GHI, namely hydrox-
ysafflor yellow A, showed good separation from other 
peaks, appropriate signal intensity, and reasonable reten-
tion time, and was hence selected as the reference peak 
for RPA calculation. Accordingly, RPA was defined as the 
value of the AUC of the selected peak  (At) over the AUC 
of the reference peak  (As) as shown in Fig. 1B. Taking into 
account the degree of separation and the signal intensity, 
14 peaks of peak 2, 4, 7, 8, 9, 10, 11, 13, 17, 21, 23, 24, 26, 
and 27 were determined for creating a qualitative feature 
table of the HPLC-UV data of the 78 batches (Additional 
file 1: Table S3), which were used for the subsequent anal-
ysis including PCC analysis and PLS-DA. Similarity eval-
uation of the HPLC-UV data was conducted by the PCC 
analysis and RPA of N49 was randomly chosen as the 
reference dataset for calculating the PCC values (Addi-
tional file 1: Table S4). With 0.9 set as the threshold value, 
only A20 was identified as an abnormal one among the 
26 abnormal samples (Fig. 1C). Then, PLS-DA was used 
for evaluating the class of samples with the RPA values as 
the dependent and the sample types as independent vari-
ables as shown in Fig. 1D. Nine normal samples among 
the two dashed ellipses were not well clustered with the 
majority of other normal samples. Meanwhile, N31, A26, 
and A24 were clustered out of the 95% confidence inter-
val. Besides, a permutation test was involved for validat-
ing the validity of PLS-DA (Additional file 1: Fig. S2). To 
confirm the reliability of HPLC-UV fingerprints, method 

Scheme 1 Summary of the mid-level data fusion strategy for the classification of GHIs. After acquiring multi-modal data, features were extracted 
from those data acquired and fused as a dataset for SVM modeling to differentiate GHIs
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validation was completed by precision, repeatability, 
and stability analysis, the results were described in sup-
plement information (method validation of HPLC-UV 
fingerprints).

HPLC‑ELSD analysis
In this work, four UV-transparent compounds in GHIs 
were detected by HPLC-ELSD and identified as fructos 
(peak 1), glucose (peak 2), gycerol-1-O-galactfpyr-ano-
syl-(1 → 4)-O-ara- binofuranoside (peak 3), and glyc-
erol-1-O-galactpyranosyl-(1 → 4)[O-ara-binfuranosyl 
-(1 → 3)]-O-ara-binofuranoside (peak 4) referenced to the 
literature [24]. The newly acquired HPLC-ELSD chro-
matograms of the 78 samples were stacked as shown 
in Additional file  1: Fig. S3. Although the peak shape 
showed visually no difference, the AUC disclosed con-
siderable difference as evidenced by peak 1 (25979 of A1 
vs 19879 of N25). The RLPA were obtained by dividing 
the log values of the AUC of the target peaks (peaks 2, 
3, 4) with the log value of the AUC of the reference peak 
(peak1, Fig.  2B). All the calculated RLPA values were 
tabulated (Additional file 1: Table S5) and then used for 
the PCC analysis and PLS-DA. Still, the dataset of N49 
was used as the reference and the PCC results (Fig.  2C 
and Additional file  1: Table  S6) revealed that N9 and 
N12 were below the threshold of 0.90. As to the PLS-DA 
(Fig. 2D), One abnormal and six normal batches among 
the dashed ellipses were not well classified into the cor-
responding classes. N51 and A10 were beyond the 95% 
confidence interval. The permutation test was utilized for 
validating the validity of PLS-DA as shown in Additional 
file  1: Fig. S4. Details of method validation were shown 
in supplement information (method validation of HPLC–
UV fingerprints).

q1HNMR analysis
As a versatile and judicious detector, in this study, 
 q1HNMR was used as well for the multi-component char-
acterization of the 78 samples (Fig.  3A and Additional 
file  1: Fig. S5). Nine compounds, including adenosine, 
uridine, hydroxysafflor yellow A, aceglutamide, 1,2-pro-
panediol, glucose, alanine, valine, and isoleucine, were 
identified according to the data reported in the literature 
[25, 26], in conjunction with the 2D NMR spectra (Addi-
tional file 1: Figs. S6, S7, S8, and S9) and the  q1HNMR of 
reference standards (Additional file 1: Fig. S10).

The differences observed in the  q1HNMR spectra were 
shown in Fig. 3B exemplified by sample N25 and A1: (i) 
the appearance of a singlet (1.98  ppm) near the methyl 
group of aceglutamide in the abnormal sample indicated 
the occurrence of degradation; (ii) the chemical shift of 
the methyl group of alanine is up field shifted from 1.46 
to 1.54 ppm. This might be caused by the protonation of 

the amino groups in these two components as a result of 
the addition of HCl. On the other hand, the characteris-
tic signals of the identified nine compounds were sum-
marized in Table  1, among them, the content of seven 
ones (Fig. 3C) in the 78 samples, except uridine and iso-
leucine due to intense signal overlap, was determined 
through an internal calibration  q1HNMR method with 
methyl 3,5-dinitrobenzoate used as the internal standard 
(Additional file  1: Table  S7). The deconvolution results 
for resolving signal overlap of valine for quantitation 
(Additional file 1: Fig. S11). Subsequently, the PCC analy-
sis (Fig. 3D) and PLS-DA (Fig. 3E) were performed based 
on the calculated content (Additional file  1: Table  S8). 
Clearly, the PCC results can not differentiate the normal 
and abnormal samples at the threshold value of 0.9, while 
in total twelve samples including one normal and eleven 
abnormal ones in the dashed ellipse were not classified 
into the corresponding clusters according to the PLS-DA. 
The permutation test is also used to determine the valid-
ity of PLS-DA (Additional file 1: Fig. S12).

Mid‑level data fusion
In the mid-level data fusion strategy, 14 qualitative fea-
tures of RPA from HPLC-UV fingerprints, 3 qualitative 
features of RLPA from HPLC-ELSD fingerprints, and 
8 quantitative features of components’ content from 
 q1HNMR were fused as a new data matrix as shown in 
Fig. 4. The fused data table of all 78 batches were showed 
in the Additional file 1: Table S9. The batch number of 52 
normal batches and 26 abnormal batches was randomly 
sorted. 70 and 30% of the whole dataset were respectively 
utilized for the train set and test set, respectively (Addi-
tional file  1: Table  S10). The SVM model results of the 
trainset are shown in Fig. 5A, in which blue circle repre-
sents the trainset label and the red start represents pre-
diction trainset label. Basically, if the red dot is located 
in the blue circle, the batch is precisely classified into the 
correct category. According to Fig. 5A, both normal and 
abnormal batch samples were all sorted into the corre-
sponding class, indicating that the classification accuracy 
was 100% for the trainset.

In order to verify the applicability of the established 
SVM model, we then applied this model to evaluate the 
test set. The results demonstrated that the classifica-
tion accuracy was also 100% for the test set as shown in 
Fig.  5B. Compared with the PCC analysis and PLS-DA 
for individual features from HPLC-UV, HPLC-ELSD, and 
 q1HNMR, the mid-level data fusion with SVM revealed 
better classification performance. According to the accu-
rate classification of normal and abnormal batch samples 
of GHIs based on the data fusion strategy, we quickly dis-
tinguished abnormal batches for better quality control of 
products.
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Conclusions
The present study demonstrated that mid-level data 
fusion integrating multi-type datasets and comprehen-
sive chemical characterization is currently the most 
capable strategy to enable accurate quality evaluation of 
complex samples such as BDs. Using clinical GHIs as the 
study materials, the present work realized an identifica-
tion of normal and abnormal batches of the injections at 
100% accuracy by employing a data fusion workflow that 
encompasses the following key steps: (i) RPA and RLPA 
as qualitative features were extracted from the HPLC-UV 

and -ELSD fingerprints, respectively; (ii) content of the 
identified compounds by  q1HNMR as quantitative fea-
ture were calculated. Subsequently, (iii) qualitative and 
quantitative features were utilized individually for the 
similarity analysis and PLS-DA to evaluate the discrep-
ancy between different batches. Then, (iv) qualitative and 
quantitative features were fused as a new data matrix for 
SVM modeling. The mid-level data fusion with SVM was 
successfully applied for classifying normal and abnormal 
batches with an accuracy of 100%. This quality control 
strategy can be not only regarded as a reliable approach 

Fig. 4 Feature extraction and fusion flowchart of the multi-modal data. 14 qualitative features of RPA were extracted from HPLC-UV fingerprints, 
3 qualitative features of RLPA were extracted from HPLC-ELSD fingerprints and 8 quantitative features of components’ content were extracted 
from  q1HNMR. These features were fused as a new data matrix for subsequent model analysis

Fig. 5 SVM model for classifying normal and abnormal batches based on mid-level data fusion. A 36 normal and 18 abnormal samples were used 
as the trainset for training SVM model. B 16 normal and 8 abnormal samples were used as the test set to verify the robustness of the model
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for identifying chemical components and distinguishing 
abnormal batches of GHIs but also serve as a useful tool 
for the standardization of other BDs featuring complex 
matrices.
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