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Abstract 

Background The Zhizi Chuanxiong herb pair (ZCHP) can delay pathological progression of atherosclerosis (AS); how-
ever, its pharmacological mechanism remains unclear because of its complex components. The purpose of current 
study is to systematically investigate the anti-AS mechanism of ZCHP.

Methods The databases of TCMSP, STITCH, SwissTargetPrediction, BATMAN-TCM, and ETCM were searched to predict 
the potential targets of ZCHP components. Disease targets associated with AS was retrieved from the GEO database. 
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analyses were executed 
using DAVID 6.8. Molecular docking method was employed to evaluate the core target binding to blood components, 
and animal experiments were performed to test action mechanism.

Results A ZCHP-components-targets-AS network was constructed by using Cytoscape, included 11 main compo-
nents and 52 candidate targets. Crucial genes were shown in the protein–protein interaction network, including TNF, 
IL-1β, IGF1, MMP9, COL1A1, CCR5, HMOX1, PTGS1, SELE, and SYK. KEGG enrichment illustrated that the NF-κB, Fc epsi-
lon RI, and TNF signaling pathways were important for AS treatment. These results were validated by molecular dock-
ing. In  ApoE−/− mice, ZCHP significantly reduced intima-media thickness, pulse wave velocity, plaque area, and serum 
lipid levels while increasing the difference between the end-diastolic and end-systolic diameters. Furthermore, ZCHP 
significantly decreased the mRNA and protein levels of TNF-α and IL-1β, suppressed NF-κB activation, and inhibited 
the M1 macrophage polarization marker CD86 in  ApoE−/− mice.

Conclusion This study combining network pharmacology, molecular biology, and animal experiments showed 
that ZCHP can alleviate AS by suppressing the TNF/NF-κB axis and M1 macrophage polarization.
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Graphical Abstract

Background
Atherosclerosis (AS) is a kind of chronic inflammatory 
disease that is a general pathological basis for cardiovas-
cular disease (CVD) [1]. Recent studies have emphasized 
the key role of macrophage polarization in AS progres-
sion and regression [2, 3]. M1 macrophage polarization 
induces the release of inflammatory cytokines medi-
ating the acceleration of AS, including interleukin-6 
(IL-6), interleukin-1α (IL-1α), tumor necrosis factor α 
(TNF-α), and interleukin-1β (IL-1β) [4]. In addition, 
M1 macrophages can secrete matrix metalloproteinases 
(MMPs), leading to extracellular matrix degradation, 
plaque instability, and rupture [5]. Therefore, hamper-
ing the phenotypic transformation of macrophages into 
M1 is a potential strategy for preventing and attenuating 
AS. TNF and nuclear factor-kappa B (NF-κB) signaling 
are critical reasons for inflammation [6, 7], and activation 
of the NF-κB p65 and TNF subunits accelerates the phe-
nomenon of macrophage polarization toward M1 in AS 
plaques [3, 8].

Traditional Chinese medicine (TCM) is a promis-
ing treatment option for CVD. According to the TCM 

theory, the pathogenic characteristics of stasis and poi-
son are consistent with the pathological mechanisms of 
inflammation, programmed cell death, angiogenesis, and 
plaque calcification in vulnerable CVD plaques [2, 9]. 
The Zhizi Chuanxiong herb pair (ZCHP) is a representa-
tive prescription for blood stasis removal and detoxifi-
cation, which is achieved using Gardenia jasminoides 
Ellis (Zhizi) and Ligusticum chuanxiong Hort. (Chuanx-
iong) in a 4:5 weight ratio. ZCHP has multiple effects in 
 ApoE−/− mice, including anti-inflammation, apoptosis 
inhibition, and DNA methylation [10]. In addition, of 
the 18 blood-entering components of ZCHP [11], crocin 
and geniposide could reduce AS progression and plaque 
vulnerability by balancing macrophage polarization [12, 
13]. Crocetin can inhibit the inflammatory response of 
endothelial cells and expression of NF-κB in the periph-
eral blood of patients with CVD [14, 15]. Various ZCHP 
components have been shown to postpone the AS pro-
gression by suppressing inflammatory response [16, 17].

Nevertheless, whether ZCHP attenuates AS progres-
sion and plaque vulnerability by regulating M1 mac-
rophage polarization remains unclear. This study aimed 
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to explore ZCHP’s potential action mechanism in the 
therapy of AS using integrated network pharmacology, 
molecular docking, and animal experiment strategy.

Methods
Screening of ZCHP components related targets
We searched the TCMSP (https:// www. tcmsp-e. com/), 
STITCH (http:// stitch. embl. de), SwissTargetPrediction 
(http:// www. swiss targe tpred iction. ch), BATMAN-TCM 
(http:// bionet. ncpsb. or g/batman-tcm/index.php), and 
ETCM (http:// www. tcmip. cn/ ETCM/ index. php/ Home/ 
Index/) databases for the active ingredient targets of 
18 prototype blood components of ZCHP previously 
observed using the UPLC-Q-TOF-MSE technology [11].

Screening of AS‑associated targets
Searching “atherosclerosis” in the GEO database (web-
site: https:// www. ncbi. nlm. nih. gov/ gds/) yields two data 
sets, GSE43292 and GSE100927, which include 61 AS 
patients and 44 healthy individuals. Data standardization 
and screening of differentially expressed genes (DEGs) 
were performed by the limma software package (version 
3.5.1) with database of GEO2R. DEGs were identified 
in samples of patients with AS compared with control 
samples. To identify genes with significant differences in 
expression fold-change (FC), the gene screening criteria 
were set with FC values (|log2FC|) > 1 and P < 0.05 to vis-
ualize in volcano plot.

Component‑target network and protein–protein 
interaction (PPI) network reconstruction
The genes intersecting the ZCHP candidate compo-
nents and AS were mapped using jvenn (https:// jvenn. 
toulo use. srae. fr/ app/ examp le. html) and visualized using 
Cytoscape 3.7.2. The obtained data on ZCHP poten-
tial targets were imported into STRING 12.0 website, 
and the PPI network of ZCHP was constructed. Subse-
quently, the hub genes in the PPI network were screened 
using “degree value” as the evaluation parameter in the 
Cytoscape plugin CytoHubba.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis
Intersecting genes were evaluated by using GO and 
KEGG enrichment analyses with the Database for Anno-
tation, Visualization and Integrated Discovery version 
6.8, with P < 0.05 as the cutoff. Hiplot (website: https:// 
hiplot. com. cn/ home/ index. html) was employed to visu-
alize the results.

Molecular docking study for target prediction
The Chemical Book website (https:// www. chemi calbo 
ok. com/ Produ ctInd ex. aspx) was the resource for the 

chemical structures of the ZCHP blood components 
detected by UPLC-Q-TOF-MSE. The basic principle was 
as follows: the biological species was considered Homo 
sapiens, conformational resolution was < 2.5  Å, confor-
mational sequence was complete, small molecular ligand 
information was in the structural complex, and crystal-
line pH value was close to that of normal human phys-
iology. The PDB ID of the core target of difference was 
selected from the database PDB (http:// www. rcsb. org) 
[18]. The best-docking binding energy calculations were 
then obtained from the CB-Dock2 (website: https:// cadd. 
labsh are. cn/ cb- dock2/ php) [19]. Discovery Studio 2020 
software was used to construct the 3D and 2D interaction 
visualization maps after docking completion [20].

Animal study
The study used male  ApoE−/− mice with a C57BL/6  J 
background and C57BL/6 J wild-type mice (6 weeks old, 
21–24  g) purchased from Sipeifu Biotechnology Com-
pany Limited (License No. SCXK (Beijing) 2019–0010; 
Beijing, China). The mice were kept in an animal barrier 
system with specific pathogen–free laboratory.

After a week of acclimatization to a standard feed, the 
 ApoE−/− mice were fed a high-fat diet (HFD; 78.85% basal 
diet, 21.00% fat, and 0.15% cholesterol) for 21  weeks; 
the C57BL/6  J mice were fed a standard chow diet for 
21 weeks as the control group. Three  ApoE−/− and three 
C57BL/6  J mice were randomly selected and sacrificed 
after 9 weeks. Hematoxylin and eosin (H&E) staining and 
serum lipid levels were used to evaluate the degree of AS. 
The remaining 20  ApoE−/− mice were divided evenly into 
5 groups: model (normal saline 10 mL  kg−1 i.g), simvasta-
tin (SIM, 2.6 mg  day−1  kg−1 i.g), low dose ZCHP (ZCHP-
L, 1.8 g   day−1   kg−1 i.g), medium dose ZCHP (ZCHP-M, 
3.6  g   day−1   kg−1 i.g), and high dose ZCHP (ZCHP-H, 
7.2  g   day−1   kg−1 i.g). C57BL/6  J mice were the control 
group (normal saline 10 mL  kg−1 i.g). At the end period 
of the test, the mice were fasted overnight to avoid food 
affecting the experimental results. Before sampling, 
the mice’s aortic arch and left common carotid artery 
(LCCA) were examined using an ultrasound device. After 
inhaling isoflurane anesthesia (concentration 2%, flow 
rate 10  mL/min), blood samples from the retroorbital 
venous plexus were collected and centrifuged to obtain 
the serum. Aortic and cardiac tissues were collected after 
systemic perfusion with 20 mL PBS.

Ultrasonography
An ultrasound biomicroscopy Vevo 2100 (Visual Son-
ics; Toronto, Ontario, Canada) equipped with a 45-MHz, 
9.0-mm depth MS550D high-frequency probe was used 
to measure the diastolic diameter (Dd), systolic diam-
eter (Ds), and inner media thickness (IMT) of the aortic 

https://www.tcmsp-e.com/
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arch and pulse wave velocity (PWV) of the LCCA [8]. 
The morphology and stiffness of vascular were moni-
tored by ultrasonography. Arterial stiffness was evaluated 
using PWV and the difference between the end-diastolic 
and end-systolic diameters (Dd-Ds). The IMT value 
was calculated to represent the AS burden. TP and TD 
time (from the tip of the QRS complex wave crest to the 
beginning of the Doppler waveform) were measured at 
the proximal and distal ends of the LCCA, and the dis-
tance (S) between the proximal and distal ends of LCCA 
was measured. The formula for calculating carotid PWV 
was PWV = S / [TD − TP (cm/s)]. M-mode ultrasonog-
raphy was used to measure the IMT (distance from the 
aortic intima’s inner surface to the media’s outer surface).

Histopathological, immunohistochemistry, and serum 
lipids analysis
The hearts were embedded in OCT tissue-freezing 
medium. The aortic sinus was observed under the micro-
scope and serially sectioned (8 μm) for Oil Red O stain-
ing, which was used to identify aortic lipid-rich plaques. 
The aortic arches were fixed in 4% paraformaldehyde, 
dehydrated, embedded in paraffin wax, and sliced into 
6-μm widths for H&E staining, which highlights the 
plaque lesion area. For immunohistochemical analy-
sis, the sections were treated with 3%  H2O2 in metha-
nol for 30 min to cut off endogenous peroxidase activity, 
after that were incubated with 3% bovine serum albu-
min for 30 min. After washing in PBS, the sections were 
incubated with anti-CD86 primary antibodies (1:100, 
ab269587, Abcam; Cambridge, UK) to analyze mac-
rophage expression. After a massive cleaning, the sec-
tions were incubated with biotinylated goat anti-rabbit 
IgG HRP (1:1000, ab6721, Abcam) for 50 min. Immuno-
complexes were detected using the DAB substrate. Histo-
pathological and immunological images were quantified 
using Image-Pro Plus 6.0 software (Media Cybernetics 
Inc., Rockville, MD, USA). The low-density lipoprotein 
cholesterol (LDL-C), triglyceride (TG), total cholesterol 
(TC), and high-density lipoprotein cholesterol (HDL-
C) levels were measured using the automatic biochemi-
cal AU480 system (Beckman Coulter; Brea, CA, USA). 
Because the LDL-C and TC levels exceeded the linear 
detection range, the sera were transferred to new tubes 
and diluted with normal saline (1:8) to detect TG and 
HDL-C without dilution [21].

Real‑time quantitative reverse transcription–polymerase 
chain reaction
Total RNA of mice were extracted from the aortic tis-
sue samples with Total RNA Extraction Kit (#GPQ1801, 
Genepool Biotechnology, Beijing, China), following 
the manufacturer’s instructions. Using GAPDH as the 

reference gene, reverse transcription was performed by 
mRNA cDNA Synthesis Kit. Relative quantitative data 
were calculated on a LineGene 9600Plus fluorescence 
quantitative polymerase chain reaction (PCR) instrument 
using the  2−△△CT method. The summary of the primer 
sequences are presented in Table 1.

Western blot analysis
Protein Extraction Kit was employed to isolate the 
protein according to the manufacturer’s instructions. 
Following separation using sodium dodecyl sulfate–poly-
acrylamide gel electrophoresis, the samples were trans-
ferred to a 0.22-μm PVDF membrane. The membranes 
were incubated with the primary antibody at 4 degree 
celsius overnight. Primary antibodies targeting IL-1β 
(#26,048–1-AP, 1:500), TNF-α (#60,291–1-AP, 1:500), 
and NF-κB P65 (#10,745–1-AP, 1:800) were obtained 
from by Proteintech (Wuhan, China), whereas anti-
phospho-NF-κB p65 antibody (#3033, 1:500) was derived 
from Cell Signaling Technology. The PVDF membranes 
and horseradish peroxidase–conjugated secondary 
antibodies were incubated for 50  min with gentle shak-
ing. The protein bands were visualized by an ECL kit 
(#GPP1824; GenePool Biotechnology, Beijing, China). 
Finally, densitometry values of the bands were obtained 
using Quantity One version 4.6.2.

Statistical analysis
The software SPSS was utlized to do the statistical analy-
sis. Means ± standard deviation (SD; X ± S) are presented 
for measurement data. Mutual comparisons of multiple 
groups were performed with single factor analysis of vari-
ance. For the post-hoc test, the LSD test was used to test 
data with homogeneity of variance, Games-Howell test 
was used to examine data with heterogeneity of variance, 
respectively. It was considered statistically significant 
when P < 0.05.

Results
Screening of ZCHP components‑related targets
To identify ZCHP’s active components and their poten-
tial anti-AS targets, we used ZCHP blood components 
according to the screening criteria of ADME param-
eters (GI = high, DL index ≥ 3 Yes) [22, 23]. In addition, 

Table 1 Summary of the primer sequences for PCR analysis

Gene Forward primer (5′–3′) Reverse primer (5′–3′)

IL-1β CGC AGC AGC ACA TCA ACA 
AGAGC 

TGT CCT CAT CCT GGA AGG TCC 
ACG 

TNF-α CCC TCC AGA AAA GAC ACC ATG GCC ACA AGC AGG AAT GAG AAG 

GAPDH AGG TCG GTG TGA ACG GAT TTG TGT AGA CCA TGT AGT TGA GGTCA 
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despite SwissADME not being reported or having poor 
GI absorption, crocetin [14, 24], geniposide [12, 25], and 
levistilide A [26, 27] reportedly have high pharmacologi-
cal activity and were brought into the network analysis 
in the next step. Finally, 13 bioactive components were 
identified as the candidate ingredients (Additional file 1: 
Table S1).

Screening of AS‑related targets
We obtained 117 and 1,034 differentially expressed genes 
from the GSE43292 and GSE100927 databases, respec-
tively; 1,096 genes remained after duplicate removal. 
In the volcano plot (Fig.  1A, B), genes in red are highly 
expressed, whereas genes in blue are expressed at low 
levels.

Network of ZCHP components‑targets‑AS
Except the senkyunolide I and H components, which 
had no intersection with AS targets, the remaining 11 
components and 52 targets were used to construct the 
ZCHP components-targets-AS network (Fig.  1C). The 
network had 66 nodes and 116 edges, including triangle 

nodes representing two herbs in ZCHP, rectangle nodes 
representing the 11 blood components, and elliptical 
nodes representing targets. (Fig. 1D and Additional file 1: 
Table S2).

The PPI network and functional enrichment of candidate 
targets
Using the CytoHubba Degree plugin, 10 hub proteins 
in the network, which were TNF, IL-1β, IGF1, MMP9, 
COL1A1, CCR5, HMOX1, PTGS1, SELE, and SYK, had 
scores ≥ 27. TNF (scores = 45) and IL-1β (scores = 43) 
were highlighted as the two main targets of ZCHP for 
AS anti-inflammatory effects (Additional file 1: Table S3). 
As shown in Fig.  2A, 52 core targets were input to the 
DAVID 6.8 database for GO and KEGG enrichment anal-
yses (P < 0.05). The analysis identified 230 GO terms and 
22 KEGG signaling pathways, including inflammatory 
response, collagen catabolic process, positive regulation 
of interleukin-6 and NF-κB, Fc epsilon RI, and TNF sign-
aling pathways. Among them, the NF-κB signaling path-
way showed the strongest relationship (P = 8.91 ×  10–5, 
gene count = 6; Fig. 2B, C).

Fig. 1 Identification of ZCHP candidate targets for AS treatment. A Volcano plot representing the significance and fold-change 
of differentially expressed genes extracted from GSE46394 and B GSE100927. Both red probes represent highly expressed genes (log2FC > 1, 
P < 0.05); blue probes represent lower expression genes (log2FC <  − 1, P < 0.05); C Venn diagram of ZCHP and AS targets; D Construction 
of the ZCHP-components-targets-AS network. Triangular nodes representing the two herbs in ZCHP, rectangular nodes representing components, 
and elliptical nodes representing targets
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Molecular docking
Based on the PPI hub network results, CB-Dock2 data-
base was used for molecular docking analysis (TNF-
PDB ID: 2AZ5, MMP9-PDB ID: IL6J, IL-1β-PDB ID: 
4GAF, IGF1-PDB ID: 2DSQ, CCR5-PDB ID: 5YD3, 
HMOX1-PDB ID: 1NI6, PTGS1-PDB ID: 6Y3C, SELE-
PDB ID: 1G1T, COL1A1-PDB ID: 5CTI, SYK-PDB 
ID: 4FL1); the binding energy are shown in Additional 
file  1: Table  S4. According to the docking principle, if 
the energy is <  − 7.0  kcal/mol, the components have a 
strong affinity with the targets. We observed that only 
9 ZCHP components have strong binding energies with 
10 core targets; their 3D and 2D binding structures are 
shown in Fig. 3. Overall, the ligands and receptors were 
bound mainly by hydrogen bonds. The secondary effects 
were van der Waals and alkyl/π-alkyl interactions. 
Among the molecules forming the best binding ener-
gies were 3-n-butylphthalide with IL-1β (− 7.8 kcal/mol), 
4-hydroxy-3-butylphthalide with MMP9 (− 7.7  kcal/
mol), caffeic acid with MMP9 (− 7.7  kcal/mol), crocetin 
with MMP9 (− 8.0  kcal/mol), ferulic acid with MMP9 
(− 7.3 kcal/mol), geniposide with IL-1β (− 8.4 kcal/mol), 

levistilide A with IL-1β (− 9.7  kcal/mol), ligustilide with 
MMP9 (− 7.6 kcal/mol), and N-butylidenephthalide with 
MMP9 (− 7.9  kcal/mol). The docking results show that 
the most potent levistilide A target was IL-1β, which pro-
vides a reference for follow-up experimental verification.

Animal model validation
Confirmation of AS formation after a high‑fat diet for 9 weeks 
in  ApoE−/− mice
H&E staining was applied to the aortic roots of  ApoE−/− 
and C57BL/6 J mice to identify AS. Contrasted with the 
aortas of C57BL/6 J mice, those of  ApoE−/− mice showed 
significant plaque formation (Fig.  4A). Furthermore, 
LDL-C, TC, and TG levels of model group were signifi-
cantly greater than those of control group after 9 weeks 
of HFD feeding (Fig.  4B). Therefore, AS developed in 
 ApoE−/− mice after HFD feeding for 9 weeks.

Effect of ZCHP on arterial stiffness and atherosclerotic load 
in ApoE−/− mice
As shown in Fig.  5A, B, PWV and IMT were obviously 
greater in the model group than that of control group. 

Fig. 2 PPI network and functional enrichment analyses of ZCHP action targets in AS treatment. A The PPI network of the ZCHP action targets. The 
nodes indicate targets, the redder the color, the stronger the interaction. B The top 30 enriched GO biological process (BP), GO cell component 
(CC), and GO molecular function (MF) terms of ZCHP candidate targets. C The top 22 enriched KEGG pathways of ZCHP candidate targets. The 
x-coordinate is for the ratio, the circle size indicates the number of genes enriched, the y-coordinate is for the KEGG pathways, and the different 
colors represent adjusted P values
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These effects were markedly reversed in the three ZCHP 
dose groups. Furthermore, Dd-Ds levels were noticeably 
lower in the model group than that in the control group. 
The ZCHP-M and -H groups showed a significantly 
increased of Dd-Ds levels after compared with the model 
group. These results suggested that ZCHP can reduce 
the hardness of the LCCA and IMT of the aortic arch in 
 ApoE−/− mice.

ZCHP attenuates atherosclerosis in ApoE−/− mice
H&E staining revealed that the plaque area was remark-
ably increased in the model group (P value < 0.05). Con-
trasted with the model group, ZCHP-M and -H groups 

had significantly reduced the aortic arch plaque area 
(Fig. 6A). Oil Red O staining of the aortic sinus showed 
no red lipid plaques in the aortic sinus of the control 
group. The large red lipid plaque was observed on the 
aortic sinus in the model group. Compared with the AS 
model group, the ZCHP-treated  ApoE−/− mice had sig-
nificantly reduced red lipid plaque in the aortic sinus. 
These data showed that the ZCHP-L, -M, and -H groups 
had ameliorated HFD-induced AS, with a more obvious 
effect in the ZCHP-H group (Fig. 6B).

HFD significantly increased LDL-C, TC, TG, and 
HDL-C levels in the model group contrasted with them 
in the control group. The ZCHP-H group exhibited 

Fig. 3 The molecular docking models of targets and components. A 3-n-butylphthalide and IL-1β; B 4-Hydroxy-3-butylphthalide and MMP9; C 
caffeic acid and MMP9; D crocetin and MMP9; E ferulic acid and MMP9; F geniposide and IL-1β; G levistilide A and IL-1β; H ligustilide and MMP9; 
I N-butylidenephthalide and MMP9. The dotted green lines represent hydrogen bonds, the pink color represents an alkyl/π-alkyl interaction, 
and the light green circle represents the van der Waals force

A BControl Model

Fig. 4 Confirmation of AS formation after a HFD in  ApoE−/− mice. A Representative image of H&E for evaluating plaque formation (n = 3 per group, 
scale bars = 100 µm); B Serum levels of TC, LDL-C, TG, and HDL-C (n = 3 per group) # P < 0.05 vs. control



Page 8 of 12Zhang et al. Chinese Medicine            (2024) 19:8 

decreased LDL-C, TC, TG, and HDL-C levels after 
12  weeks of treatment. TG and TC levels mark-
edly decreased in three ZCHP doses and SIM groups 
(Fig. 6C).

ZCHP suppresses the TNF/NF‑κB axis and M1 macrophage 
polarization
The network pharmacological analysis showed that the 
core targets of ZCHP were enriched mainly in TNF 

and NF-κB signaling pathways. Therefore, we focused 
on exploring the expression levels of TNF-α, IL-1β, and 
NF-κB-related targets in the TNF signaling pathway. The 
mRNAs of IL-1β and TNF-α were obviously upregulated 
in the model group, and ZCHP reversed this phenome-
non (Fig. 7A). Protein levels were verified to be consist-
ent; ZCHP reduced TNF-α and IL-1β protein expression.

The expression of NF-κB signaling pathway in aortic 
tissues was detected to evaluate its relationship with AS 

Fig. 5 ZCHP reduces arterial stiffness and atherosclerotic load in  ApoE−/− mice. A Representative image of PWV of the LCCA and quantitative 
analysis (n = 3 per group). B Representative image of IMT and the difference between end-diastolic and end-systolic diameters of the aortic arch 
and quantitative analysis (n = 3 per group). * P < 0.05 and ** P < 0.01 vs. model; # P < 0.05 and ## P < 0.01 vs. control
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(Fig. 7B). Notably, the three ZHCP doses groups showed 
that ZCHP can significantly inhibit p-NF-κB and NF-κB 
protein expression levels. Because IL-1β, TNF-α, and 
NF-κB pathways are closely related to M1 macrophage 
polarization, CD86 antibody levels, a marker of M1 mac-
rophage polarization, were examined using immuno-
histochemical staining of the aortic arch. Significantly 
greater CD86 levels were observed in the model group 
than in the control group. The expression of the M1 mac-
rophage polarization marker was inhibited in the ZCHP-
M and -H groups, which was not in ZCHP-L group 
(Fig. 7C).

Discussion
Atherosclerotic diseases may be caused by lipid accu-
mulation in the blood vessels and inflammatory immune 
responses [28]. Since ancient times, TCM has been used 

to prevent and treat disease based on multiple systematic, 
targets, and components approach [29]. This study com-
bined network screening, computer simulation docking, 
and in vivo experiment to explore the targets and poten-
tial mechanisms of ZCHP anti-AS activity and found that 
ZCHP may significantly affect AS.

The three ZCHP doses groups showed decreased lev-
els of IMT in the aortic arch and PWV in the LCCA, and 
Dd-Ds were increased in ZCHP-M and ZCHP-H, indi-
cating that ZCHP can improve the degree of AS. PWV 
and the difference between the end-diastolic and end-
systolic diameters relate to vascular stiffness: the stiffer 
the blood vessel, the faster the conduction velocity [30]. 
PWV is a strong predictor of CVDs in atherosclerotic 
populations [31]. Meanwhile, IMT can relate better to 
the degree of AS lesions [32]. Furthermore, histological 
analysis showed that ZCHP reduced the aortic plaque 

Fig. 6 ZCHP reduces atherosclerotic lesions in  ApoE−/− mice. A Typical HE-stained image of the aortic arch and quantitative analysis (n = 4 
per group, scale bars: 225 µm); B Typical aortic sinus image of Oil Red O staining and quantitative analysis (n = 4 per group, scale bars: 100 µm); 
C The effects of ZCHP on TC, LDL-C, TG, and HDL-C levels in serum samples (n = 4 per group). * P < 0.05 and ** P < 0.01 vs. model; # P < 0.05 and ## 
P < 0.01 vs. control
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area and Oil Red O staining area in  ApoE−/− mice. Lipid 
deposition increases the risk factors for AS progres-
sion; nevertheless, ZCHP decreased the serum levels of 
LDL, TC, and TG in HFD-feeding  ApoE−/− mice. Phar-
macodynamic experiments showed that ZCHP not only 
lowered serum lipid levels, but also improved vascular 
stiffness and reduced plaque area. These observations 
indicate that ZCHP is a potential strategy for treating AS. 
However, the mechanisms underlying ZCHP’s effects in 
AS remain largely unknown.

In this study, 11 candidate components of ZCHP 
were identified using network pharmacological analy-
sis, and 52 potential targets of ZCHP for AS treatment 
were evaluated. Network pharmacology establishes a 
“complex-target/targeted disease” network to predict the 
mechanism of small-molecule regulation of disease using 
high data throughput. It has become a pharmacological 
tool for studying the multiple components and targets 
in the complex TCM system [33]. PPI network analysis 

further showed that the core targets of ZCHP against 
AS include TNF, IL-1β, IGF1, MMP9, COL1A1, CCR5, 
HMOX1, PTGS1, SELE, and SYK. Among them, TNF 
and IL-1β are the core targets of NF-κB and TNF signal-
ing pathways. According to KEGG analysis, 22 signaling 
pathways were highly enriched, including the NF-κB, Fc 
epsilon RI, and TNF signaling pathways. Molecular dock-
ing analysis was performed to explore ZCHP’s mecha-
nism of action in AS. Molecular docking studies showed 
high binding energy between ZCHP components and the 
inflammation-related factors IL-1β and MMP9. These 
results suggest that ZCHP blood components strongly 
interact with inflammatory signaling pathways TNF and 
NF-κB and core target IL-1β, which are considered hubs 
of inflammation regulation and macrophage polarization.

Activated macrophages are critical for the progression 
of AS and vulnerable to plaque [34]. Currently, regula-
tion of the M1–M2 macrophage polarization balance is 
an emerging therapeutic target for various inflammatory 

Fig. 7 ZCHP restrained the activation of pro-inflammatory cytokines, NF-κB, and M1 macrophage polarization biomarkers. A The mRNA levels 
of TNF-α and IL-1β (n = 4 per group); B Representative Western blot images and relative protein levels of p-NF-κB, NF-κB, TNF-α, and IL-1β in  ApoE−/− 
mice (n = 4 per group); C Representative image of immunohistochemical staining shows the expression of CD86 in the aortic arch and quantitative 
analysis (n = 3 per group, scale bars: 400 µm). * P < 0.05 and ** P < 0.01 vs. model; # P < 0.05 and ## P < 0.01 vs. control
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diseases [35]. Under the patch microenvironment’s influ-
ence, macrophages polarization was taken place and 
transform into pro-inflammatory M1-type macrophages, 
promoting late plaque rupture [3]. M1 macrophages 
release mainly IL-6, TNF, IL-1β, and else inflammatory 
factors. Among them, TNF-induced NF-κB activation is 
a key point in the M1 macrophage response [6]. NF-κB 
regulates the polarization of macrophages and induces 
the production of these inflammatory factors, suggest-
ing that the NF-κB signaling pathway is indispensable for 
activating M1 macrophages [6, 8, 36–38]. Therefore, the 
expression of the polarization marker CD86 was exam-
ined in M1 macrophages. After ZCHP intervention, 
the IL-1β, TNF-α, and CD86 levels were significantly 
declined in  ApoE−/− mice (Fig. 7), suggesting that ZCHP 
inhibits the transformation of plaque macrophages into 
the M1-type. A Western blot study shows that ZCHP 
noticeably restrained the activation of NF-κB of  ApoE−/− 
mice, suggesting that ZCHP inhibits the progression of 
AS by regulating the TNF/NF-κB axis. These data indi-
cate that ZCHP can inhibit TNF/NF-κB axis-mediated 
M1 macrophage polarization.

Conclusion
Candidate targets of ZCHP for AS treatment was iden-
tified via combining network screening, computer 
simulation docking and in  vivo experiment. This study 
demonstrated that ZCHP significantly inhibited AS pro-
gression; the underlying mechanism may be inhibiting 
M1 macrophage polarization in AS plaques, partially via 
the TNF/NF-κB axis.
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