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Abstract 

Repair of acute kidney injury (AKI) is a typical example of renal regeneration. AKI is characterized by tubular cell death, 
peritubular capillary (PTC) thinning, and immune system activation. After renal tubule injury, resident renal progeni-
tor cells, or renal tubule dedifferentiation, give rise to renal progenitor cells and repair the damaged renal tubule 
through proliferation and differentiation. Mesenchymal stem cells (MSCs) also play an important role in renal tubular 
repair. AKI leads to sparse PTC, affecting the supply of nutrients and oxygen and indirectly aggravating AKI. Therefore, 
repairing PTC is important for the prognosis of AKI. The activation of the immune system is conducive for the body 
to clear the necrotic cells and debris generated by AKI; however, if the immune activation is too strong or lengthy, 
it will cause damage to renal tubule cells or inhibit their repair. Macrophages have been shown to play an impor-
tant role in the repair of kidney injury. Traditional Chinese medicine (TCM) has unique advantages in the treatment 
of AKI and a series of studies have been conducted on the topic in recent years. Herein, the role of TCM in promoting 
the repair of renal injury and its molecular mechanism is discussed from three perspectives: repair of renal tubular 
epithelial cells, repair of PTC, and regulation of macrophages to provide a reference for the treatment and mechanistic 
research of AKI.
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Introduction
Acute kidney injury (AKI) is a serious clinical syndrome 
with high morbidity and mortality, and no ideal clinical 
treatment [1]. AKI is primarily caused by proximal renal 
tubule injury, accompanied by microvascular injury and 
immune activation [2]. The kidneys are able to repair 
damage. Several studies have shown that kidney injury 
can activate resident kidney progenitor or tubular cells 
to dedifferentiate into kidney progenitor cells, promote 
their proliferation and differentiation, and participate 
in kidney injury repair [3, 4]. Additionally, studies have 
revealed that mesenchymal stem cells (MSCs) can pro-
mote the repair of kidney injury by regulating the innate 
immune balance [5]. In addition, MSCs can migrate to 
the kidneys, differentiate into renal parenchymal cells, 
and promote the regeneration of damaged kidney cells 
[6, 7]. AKI is typically accompanied by perirenal capil-
lary damage, resulting in renal tubule hypoxia, which 
crucially affects the self-repair ability of the renal tubules 
and is an important factor in AKI-chronic kidney dis-
ease (CKD) transformation [8]. During AKI, various 
factors participate in the activation and recruitment 
of immune cells to the injured kidneys. These factors 
include damage-associated molecular patterns (DAMPs), 
hypoxia-inducible factors (HIFs), adhesion molecules, 
chemokines, and cytokines [9, 10] Immune cells of the 
innate and adaptive immune systems, such as neutro-
phils, dendritic cells (DCs), macrophages, and lympho-
cytes, are involved in the pathogenesis of kidney injury, 
and some of their subgroups are involved in the repair 
process [9, 10]. Traditional Chinese medicine (TCM) 
provides a theoretical basis for the treatment of AKI, vas-
cular injury, and immune regulation. Herein, the research 
progress of TCM in promoting AKI repair is discussed 
from three perspectives: repair of renal tubular epithelial 
cells, repair of peritubular capillaries (PTC), and regula-
tion of immune cells.

Kidney injury repair and stem cells
Stem cells are self-renewing cells with an infinite or 
immortal capacity to produce at least one type of highly 
differentiated daughter cell. Depending on their source, 
stem cells are divided into embryonic, adult, and induced 
pluripotent stem cells. Stem cells play a central role in 
the regenerative processes. Several adult organs con-
tain stem cells. These cells are found in adult tissues and 
can differentiate into any cell type in the original organ. 
In contrast to embryonic stem cells, these cells are con-
sidered pluripotent instead of omnipotent. Progenitor 
cells are assumed to have a more limited differentiation 
capacity than stem cells and can differentiate into one or 
more cell types of the original tissue, however, can only 

replicate a limited number of times. In the kidneys, pro-
genitor cells are typically at rest, and when activated by 
stimulation, they proliferate, eventually migrating to the 
site of injury and constructing novel renal tubules [3, 4]. 
I Currently, at least two types of kidney progenitor cells, 
CD133 + CD24 + and Sox9 + , are involved in kidney 
injury repair. Additionally, MSCs play an important role 
in AKI repair. Figure  1 describes how adult stem cells, 
including Renal progenitor cells and MSCs, are involved 
in the repair of AKI and how TCM is involved in the 
repair of AKI through the regulation of stem cells.

Renal progenitor cells
Renal progenitor cells participate in renal injury repair
In the early 1900s, Jean Oliver described the process of 
renal tubular epithelial cell replication, replacing lost 
cells, and repairing injured epithelium [11]. Chang-
Panesso et  al. reported that after tubular death caused 
by AKI, tubular cells proliferate rapidly to restore the 
number of tubular cells, peaking 48  h after the injury. 
Pedigree tracing experiments have confirmed that these 
repair cells originate from the renal tubule instead of 
from circulating or interstitial progenitors [12]. Evidence 
suggests that the dedifferentiated epithelial cells that sur-
vive AKI have the same repair capacity [13–16]. In addi-
tion, a group of WNT-responsive or PAX2 positive or 
CD133-, CD24-, or SOX9-positive intracellular progeni-
tor cells selectively proliferate and differentiate into renal 
tubular cells [17–19]. CD133 + CD24 + cells have been 
identified as the cellular mediators of proximal tubular 
repair in mice and humans, suggesting the possibility of 
an intratubular progenitor population [20]. Recently, sev-
eral studies have shown that injury-induced Sox9 acti-
vation acts as a regenerative signal. Several studies have 
confirmed that Sox9 + renal tubular cells have progenitor 
cell properties, which increase rapidly after kidney injury 
and then participate in the repair of kidney injury [19, 
21–23]. Briefly, following kidney injury, the renal tubules 
are initially damaged, prompting the proliferation of 
renal progenitor cells, which then contribute to the repair 
of damage.

Depending on the severity of the injury or compro-
mised bodily functions, such as aging, kidney dam-
age may not be repaired promptly, potentially leading 
to serious healthoutcomes. Several studies have shown 
that exogenous kidney progenitor cells participate in 
the repair of kidney injury and promote the recovery of 
kidney function [24, 25]. However, the clinical applica-
tion of exogenous progenitor cells faces challenges due to 
immune rejection and safety problems, making it difficult 
to advance. The activation of endogenous kidney progen-
itor cells is a more promising option.
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Potential targets for regulating renal progenitor cells
Low Sox9 expression has been observed in adult kidneys. 
However, when cellular stress or injury occurs, Sox9 
undergoes transcriptional activation [21–23]. Kumar 
et al. discovered that in acutely injured mammalian kid-
neys, the activation and regulation of Sox9 are mediated 
by the EGFR/ERK1/2 signaling pathway and HIFA [4]. 
Ma et  al. showed that kidney resection-induced kidney 
injury triggers the activation of Sox9 expression through 
the Notch signaling pathway, thereby facilitating the 
repair of the injury [22]. Similarly, Kim et  al. observed 
that CDCKl5 exerts suppressive effects on Sox9, a 
transcriptional regulator associated with cell survival, 
through phosphorylation-dependent mechanisms in 
the context of renal injury [26]. Furthermore, Kim et al. 
identified an essential role for the ZFP24 protein in the 
activation of Sox9 during AKI [27]. These studies provide 
evidence of the effects of SOX9 expression or phospho-
rylation on renal injury repair.

A study conducted by Ohnishi et al. showed that HIF-1a 
activated the CD133 promoter in human embryonic kid-
ney (HEK) 293 cells and the colon cancer cell line WiDr. 
One of two E-twenty-six (ETS) binding sites (EBSs) in the 
P5 region is required for its promoter activity induced by 
HIF-1a and HIF-2a. Immunoprecipitation experiments 
revealed that HIF-1a physically interacts with Elk1; how-
ever, HIF-2a does not interact with Elk1 or ETS1 [28]. 
Bussolati et  al. reported that when CD133 + cells were 
cultured under hypoxiccondition in 1% oxygen, CD133 

expression was upregulated after 24  h and was main-
tained for up to 72 h. Compared with CD133 + cells from 
the papillary region, CD133 + cells cultured under hypox-
icconditions promote the rapid upregulation of HIF1, but 
not HIF2, which is constitutively expressed [29]. Mae-
hara et al. demonstrated that metformin can inhibit the 
expression of CD133 in hepatocellular carcinoma cell 
lines through the AMPK-CEBP-β pathway [30].

TCM ameliorates kidney injury repair involved 
in the regulation of endogenous kidney progenitor cells
Wu et  al. showed that 7-hydroxycoumarin (7-HC, also 
known as umbelliferone, commonly found in Chinese 
herbs such as Eucommiae Cortex, Prunellae Spica, Radix 
Angelicae Biseratae) inhibits necrosis and promotes the 
expression of Sox9 and proliferation of renal tubular epi-
thelial cells, thus participating in kidney injury repair 
[31]. Experimental data have demonstrated that knock-
down of Sox9 attenuates the 7-HC suppressive effects 
on KIM-1 and reverse the 7-HC stimulatory effects on 
cyclin D1 expression in HK-2 cells treated with cisplatin, 
indicating that the AKI protective mechanism stimulated 
by 7-HC may be mediated through Sox9 [31]. However, 
the mechanism by which 7-HC affects Sox9 expression 
remains unclear.

Zheng et al. used paraquat to induce AKI and isorha-
pontigenin as an intervention. This study showed that 
isorhapontigenin affected TOLLIP expression through 
the upregulation of Sox9, thereby reducing apoptosis and 

Fig. 1  Mechanism of adult stem cells in acute renal injury repair and traditional Chinese medicine intervention
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oxidative stress [32]. In NRK-52E cells, the overexpres-
sion of SOX9 demonstrated a mitigating effect on para-
quat-induced apoptosis and oxidative stress. Conversely, 
SOX9 knockdown reduced the protective effects of 
isorhapontigenin. These findings suggest that SOX9 plays 
a crucial role in the therapeutic potential of isorhapon-
tigenin for the treatment of paraquat-induced AKI [32].

Huang et  al. used 5/6 nephrectomy to prepare a 
chronic renal failure model and demonstrated that icariin 
reduced creatinine and urea levels and promoted renal 
function recovery. Furthermore, icariin significantly 
increased the expression of CD133 and CD24 in renal 
tubular cells and promoted the proliferation of CD133 + /
CD24 + renal progenitor cells [33].

All the aforementioned studies used AKI monomers to 
intervene and promote kidney injury repair by promot-
ing the expression of kidney progenitor cell markers. The 
mechanism through which these monomers affect the 
expression of SOX9 or CD133\CD24 requires further 
investigation.

MSCs promote renal injury repair
MSCs are multipotent cells derived from various sources 
such as the bone marrow, adipose tissue, and peripheral 
blood. MSCs can undergo in vitro expansion while pre-
serving a relatively stable phenotype, enabling the culti-
vation of numerous cells suitable for clinical applications 
[34]. MSCs demonstrate the ability to relocate to areas 
of injury or inflammation and modulate both innate and 
adaptive immune reactions [35]. Furthermore, MSCs are 
recognized for their substantial involvement in tissue 
repair and regeneration, primarily attributed to the secre-
tion of paracrine and endocrine signals with anti-inflam-
matory, anti-apoptotic, and pro-angiogenic properties 
[36].

The robust differentiation capacity of MSCs plays a 
notable role in facilitating tissue damage repair. Qian 
et  al. demonstrated that MSCs derived from the bone 
marrow can mitigate AKI in rats by differentiating into 
cells resembling renal tubular epithelial cells [37]. In an 
AKI model, Li et al. observed that adipose MSCs trans-
formed into renal tubular epithelial cells during the early 
stages of injury. This transformation assists in replac-
ing necrotic cells, maintaining the integrity of the renal 
tubular structure, and contributing to tissue repair [38]. 
The effectiveness of MSC in AKI is primarily attributable 
to a paracrine mechanism [39]. Recent studies have also 
demonstrated that MSC can aid in the treatment of AKI 
through exosome secretion [40, 41] (Fig. 1B).

TCM can promote kidney injury repair by regulating MSCs
Musk has been used clinically as a natural TCM for 
thousands of years. Muscone, the chemical name for 

which is 3-methylcyclopentadecanone, is the main 
aromatic component of the natural Chinese medicinal 
musk. Musctone has anti-apoptotic and anti-oxidative 
stress properties and positively regulates the prolifera-
tion, secretion, and migration of bone marrow-derived 
MSC (BMSCs) to injured sites [42–44]. Liu et  al. dis-
covered that enhancing the bioactivity of BMSCs 
with muscone increased their therapeutic potential of 
BMSCs. These findings have important implications for 
the development of novel therapeutic approaches for 
the treatment of AKI [45].

Cordyceps is a traditional Chinese herbal medicinal 
plant genus. Such plants can be converted into a Bailing 
capsule through deep fermentation at low temperatures 
and their major component is cordycepic acid. Zhi-bo 
et al. showed that Bailing capsules combined with human 
amniotic MSCs can significantly improve adriamycin-
induced nephrotic syndrome, and the improvement 
effect is significantly higher than that of human amni-
otic MSCs alone. Further studies have shown that Bailing 
capsules can promote the proliferation of human amni-
otic MSCs, thus achieving improved therapeutic effects 
[46].

Emodin, an anthraquinone derivative, is the main active 
component of rhubarb, and exhibits anti-inflammatory, 
antibacterial, immunomodulatory, and antioxidant prop-
erties. Studies have shown that emodin combined with 
BMSCs can improve ischemic reperfusion renal injury 
in rats more than BMSCs alone [47]. However, whether 
emodin affects BMSCs remains unclear.

The aforementioned studies focused on the treatment 
of renal injury using exogenous MSCs and Chinese medi-
cine monomers. Whether Chinese medicine promotes 
kidney injury repair by regulating endogenous MSC has 
not yet been reported.

Some Chinese medicines and their active ingredients 
have been reported to regulate endogenous MSCs and 
have therapeutic effects against AKI. The relation of this 
treatment to the regulation of endogenous MSCremain 
uncler. For example, Jihong et al. reported that appropri-
ate concentrations of Astragalus injection (0.05  g/mL), 
Astragalus IV injection (100  μmol/L), and Astragalus 
polysaccharide (1 mg/mL) can significantly promote the 
proliferation of BMSCs in rats [48]. These drugs have also 
received experimental support for AKI treatment [49–
52]. Total saponins of Panax notoginseng can effectively 
improve myocardial remodeling after acute myocardial 
infarction, promote high expression of CD34 in the edge 
area of myocardial infarction, and promote the homing of 
CD34 + cells to the site of myocardial injury after acute 
myocardial infarction by the stem cell mobilizer G-CSF 
[53]. Notoginseng saponins can be used to treat or allevi-
ate cisplatin-induced AKI [54]. Chinese herbs and active 
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ingredients regulating MSC for the treatment of AKI are 
listed in Table 1.

PTC injury and repair
PTC and AKI
Sparse PTC is a major feature of the kidney after AKI 
and a risk factor for AKI-CKD transformation [73]. AKI 
caused by renal ischemia–reperfusion injury can lead to 
the cytoskeletal rearrangement of endothelial cells and 
damage their tight connections. After injury, capsase-3 
is activated in the endothelial cells, inducing apoptosis, 
and leading to vascular thinning [74]. After the onset of 
AKI, pericytes release anti-angiogenic molecules such 
as ADAM metallopeptidase with thrombospondin type 
1 motif 1(ADAMTS-1), which, along with inhibiting the 
downregulation of tissue metalloproteinase-3, threaten 
vascular stability and leads to capillary detachment 
[75]. In addition to ischemic AKI, sparse PTC has been 
observed in toxic and obstructed AKI/CKD models [76, 
77]. The signaling pathways that trigger PTC sparring 
are activated early after AKI and are notable obstacles in 
effective renal repair and recovery [75].

Promoting PTC regeneration can promote AKI repair
Previous studies have shown that renal tubule cells pro-
mote PTC proliferation by secreting extracellular vesicles 
containing VEGF-A, whereas the addition of exogenous 
extracellular vesicles containing VEGF-A can promote 
PTC proliferation and kidney injury repair in ischemic 
AKI models [78]. BMSC transplantation can treat 

ischemic AKI, and its primary mechanism is to promote 
the repair of kidney injury by repairing PTC and increas-
ing the PTC density [79]. Additionally, the activation of 
the angiopoietin-Tie2 signal through the regulation of 
endothelium-specific signaling pathways plays a pro-
tective effect in kidney injury caused by ischemia [80]. 
TCM played an important role in the repair of PTC for 
the treatment of AKI, which was reviewed as followsas 
shown in Fig. 2.

TCM promote the repair of kidney injury by promoting 
capillary regeneration through various mechanisms
VEGF and other pro‑angiogenic factors
Zhang et al. showed that salvianolic acid A alleviates AKI 
caused by ischemia and reperfusion. Salvianolic acid A 
maintaines PTC density by promoting VEGF-A expres-
sion and alleviating kidney damage caused by hypoxia 
[81]. Song et  al. reported that an Astragalus danggui 
decoction improved renal function in 5/6 nephrecto-
mized rats. Further studies have reported that Astragalus 
danggui decoction promotes the regeneration of PTC 
and glomerular capillaries through the upregulation of 
VEGF, thus improving renal function [82].

Endothelial progenitor cells (EPCs)
The major components of Xuebijing injection are red 
peony root, Chuanxiongxiong, Salvia miltiorrhiza, saf-
flower, and angelica, which can antagonize endotoxins, 
improve microcirculation, protect endothelial function, 
and alleviate AKI caused by endotoxins in mice [83]. 

Table 1  Active ingredients of Chinese medicine for treating AKI by regulating MSCs

po. oral administration, i.v. intravenous injection, i.p. intraperitoneal injection

TCM Active ingredient Treatment dose and 
administration methods

AKI models Effect on MSC References

Astragalus Membranaceus Astragaloside IV 50–400 μM (cells); 
2–10 mg/kg (rats, po.); 
25–100 mg/kg (mice, po.)

IRI, LPS, cisplatin Promote proliferation [48–51]

Astragalus polysaccharide 0.5–4.0 mg/mL (cells); 
1–5 mg/kg (mice, po.)

LPS Promote proliferation [48, 52]

Epimedium Icariin 30–60 mg/kg (mice, po.); 
0.01–10 μM (cells)

Cisplatin, LPS Promote proliferation [55–57]

Panax ginseng Ginsenoside 50 mg/kg (rats, i.p.); 1 μM 
(cells)

LPS Ameliorating paracrine [58, 59]

Carcuma longa Curcumin 30–200 mg/kg (rats, po.); 
50–200 mg/kg (mice, po.); 
20 μM (cells)

IRI, LPS, Glycerol, Cisplatin Ameliorating paracrine [60–64]

Panax notoginseng Panax Notoginseng 
Saponins

6.25 mg/mL((cells); 
150 mg/kg (rats, po.)

Cisplatin Facilitated homing [54, 65]

Ligusticum wallichii Ligustrazine 10–60 mg/kg (mice, i.v.); 
10–200 μM (cells)

LPS, IRI Facilitated homing [66–68]

Polygonum cuspidatum Resveratrol 50 or 200 μM (cells) LPS Inhibit senescence [69, 70]

Dendrobe Naringenin 10 and 20 mg/kg (rats, 
po.); 25 μM (cells)

LPS Inhibit senescence [71, 72]
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Jian et  al. reported that Xuebijing injection promoted 
the proliferation, migration, and tubule formation ability 
of renal microvascular endothelial cells and the expres-
sion of VEGF and fibroblast growth factor 2 (FGF2), and 
enhanced the repair effect of EPCs on the damage of 
renal microvascular endothelial cells induced by Lipopol-
ysaccharide (LPS) [84].

Curcumin is a polyphenolic compound extracted from 
the rhizome of the Curcuma genus that has a wide range 
of pharmacologicalprosperties, including anti-inflamma-
tory, antioxidant, and antiviral properties [85]. Qi et  al. 
investigated the effects of curcumin pre-treatment on 
vascular endothelial repair and EPCs homing in the renal 
tissue of rats with ischemia–reperfusion-induced AKI. 
This study confirmed that curcumin pretreatment could 
promote the homing of EPCs to the kidney to repair 
damaged endothelial cells around the capillaries, thereby 
reducing renal tubule injury and alleviating ischemia–
reperfusion-induced AKI [86].

Numerous TCMs or active ingredients, including 
Astragalus and Salvia miltiorrhiza [87, 88], promote angi-
ogenesis, and are widely used to treat kidney injury [49–
51] (Table  2). The topic, whether these drugs promote 
kidney injury repair by promoting angiogenesis requires 
further investigation.

Macrophages and kidney injury repair
Macrophages are crucial cellular components for the res-
toration of renal function, exhibiting important functions 
beyond their well-established proinflammatory proper-
ties. Macrophages play a pivotal role in wound healing 
and facilitate regeneration by bridging the gap between 

the initial inflammatory response and the subsequent 
phases of tissue regeneration and repair. However, the 
prolonged and persistent presence of macrophages in 
tissues can potentially prolong the damage phase, ulti-
mately leading to failure of tubular repair. This failure 
contributes to maladaptive kidney repair and plays a role 
in the transition from AKI to CKD [100, 101]. Figure  3 
describes the mechanism of macrophages participating 
in the repair of AKI, and how Chinese medicine promote 
the repair of kidney injury through the intervention of 
macrophages.

Mechanisms of macrophages involved in renal injury 
repair
Retinoid acid (RA) signaling
The RA signaling pathway plays a key role in kidney 
development [102], and its reactivation has an impor-
tant function in the repair of kidney injury [103]. Mac-
rophage-driven RA signaling within proximal tubular 
epithelial cells (PTECs) has been hypothesized to con-
tribute to the repair of these cells. This hypothesis was 
supported by a study using RA signaling reporter mice, 
specifically RARE-hsp68-LacZ mice, which express 
the β-galactosidase gene under the control of the RA-
responsive element. These mice showed activation of the 
reporter in injured PTECs within 12–24  h after injury, 
with persistence up to 72 h and a return to baseline lev-
els by day 7. Further investigation revealed that locally 
synthesized RA inhibits proinflammatory macrophages, 

Fig. 2  Traditional Chinese medicine is involved in the repair mechanism of AKI by intervening in vascular regeneration
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Table 2  Chinese medicine ingredients that can treat AKI by promoting angiogenesis

po. oral administration, i.v. intravenous injection, i.p. intraperitoneal injection

TCM Active ingredient Treatment dose and 
administration methods

AKI models Angiogenesis mechanism References

Astragalus Membranaceus Astragaloside IV 0.1–10 mg/kg (rats, po.); 
25–100 mg/kg (mice, po.)

IRI, LPS, Cisplatin VEGF and FGF2 [49–50, 87]

Astragalus polysaccharide 1–5 mg/kg (mice, po.); 
10–100 μg/mL (rats, po.)

LPS AKT/eNOS [52, 88]

Salvia miltiorrhiza Bunge Salvianolic acid A 2.5–24 mg/kg (rats, i.v.); 
100–120 mg/kg (rats, po.)

IRI VEGF [81, 89]

Salvianolic acid B 50–200 mg/kg (mice, po.); 
50 μg/mL (zebrafish)

IRI VEGF [90, 91]

Rhodiola Crenulata Salidroside 50–150 mg/kg (rats, i.v.); 100 nM 
(cells)

LPS HIF-1a/VEGF [92, 93]

Pueraria Puerarin 25–100 mg/kg (rats, i.v.); 100 μM 
(cells)

Cisplatin VEGF [94, 95]

Panax ginseng Ginsenoside 50 mg/kg (rats, i.p.); 10–40 mg/
kg (mice, i.p.)

LPS VEGF [58, 96]

Epimedium Icariin 30–60 mg/kg (mice, po.) LPS, Cisplatin VEGF, Tie2 [55, 97]

Panax notoginseng Notoginsenoside 80 or 100 μM (zebrafish); 20 
or 40 mg/kg (rats, i.p.)

Acetaminophen Ang2/Tie2 [98, 99]

Fig. 3  Mechanism of macrophages involved in the repair of AKI and the intervention of TCM
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leading to a reduction in macrophage-dependent injury 
following AKI. In addition, the activation of RA signaling 
in the injured tubular epithelium promotes alternatively 
activated M2 spectrum macrophages [104].

Secreting cytokines such as IL‑22
Research has shown that interstitial mononuclear cells, 
specifically DCs and macrophages, are the primary 
contributors to the secretion of IL-22. Conversely, the 
expression of the IL-22 receptor is exclusively shown 
in tubular epithelial cells in kidneys [105, 106]. When 
IL-22-producing cells are depleted during the healing 
phase, they negatively affect epithelial recovery. How-
ever, in a recent study, this impairment was completely 
reversed when mice were reconstituted with IL-22 [107]. 
Another study demonstrated that IL-22 protected against 
ischemic AKI. Transgenic animals with IL-22 exhibited 
significantly higher survival rates, whereas knockout 
mice had a heightened mortality rate compared to wild-
type (WT) mice [108].

Lipocalin‑2 (Lcn‑2) secretion
Macrophages promote the regeneration of renal tubular 
epithelial cells after kidney injury in mice by secreting 
Lcn-2 [109]. Brown Norway rats exhibited endogenous 
resistance to ischemia-induced kidney damage.Con-
versely, Sprague–Dawley (SD) rats showe a higher sus-
ceptibility to ischemic injury. Tolerant macrophages of 
Brown Norway rats express significantly higher levels of 
Lcn-2. In vivo studies have shown that after Lcn-2 knock-
down in macrophages, renal tubular epithelial cell apop-
tosis and kidney injury in Brown Norway rats increase 
significantly and repair markers have decrease signifi-
cantly, whereas lipocalin-2-overexpression cells have sig-
nificantly decreased susceptibility in SD rats [110].

Wnt‑β catenin signaling
The Wnt signaling pathway plays a key role in kidney 
development, and its reactivation plays an important 
role in tissue damage repair [17]. Macrophages within 
the kidney serve as both sources and recipients of WNT 
ligands [111]. Following injury, macrophages release 
WNT7B, which stimulates the repair and regeneration of 
interstitial and epithelial cells. In healthy adult kidneys, 
the canonical Wnt-β catenin pathway activity is limited 
to the papilla, whereas injury-induced pathway activa-
tion occurs in the cortical and medullary regions by day 
5 post-injury [111].

Macrophage polarization
Macrophages exhibit notable plasticity in their ability 
to adapt to various environmental conditions and their 
function in the context of damage or repair is contingent 

on their specific phenotypes. M1 macrophages have 
been hypothesized to function as inflammatory cells that 
initiate kidney damage by releasing pro-inflammatory 
cytokines such as IL-6, TNFα, and IL-1β, whereas M2 
macrophages play a crucial role in facilitating the restora-
tion of kidney tissue[112, 113].

The M1/M2 macrophage ratio changes during AKI 
occurrence and development. In the immediate after-
math of injury, pro-inflammatory (classically activated 
M1) macrophages are recruited. These macrophages 
phagocytose cell debris, secrete cytotoxic molecules such 
as nitric oxide synthase (NOS) and reactive oxygen spe-
cies (ROS), and induce mitochondrial damage and apop-
tosis [114]. Infiltrating cells release anti-inflammatory 
cytokines, including IL10 [115], IL4, and IL13 [116], to 
reverse the inflammatory environment and promote 
repair. These infiltrating cells include repair-promoting 
macrophages (type M2), CD4 + \CD8 + T cells, and regu-
latory T (Treg) cells. M2 macrophages produce arginase, 
an enzyme necessary to produce ornithine and polyam-
ines, which are building blocks of the extracellular matrix 
architecture [117]. Macrophages may also participate in 
the repair of kidney injury by promoting angiogenesis 
and anti-inflammation [117].

TCM plays a role in the repair of AKI by regulating 
macrophages
In clinical studies, renal macrophages increase when 
AKI and the M2 macrophage marker CD163 is detected 
on the surface of 75% of macrophages in the early repair 
stage [118, 119]. Danhong injection alleviates AKI caused 
by ischemic reperfusion, partly by reducing macrophage 
infiltration [120]. Chen et  al. showed that resveratrol 
can alleviate LPS-induced AKI, mainly through inhibit-
ing the release of inflammatory factors by macrophages 
and the activation of TLR4 [121]. Yan et  al. determined 
that rhabdosin alleviates AKI caused by ischemia/rep-
erfusion. Its mechanism primarily involves the inhibi-
tion of the inflammatory response of macrophages by 
inhibiting the AKT signaling pathway [122]. Weijia et al. 
reported that astragaloside can reduce the M1 polariza-
tion of macrophages, levels of inflammatory factors IL-6 
and TNF-α, and macrophage activity, thus playing a role 
in slowing down the kidney damage of aristolochic acid. 
This mechanism may be related to the partial inhibition 
of p38 MAPK signaling activity [123].

In the aforementioned studies, TCM played an anti-
inflammatory role by reducing injury and promoting 
injury repair.
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Regulating the balance of M1/M2 macrophage polarization 
may be an effective therapeutic target in AKI
Several studies have shown that regulating of mac-
rophage M2 polarization can promote the repair of 
kidney injury after AKI. As mentioned, local synthesis 
of RA inhibits the activation of proinflammatory mac-
rophages, leading to a decrease in macrophage-medi-
ated damage following AKI. Additionally, RA signaling 
is stimulated in the injured tubular epithelium, thereby 
facilitating the development of alternatively activated 
M2 spectrum macrophages [104]. The efficacy of EPO 
in mitigating kidney injury has been demonstrated 
through its ability to decrease macrophage recruit-
ment and facilitate the transition from M1 to M2 mac-
rophages in  vivo [124]. Furthermore, in  vitro studies 
revealed that EPO directly inhibits the proinflamma-
tory response of M1 macrophages and enhances the 
expression of M2 markers [124].

Several studies have shown that berberine promotes 
the transformation of macrophages into M2 mac-
rophages. Yang et  al. showed that in chronic atrophic 
gastritis induced by Helicobacter pylori, berberine regu-
lates macrophage polarization through the IL-4-STAT6 
signaling pathway, inhibits the M1 type, and promotes 
M2 type transformation [125]. Similar results were 
observed in a mouse model of ulcerative colitis [126]. 
Lin et  al. reported that berberine reduced adipose tis-
sue inflammation in mice fed a high-fat diet. This pro-
motes the transformation of macrophages into the M2 
type [127]. Gao et al. reported that curcumin promotes 
the secretion of IL4 and or IL13 by macrophages and 
the polarization of M2 macrophages in experimental 
autoimmune myocarditis models [128]. In addition, 
the active ingredients in Chinese medicines, such as 
astragaloside, diosgenin, ginsenoside Rg1, Lupeol, and 
Platycodin D, promote the polarization of M2 mac-
rophages [129–133]. However, whether berberine 

[134], curcumin [85], astragaloside [49–51], diosgenin 
[135], and ginsenoside Rg1 [58] used in the treatment 
of AKI (Table 3) are related to the promotion of polari-
zation of M2 macrophages requires further study.

Conclusions and perspectives
The use of drugs and therapies to mobilize the body’s 
own ability to eliminate disease and restore health is a 
primary feature of TCM. Several human organs and tis-
sues exhibit varying degrees of regenerative potential, 
which can be activated under certain conditions and 
play a role in treating diseases. In the past, the kidneys 
were assumed to have no regenerative capacity. How-
ever, with progress in science and technology, increasing 
evidence has shown that the kidney has a certain regen-
erative ability, especially in the repair process of AKI [3, 
4]. TCM scholars assume that Jing is fundamental for 
human development, regeneration, repair and mainte-
nance of life. Jing has a similar role and status to stem 
cells in regenerative medicine. When the kidney injury is 
relatively serious, an imbalance occurs between the kid-
ney injury and the regenerative ability, which requires 
drug intervention. An increasing number of studies have 
shown that TCM plays an important role in the treatment 
of AKI [31–33]. However, most studies have focused on 
the protective effects of Chinese herbs or monomers 
against kidney damage, and the mechanisms typically 
include the inhibition of apoptosis as well as anti-inflam-
matory and antioxidant effects. Such research predomi-
nantly highlights the perspectives of TCM that involves 
eliminating disease-causing factors, while overlooking its 
crucial role in strengthening the body’s natural defenses, 
thus failing to capture the holistic essence of TCM..

In this study, we discussed the mechanisms of TCM 
in renal tubule regeneration, microvascular regenera-
tion, and immune cell regulation in renal injury, star-
ing from the mechanism of renal regeneration. Renal 

Table 3  Chinese medicinal ingredients used to treat AKI by promote the polarization of macrophages

po. oral administration, i.v. intravenous injection, i.p. intraperitoneal injection

TCM Active ingredient Treatment dose and 
administration methods

AKI models Effect on macrophages References

Astragalus Membranaceus Astragaloside IV 2–40 mg/kg (rats, po.); 25–100 mg/kg 
(mice, po.)

IRI, LPS, Cisplatin M2 polarization [49–50, 129]

Dioscorea nipponica Makino Dioscin 0.625–2.5 μM (cells); 40–160 mg/kg 
(mice, po.); 60 mg/kg (rats, po.)

Cisplatin M2 polarization [128, 135]

Panax ginseng Ginsenoside Rg1 50 mg/kg (rats, i.p.); 200 mg/kg (mice, 
po.)

LPS M2 polarization [58, 131]

Coptis chinensis Berberine 14–28 mg/kg (rats, po.); 20–100 mg/
kg (mice, po.); 5–10 mg/kg (mice, i.p.)

Cisplatin M2 polarization [125–127, 134]

Carcuma longa Curcumin 50 mg/kg (rats, po.); 200 mg/kg rats, 
i.p.)

IRI M2 polarization [86, 128]
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tubule injury is the primary feature of AKI and repair-
ing this damage is central to the treatment of AKI. Pro-
moting the proliferation and differentiation of renal 
progenitor cells and activating MSCs are key to pro-
moting renal tubule regeneration and repair. Recent 
studies have found that 7-HC and isoflavin can pro-
mote the regeneration and repair of renal tubules [31, 
32]. Other drugs that can promote the Sox9\CD133\
WNT signaling pathway or activate MSCs (Table  1) 
may also play a role in the treatment of AKI; however, 
further investigation is required.

Micro vessel thinning is another characteristic of AKI 
and is closely related to prognosis. Recent studies have 
confirmed that the Chinese herbal compounds Astra-
galus danggui decoction, Xuebijing, traditional Chinese 
monomer salvianolic acid A, and curcumin can promote 
kidney injury repair by promoting vascular regenera-
tion[81–83, 86].Other studies have reported that several 
microvascular regeneration drugs (Table  2) may also be 
effective in the treatment of AKI; therefore, further stud-
ies are required.

Macrophages play an indispensable role in the repair 
of renal injury. Studies on the influence of TCM on the 
prognosis of AKI by macrophage intervention have 
focused on the inhibition of macrophage infiltration or 
the reduction of macrophages. The regulation of mac-
rophage M2 polarization promotes the repair of kidney 
injury after AKI [104, 122]. Currently, no reports are 
available, on the use of TCM or its active ingredients to 
interfere with macrophage M2 polarization and promote 
AKI repair, which may thus be the required direction of 
future research.

In conclusion, starting from the mobilization of the 
regenerative potential of the kidneys, this study discusses 
the research progress on TCM in the regulation the dam-
age repair of renal tubular epithelial cells, damage repair 
of PTC, and immunity by TCM and presents insights to 
provide research foundations in this field.
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