# RESEARCH

**Open Access** 

# Natural L-type calcium channels antagonists from Chinese medicine



Fangfang Xu<sup>1</sup>, Wanna Cai<sup>1</sup>, Bo Liu<sup>1</sup>, Zhenwen Qiu<sup>2\*</sup> and Xiaoqi Zhang<sup>3\*</sup>

# Abstract

L-type calcium channels (LTCCs), the largest subfamily of voltage-gated calcium channels (VGCCs), are the main channels for Ca<sup>2+</sup> influx during extracellular excitation. LTCCs are widely present in excitable cells, especially cardiac and cardiovascular smooth muscle cells, and participate in various Ca<sup>2+</sup>-dependent processes. LTCCs have been considered as worthy drug target for cardiovascular, neurological and psychological diseases for decades. Natural products from Traditional Chinese medicine (TCM) have shown the potential as new drugs for the treatment of LTCCs related diseases. In this review, the basic structure, function of LTCCs, and the related human diseases caused by structural or functional abnormalities of LTCCs, and the natural LTCCs antagonist and their potential usages were summarized.

Keywords LTCCs, Antagonists, Excitation-contraction coupling, TCM, Natural phytochemicals

# Background

Voltage-gated calcium channels (VGCCs) are voltagedependent heterogeneous transmembrane proteins located in cell membranes, which can be divided into high-voltage activated type and low-voltage gated type according to their conductivity and voltage sensitivity [1]. In mammals,  $\alpha_1$  subunit, the core component of VGCCs, can be divided into three families with a total of 10 different channels, including Cav1 [L-type calcium channels (LTCCs), Cav1.1–1.4], Cav2 (Cav2.1–2.3) and Cav3 (T-type calcium channels, Cav3.1–3.3). The Cav2 family is consist of the P/Q-type calcium channels (Cav2.1),

\*Correspondence: Zhenwen Qiu zhenwen@gzucm.edu.cn Xiaoqi Zhang tzhxq01@jnu.edu.cn <sup>1</sup> The Second Clinical College , Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China <sup>2</sup> The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China <sup>3</sup> Guangdong Provincial Engineering Research Center for Modernization of TCM, NMPA Key Laboratory for Quality Evaluation of TCM, Jinan

University, Guangzhou 510632, People's Republic of China

N-type calcium channels (Cav2.2), and R-type calcium channels (Cav2.3) [2].

LTCCs, the largest subfamily of VGCCs, are the main channel of Ca<sup>2+</sup> influx in the cell excitatory process, which closely related to excitation–contraction coupling (ECC) and excitation-secretion coupling [3]. LTCCs are widely present in various excitable cells, especially cardiac and cardiovascular smooth muscle cells, which are essential for heart and nervous function [3]. Cav1.1 of LTCCs is distributed in skeletal muscle, and its mutation is associated with hypokalemic periodic paralysis type 1 (HPP-1) [4] and malignant hyperthermia [5]. Cav1.2 and Cav1.3 are primarily existed in the heart and brain, and are related to Timothy syndrome (TS) [6, 7], arrhythmia, bipolar disorder (BD) [8] and autism [7]. Cav1.4 is presented in the retina and variants of Cav1.4 lead to night blindness [9].

General speaking, regulation of LTCCs has been considered as an important strategy for treating diseases for decades. LTCCs antagonists have been used for the treatment of hypertension, arrhythmia and other diseases, which illustrated their therapeutic activities in myocardial ischemia protection (MI), myocardial and vascular wall hypertrophy prevention, atherosclerosis prevention,



© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/lublicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

and renal protection [10, 11]. Clinical-used LTCCs antagonists can be divided as 1, 4-dihydropyridine, benzothiazole, and phenylalkyl amine according to their chemical structures [12].

Traditional Chinese medicine (TCM) has a long history in cardiovascular diseases, among which *Salvia miltiorrhiza, Ligusticum wallichii, Angelica sinensis, Paeonia lactiflora* and *Paeonia suffruticosa* exhibited the calcium antagonistic effect [13]. A total of 45 active ingredients from Chinese medicine with antihypertensive effect were screened though pharmacophore model based on drug repositioning method, which suggested that the Chinese medicine were the potential source of LTCCs antagonists [14]. Therefore, it is of great value to develop and design efficient LTCCs antagonists from TCM.

In this review, we summarized the basic structure and molecular functions of LTCCs, related diseases caused by channel dysfunction. In addition, the LTCCs antagonists with different types from natural products of TCM were also simiply summarized. Furthermore, we hope to discover new natural LTCCs antagonists with high specificity in treating human diseases.

#### The structures and functions of LTCCs

LTCCs is a polymeric transmembrane protein composed of  $\alpha_1$ ,  $\alpha_2$ ,  $\delta$ ,  $\beta$  and  $\gamma$  subunits [1]. The  $\alpha_1$  subunits is the central part, which can be divided into four subtypes, and encoded by different genes, including  $\alpha_1$ S (Cav1.1),  $\alpha_1$ C (Cav1.2),  $\alpha_1$ D (Cav1.3) and  $\alpha_1$ F (Cav1.4) [2] (Table 1) (Fig. 1).

Cav1.1-Cav1.4 distributes in different tissues or organs (Table 1). The Cav1.1, known as dihydropyridine receptor, needs to work along with type 1 ryanodine receptor (RyR1), that is mainly distributed in skeletal muscle [15]. Cav1.2 and Cav1.3 are mainly located in adrenal cardiac, neuronal and chromaffin cells. Cav1.3 is more sensitive than Cav1.2, and Cav1.3 can be triggered at low voltages and inactivated at the voltage-dependent manner.

Cav1.4 is largely localized in the retinal cells and affects the release of neurotransmitter and Cav1.4 influences the dihydropyridine-sensitivity without the Ca<sup>2+</sup> currents [9].

The auxiliary subunits  $\beta$  belongs to the MAGUK-scaffolding protein family, a cytosolic soluble protein with high affinity binding to channel, including four subtypes of  $\beta_1$ - $\beta_4$  [16]. The mutation of  $\beta$  subunit is associated with arrhythmia and stroke [16]. The  $\alpha 2\delta$  subunits are encoded by one unique gene, and translationed into two separate proteins that linked by disulfide bond. The four subtypes of  $\alpha 2\delta$  proteins,  $\alpha 2\delta_1 - \alpha 2\delta_4$ , function as a thrombospondin receptor to regulate excitatory synpatogenesis [2, 16]. There are eight subtypes of  $\gamma$  subunit ( $\gamma_1$ - $\gamma_8$ ), that is composed of four transmembrane helical segments with intracellular amino (NH2) and carboxy (COOH) termini. The physiological function of the y subunit needs further research to reveal [2, 16]. The complex structure of Cav1.1 ( $\alpha$ 1,  $\alpha$ 2 $\delta$ ,  $\beta$ , and  $\gamma$ ) from rabbit skeletal muscle membranes were determined by cryo-EM, which layed foundation for further understanding the working mechanisms of LTCCs with important physiological and pathological functions [17, 18].

## LTCCs dysregulation—associated human diseases Cardiovascular disease

Ca<sup>2+</sup> is involved in many cellular processes such as EC coupling, membrane excitability and transcriptional regulation of cardiomyocytes through LTCCs influx, and plays an important role in physiological functions of cardiomyocytes [11]. The Cav1.2, Cav1.3 and auxiliary subunits, including  $\beta$  subunits,  $\alpha_2 \delta$  subunits in myocardium, participate in the regulation of the activation and inactivation characteristics of the channels [11, 19]. The disorder of LTCCs can lead to electrophysiological abnormalities, arrhythmias, and various Ca<sup>2+</sup> dependent dysfunctions in cellular processes.

Myocardial ischemia/reperfusion injury (MI/RI) refers to the severe injury of ischemic myocardial tissue after

| Gene    | a <sub>1</sub> Subunits (old<br>nomenclature) | Predominant tissue expression                               | Principal physiological functions                                                                                                                    | Related diseases                                |
|---------|-----------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| CACNA1S | Cav1.1 (a <sub>1</sub> S)                     | Skeletal muscle                                             | EC coupling in skeletal muscle, regula-<br>tion of transcription                                                                                     | HPP-1, malignant hyperthermia<br>susceptibility |
| CACNA1C | Cav1.2 (a <sub>1</sub> C)                     | Cardiovascular, endocrine and nervous system                | EC coupling and excitation-transcrip-<br>tion coupling in cardiac and smooth<br>muscle, endocrine secretion, neuronal<br>Ca <sup>2+</sup> transients | MI/RI, TS, PD, AD, febrile seizures and TSC     |
| CACNA1D | Cav1.3 (a <sub>1</sub> D)                     | Nervous, endocrine, cardiovascular<br>system; cochlea cells | Neuronal Ca <sup>2+</sup> transients, cardiac pace-<br>making, endocrine secretion, auditory<br>transduction                                         | BrS, PD, AD, BD, schizophrenia, APAs and CHI    |
| CACNA1F | Cav1.4 (a <sub>1</sub> F)                     | Retina, mast cells                                          | Visual transduction                                                                                                                                  | CSNB2                                           |

 Table 1
 Classification and pharmacology of LTCCs



**Fig. 1** Subunit structure of LTCCs. It consists of  $a_1$ ,  $a_2$ ,  $\delta$ ,  $\beta$  and  $\gamma$  subunits, and the  $a_1$  subunit consists of four domains with six fragments in each domain (S1–S6). The positively charged S4 responds to the membrane potential change by transferring to the pore domain via the cytoplasmic S4–S5 connector. The motion of S4 is guided by the negatively charged interaction provided by the S1–S3

restoration of perfusion and the clinical manifestations include reperfusion arrhythmia, intracardial hemorrhage and myocardial infarction [20]. Calcium homeostasis is essential for maintaining ECC in cardiomyocytes, including calcium release, recapture, and storage [10]. Studies have shown that MI/R injury can cause disruption of calcium homeostasis and  $Ca^{2+}$  overload is one influencing factors in MI/RI, which may lead to energy metabolism disorder, myocardial hypoxia and ultimately myocardial cell necrosis [21]. The regulatory proteins, including LTCC, provide potential targets for the prevention and treatment of clinical MI/RI.

Hypertension is closely associated with increased vascular contraction. The influx of Ca<sup>2+</sup> into the vascular smooth muscle cells produce membrane potential and increase the tension of the blood vessel, which affect the arterial contraction and blood pressure [22]. Moreover, the calcium sensitization process in smooth muscle cells could increase the vascular smooth muscle contraction though DAG-PLC-PKC pathway and the RhoA-Rho kinase pathway [23].

The mutation of the LTCCs causes the imbalance of  $Ca^{2+}$  in cells and the changes of membrane potential,

which causing the myocardial cells to be unusually excited and eventually lead to cardiac dysfunction [19]. The mutations of  $\alpha_1 C$  and  $\beta_{2b}$  may lead to Idiopathic ventricular fibrillation. The absence of CACNA1C p.E850 may reduce the surface expression of LTCC, which leading to a significant reduction of I<sub>Ca</sub>. Inactivation of Cav1.3 bring out a strong decrease of  $I_{Ca}$  in the sinoatrial nodal pacemaker cells, which resulting in sinoatrial node dysfunction manifested as sinoatrial arrhythmia and bradycardia [24]. Brugada syndrome (BrS) is an inherited arrhythmia related to mutations of 18 different genes, of which  $\alpha_1 C$  mutation ranked the second common cause. In particular, CACNA1C and CACNB2 mutations accounted for 12% of BrS cases. The latest study identified two BrS-related mutation sites between domains I and II of Cav1.2, including p.T320M and p.Q428E [25].

#### Neurological disorders

LTCCs are also essential for neuronal functions. The mutations in LTCCs genes have a close relationship with various neurological and psychiatric disorders, including Timothy syndrome (TS), Parkinson's disease (PD), Alzheimer's disease (AD), epilepsy, Tuberous sclerosis complex (TSC) and drug addiction.

Timothy syndrome (TS) is a debilitating and multiorgan disease involving mental retardation, fatal arrhythmias and autism [6, 7]. Studies revealed that Cav1.2 channel mutations in TS patients leaded to impaired neural circuits [26]. In addition, genome-wide association studies have found significant associations between  $\alpha_1$ C intron SNPs and psychiatric disorders including BD, schizophrenia and autism spectrum disorders [6]. The characteristics of typical and atypical TS phenotypes have been summarized in a recent review to elucidate the molecular mechanism of Cav1.2 gated dysfunction leading to mental illness [27].

Dysregulation of calcium homeostasis is a compensatory result of neurodegenerative processes in early Parkinson's disease (PD). The amount of Cav1 subtypes and the calcium-binding proteins in PD were different from control group. The increased expression of Cav1.3 subtype in the cerebral cortex of early stage PD patients may subjoin the cells metabolic burden that depend on LTCCs subtypes for electrical activity, which lead to the neurodegeneration of specific groups of neurons. The change in ratio of Cav1.2 to Cav1.3 in parkinsonian brain could increase neuronssusceptible to excitotoxicity or oxidative stress [28].

Alzheimer's disease (AD) is characterized by the accumulation of  $\beta$ -amyloid peptide (A $\beta$ ), dysfunction of synapses, and loss of neurons. The increasement of age associated oxidative stress and metabolic disorders cause dysplasia of calcium homeostasis. The extracellular accumulation of A $\beta$  enhance calcium load and increase the current of the Cav1.2 and Cav1.3 in AD [29]. Moreover, blocking calcium channels alleviate amyloid- $\beta$ -induced neuronal decline in vitro and exhibited neuroprotective effects [30].

Epilepsy refers to the recurrent brain dysfunction resulted from sudden excessive and disordered neuronal discharge. Nimodipine can block abnormal spontaneous activity of hippocampal pyramidal neurons of heat-induced in Cav1.2 knock-out mice brain slices, suggesting that Cav1.2 subunit is critical in temperature-dependent intrinsic firing of febrile epilepsy [31].

Tuberous sclerosis complex (TSC) is neurologic impairment that associated with epilepsy. The development of TSC epilepsy closely related with high activity of *TSC2*-deficient (*TSC2*<sup>-/-</sup>) neurons. The specific inhibitor of mTOR protein, rapamycin, could inhibit the abnormal increase of LTCCs subtype Cav1.3 in *TSC2*<sup>-/-</sup> neurons. The results indicated that LTCCs were critical downstream component of TSC-mTOR signal and can trigger the enhancement of network may be a new therapeutic target for TSC epilepsy. Drug addiction, known as drug dependence or drug abuse, is a stubborn and chronic recurrent neurological disease.  $Ca^{2+}$  ions and  $Ca^{2+}$  channels are involved in the formation of drug addiction, and L-type  $Ca^{2+}$  channels are an important target for anti addiction drug research [33, 34]. Studies showed that Cav1.2 channels, rather than Cav1.3, are involved in withdrawal reaction in nicotine-induced abuse and alcohol-seeking abuse [35, 36]. LTCC blockers, such as dihydropyridines, have been considered a potential therapeutic drug to alleviate the symptoms of drug addiction [37].

#### Psychological diseases

Several studies have implicated that LTCCs disorders may lead to psychiatric ills, such as BD, and schizophrenia [7, 9, 19], which suggested the importance of LTCCs in learning, memory, and synaptic plasticity.

The Genomic data suggested that *CACNA1S, CAC-NA1C* and *CACNA1D* were the core genes that related with psychiatric diseases. Calcium signaling dysfunction is one pathogenic factor for psychological diseases [38–41]. The subunit  $\alpha_1 C$ ,  $\alpha_1 B$  and  $\beta_2$  subunits were risk locus for BD, schizophrenia and recurrent major depression [38, 42]. The microRNA 137 has been proved as a potentially risk for schizophrenia, and the *CACNA1C*, one target of microRNA 137, influenced the development process of schizophrenia [39].

LTCCs antagonists has been used for the treatment and prophylaxis of psychological diseases over 30 years, but has not turned into an established therapeutic scheme [8]. The results of existing studies about LTCCs antagonists on other phases of the illness were limited to the observational research without robust evidence. However, long-term or excessive usage of LTCC antagonists increased the risk of cardiovascular disease and depression [40]. Thus, it is important to comprehensive utilize the pharmacological, molecular, and genetic material to ameliorate the efficacy, safety and selectivity of LTCCs antagonists in the clinical treatment of psychological diseases.

#### Other diseases

*Hypokalemic periodic paralysis type 1 (HPP-1)* Familial HPP-1 is an autosomal dominant disorder caused by *CACNA1S* encoding LTCCs Cav1.1, which resulting in abnormal voltage sensing and affecting skeletal muscle function [4]. Recently, Cav1.1 channel channelopathies in skeletal muscle have been reviewed [5]. Many muscle diseases have been identified to be associated with *CAC-NA1S* mutations, including hypo- and normokalemic periodic paralysis, malignant hyperthermia susceptibility, Cav1.1-related myopathies, and myotonic dystrophy type 1 [5].

Aldosterone-producing adenomas (APAs) APAs account for approximately 50% of primary aldosteronism, which is one of the most common causes for hypertension patients. Zona glomerulosa (ZG)-like APAs have four somatic mutations, V259D, G403R, I750M and P1336R, in the  $Ca^{2+}$  pore at the S5 and S6 domains of Cav1.3 [43]. Selective Cav1.3 blockers may treat ZG-like APAs hyperaldosteronism without the vascular side effects caused by current LTCCs blockers.

Congenital hearing impairment Congenital hearing impairment has extensive genetic heterogeneity. Cav1.3 is expressed in cochlear hair cells and is critical for auditory brainstem development [9].  $\alpha_1$ D mutations in Cav1.3 was found in two consanguineous families with deafness and severe mouse sinoatrial node dysfunction with bradycardia [44].

Congenital stationary night blindness type 2 (CSNB2) CSNB2 patients exhibit some degrees of night blindness, low visual acuity and myopia [45]. Cav1.4 of LTCCs is mainly expressed in retinal neurons, especially at the photoreceptor terminals. The mutations in the CACNA1F gene that encodes Cav1.4 channels lead to the the channel activity altered and caused the retinal disease, for example, CSNB2 [9]. The different structural, functional phenotypes and treatment options of Cav1.4 mutations in CSNB2 were summarized in recent review [46]. The gene therapeutic maybe a promising approach to CSNB2 patients in future.

#### LTCCs antagonists from natural products

LTCCs are implicated in multiple cardiovascular, neurological and psychological diseases, and has become an important target for drug development. Natural products have been considered as valueable sources for drug discovery as their fewer adverse effects and multiple mechanisms. Many TCM active ingredients have been reported with inhibitory effect on LTCCs through various mechanisms (Table 2), including reducing the expression of Cav1.2 and Cav1.3 subunits and related proteins, inhibiting calcium channel currents, restricting calcium influx, and decreasing calmodulin-dependent protein kinase II (CaMKII) signaling pathways (Fig. 2).

## Polyphenols

#### Paeonol

Paeonol (1, Fig. 3) is an active polyphenol from the root bark of Paeonia suffruticosa Andr. In previous study, paeonol exhibited protective effect on acute myocardial infarction rats by inhibiting LTCCs currents in rat ventricular myocytes [47, 48]. In addition, paeonol induced non-endothelium dependent-vasodilatation in rat mesenteric artery by inhibiting VGCCs via inducing extracellular Ca<sup>2+</sup> influx [49]. Therefore, the mechanism of paeonol in reducing myocardial infarction and protecting myocardial cells from hypoxia injury may be related to inhibition of LTCCs. In another study, paeonol alleviated primary dysmenorrhea by inhibiting  $Ca^{2+}$  influx and uterine contraction via cannabinoid receptor 2 (CB2R) in uterine smooth muscle cells through MAPK/ERK pathway. As a result, paeonol exhibited the similar effect as positive control, nifedipine, in suppressing uterine contraction in vitro [50].

#### Salvianic acid A and salvianolic acid B

Salvianic acid A and salvianolic acid B (2-3, Fig. 3) are the main water-soluble constituents from Salviae Milthiorrhizae Bge., which have been used to treat cardiovascular diseases such as stroke, myocardial infarction and hypertension [51]. Salvianolic acid A and salvianolic acid B exerted cardioprotective effects by reducing L-type  $Ca^{2+}$  channel currents (I<sub>Ca,I</sub>), upshifting the current–voltage, leftshifting the curves of activation and inactivation, and inhibiting the amplitude of the cell shortening [52, 53]. Moreover, salvianolic acid B showed vasorelaxant effects on isolated coronary artery rings precontracted with 5-hydroxytryptamine by inhibiting  $Ca^{2+}$  influx in the vascular smooth muscle cells [54].

# Flavonoids

## Luteolin

Luteolin (4, Fig. 4) is a natural flavonoid isolated from many traditional medicines and has various pharmacological activities in osteoporosis, allergy, diabetes, tumors and liver toxicity [55]. The large amount of oxygen free radicals and calcium overload in myocardial cells are the main causes of heart injury. Furthermore, calcium influx through LTCCs during ischemia and hypoxia lead to further overload of calcium storage. Luteolin showed protective effect on heart from long-term preservation damage, such as structural damage, heart dysfunction and increased apoptosis by inhibiting hypoxia-dependent L-type calcium channels, which suggested the usage of luteolin as heart preservation solutions, especially in long-term storage [56].

#### Calycosin

Calycosin (5, Fig. 4) is an isoflavonoid isolated from Radix Astragali (Astragalus membranaceus (Fisch.) Bunge.), and showed the vasorelaxant effect on denuded and intact endothelium aortic rings [57]. Calycosin reduced aortic ring contractions induced by agonists KCl

| Table 2 Pharmacological effec   | t and mechanism of natural produ                               | icts of TCM on LTCCs                                                                                                |                                                                                                                                                                     |                                                                                                                                                                                               |          |
|---------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Compound                        | Disease                                                        | Model                                                                                                               | Mechanism involved in inhibition<br>of LTCCs                                                                                                                        | Effects                                                                                                                                                                                       | Refs.    |
| Paeonol (1)                     | Myocardial infarction, Ml<br>and other cardiovascular diseases | The superior mesenteric artery<br>removed from Sprague–Dawley<br>(SD) rats were precontracted<br>with 60 mmol/L KCI | Inhibit VDCC-mediated extracellular<br>Ca <sup>2+</sup> influx and receptor-mediated<br>Ca <sup>2+</sup> influx and release                                         | Non-endothelium-dependent-<br>vasodilatation in rat mesenteric<br>artery                                                                                                                      | [48]     |
|                                 | Primary dysmenorrhea                                           | Female ICR mice were administered<br>Oxytocin (100µ/kg) to induce dys-<br>menorrhea                                 | Activate CB2R inhibits LTCCs extracel-<br>Iular Ca <sup>2+</sup> influx through MAPK/ERK<br>pathway                                                                 | <ol> <li>Ameliorate dysmenorrhea<br/>and uterine inflammation in mice</li> <li>Restrain calcium influx and uterine<br/>contractions in a CB2R-dependent<br/>manner</li> </ol>                 | [50]     |
| Salvianic acid A ( <b>2</b> )   | MI, IHD                                                        | Isoproterenol (ISO)-induced MI in SD<br>rats                                                                        | 1. Inhibit $l_{\rm ca,L}$ 2. Decrease the release of sarcoplasmic reticular $\rm Ca^{2+}$                                                                           | Dose-dependently reduce I <sub>Ca.L</sub><br>and contractility in rat ventricular<br>myocytes via decreasing the myo-<br>cardial oxygen consumption                                           | [52]     |
| Salvianolic acid B ( <b>3</b> ) | M                                                              | Ventricle myocytes of SD rats                                                                                       | Inhibit l <sub>CaL</sub>                                                                                                                                            | Inhibit l <sub>ca.L</sub> and myocardial contrac-<br>tility without causing drug-induced<br>LQTS                                                                                              | [53]     |
|                                 | Hypertension                                                   | Isolated coronary artery rings of SD<br>rats precontracted with 5-hydroxy-<br>tryptamine                            | <ol> <li>The inhibition of Ca<sup>2+</sup> influx<br/>in the vascular smooth muscle cells</li> <li>The opening of potassium (K<sup>+</sup>)<br/>channels</li> </ol> | Non-endothelium-dependent-<br>vasodilatation in rat coronary artery                                                                                                                           | [54]     |
| Luteolin ( <b>4</b> )           | MI/RI                                                          | Myocardial ischemia reperfusion<br>model of SD rats                                                                 | Inhibit l <sub>CaL</sub>                                                                                                                                            | 1. Protect heart structure 2. Reduce myocardial cell apoptosis 3. Prevent $Ca^{2+}$ overload and increas vessel dilation                                                                      | [55, 56] |
| Calycosin ( <b>5</b> )          | Cardiovascular diseases                                        | Vasoconstriction of SD rats induced<br>by KCl or PHE                                                                | Decrease extracellular Ca <sup>2+</sup> influx<br>through VOC and ROC                                                                                               | Inhibit vasoconstriction induced<br>by KCI or PHE, and antagonize<br>Ca <sup>2+</sup> -induced contraction in aortic<br>rings                                                                 | [57]     |
| Puerarin <b>(6</b> )            | Iron overload-induced injury                                   | Iron-overloaded mice                                                                                                | <ol> <li>Dose-dependently down-regu-<br/>lated Cav1.2 levels</li> <li>Inhibit MAPK/ERK pathways</li> </ol>                                                          | 1. Regulate iron-handling pro-<br>teins, decrease intracellular $Fe^{24}$ ,<br>and inhibit cell apoptosis<br>2. Suppress the oxidative stress<br>induced by iron overload                     | [59]     |
| Scutellarin ( <b>7</b> )        | Cardiac hypertrophy                                            | Cardiac hypertrophy of C57BL/6<br>mice induced by PHE                                                               | Inhibit Ca <sup>2+</sup> -mediated calcineurin<br>and CaMKII pathways                                                                                               | <ol> <li>Suppresse the hypertrophic<br/>growth of neonatal cardiac myocytes<br/>exposed to PHE</li> <li>Inhibit heart subjected to pressure<br/>overload induced by aortic banding</li> </ol> | [61]     |

Page 6 of 22

| Table 2 (continued)                  |                            |                                                                                                                                                   |                                                                                                                                                            |                                                                                                                                                                                                                                                                 |       |
|--------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Compound                             | Disease                    | Model                                                                                                                                             | Mechanism involved in inhibition<br>of LTCCs                                                                                                               | Effects                                                                                                                                                                                                                                                         | Refs. |
| Hydroxysafflor yellow A ( <b>B</b> ) | MI/RI and hypertension     | Neonatal rat primary cardiomyocytes<br>and human-induced pluripotent<br>stem cell-derived cardiomyocytes<br>(hiPSC-CMs)                           | 1. Inhibit $ _{c_{a,1}}$<br>2. Reduce intracellular Ca <sup>2+</sup> overload<br>3. Attenuate the higher expression<br>of $\alpha$ 1C and $\alpha_2\delta$ | 1. Reduce the levels of myocardial enzymes<br>2. Restore the contractile function<br>of hiPSC-CMs and exerted a protec-<br>tive effect on cardiac function<br>3. Decrease mitochondrial mem-<br>brane potential and inhibit apoptosis<br>and $Ca^{2+}$ overload | [03]  |
| Safranal ( <b>9</b> )                | QH                         | ISO-induced MI in SD rats                                                                                                                         | 1. Inhibit $I_{\rm Ca,L}$ and LTCC activity in the cardiomyocyte membrane 2. Regulate intracellular Ca <sup>2+</sup> homeotasis                            | <ol> <li>Reduce myocardial contractility<br/>and oxygen consumption</li> <li>Inhibit oxidative stress</li> <li>Inhibit LTCC and reduce Ca<sup>2+</sup><br/>overload</li> </ol>                                                                                  | [64]  |
| Paeoniflorin ( <b>10</b> )           | PMS, depression symptoms   | PMS model of Wistar rats stimulated with leg binding                                                                                              | 1. Inhibit I <sub>ca.L</sub> (Cav1.2)<br>2. Decrease the CaMKII protein level<br>in the Cav1.2-induced CaM/CaMKII<br>signalling pathway                    | <ol> <li>Download CaM and p-CaMKII<br/>expression and increase the BDNF<br/>protein expression and reduce Ca<sup>2+</sup><br/>overload</li> <li>Mitigate depressive behaviour</li> </ol>                                                                        | [65]  |
| Ginsenoside Rb1 ( <b>11</b> )        | QHI                        | Myocardial cell ischemia model<br>was established by 95%N <sub>2</sub> + 5%CO <sub>2</sub><br>Myocardial ischemia reperfusion<br>model of SD rats | Inhibit I <sub>caL</sub> by downing regulate<br>the expression of Cav1.2                                                                                   | Shorten action potential dura-<br>tion of ischemic cardiomyocytes<br>and inhibit the opening of LTCCs                                                                                                                                                           | [67]  |
| Ginsenoside Re ( <b>12</b> )         | DHI                        | Myocardial cell ischemia model<br>was established by by aconitine<br>alkaloids                                                                    | 2. Reverse Cav1.2 mRNA level                                                                                                                               | Decrease injuries of the neonate rat cardiomyocytes                                                                                                                                                                                                             | [70]  |
| Ginsenoside Rd ( <b>13</b> )         | QHI                        | Myocardial ischemia reperfusion<br>model of SD rats                                                                                               | <ol> <li>Inhibit l<sub>eal</sub></li> <li>Active the Gi protein</li> <li>The production of NO and the NO-<br/>cGMP signal pathway</li> </ol>               | <ol> <li>Inhibit LTCCs and reduce Ca<sup>2+</sup><br/>overload</li> <li>Reduce myocardial contractility<br/>and oxygen consumption</li> </ol>                                                                                                                   | [69]  |
| Glycyrrhizic acid ( <b>14</b> )      | Neurodegenerative disorder | MPP+induced damage to PC12 cells                                                                                                                  | Suppress intracellular Ca <sup>2+</sup> overload                                                                                                           | GA mitigated the calcium overload caused by MPP +                                                                                                                                                                                                               | [72]  |
|                                      | QH                         | ISO-induced MI in SD rats                                                                                                                         | 1. Inhibit l <sub>cal</sub> .<br>2. Reduce the Ca <sup>2+</sup> transient                                                                                  | <ol> <li>Inhibit LTCCs and reduce Ca<sup>2+</sup><br/>overload</li> <li>Reduce the AMP of the ventricular<br/>myocardial cell contraction and oxy-<br/>gen consumption</li> </ol>                                                                               | [73]  |

| Table 2 (continued)                               |                        |                                                             |                                                                                                                           |                                                                                                                                                                                                                                                       |       |
|---------------------------------------------------|------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Compound                                          | Disease                | Model                                                       | Mechanism involved in inhibition<br>of LTCCs                                                                              | Effects                                                                                                                                                                                                                                               | Refs. |
| Magnesium isoglycyrrhizinae ( <b>15</b> )         | 면                      | Myocardial ischemia reperfusion<br>model of SD rats         | 1. Inhibit ICa, L<br>2. Reduce the Ca2 + transient                                                                        | <ol> <li>Inhibit LTCCs and reduce<br/>Ca2 + overload</li> <li>Reduce the AMP of the ventricular<br/>mycorardial cell contraction and oxy-<br/>gen consumption</li> <li>Have no influence on IKr</li> </ol>                                            | [75]  |
| Monoammonium glycyrrhizinate<br>( <b>16</b> )     | ОН                     | ISO-induced MI in SD rats                                   | 1. Inhibit l <sub>GaL</sub><br>2. Reduce the Ca <sup>2+</sup> transient                                                   | <ol> <li>Inhibit LTCCs and reduce Ca<sup>2+</sup><br/>overload</li> <li>Reduce myocardial contractility<br/>and oxygen consumption</li> <li>Reduce the production of ROS,<br/>MDA, and SOD</li> </ol>                                                 | [76]  |
| Calenduloside E (17)                              | MI/RI                  | Myocardial ischemia reperfusion<br>model of SD rats         | <ol> <li>Decrease the expression of a1C<br/>and a26</li> <li>Enhance the interaction<br/>between LTCC and BAG3</li> </ol> | 1. Protect against MI/R injury 2. Recover damaged ARVMs and intracellular $Ca^{2+}$ homoeostasis                                                                                                                                                      | [22]  |
| Sinomenine ( <b>18</b> )                          | Ischaemic brain injury | Neurons from neonatal SD rats, CHO<br>cells, rat PC12 cells | <ol> <li>Inhibit LTCCs and ASIC1a</li> <li>Download the CaMKII phospho-<br/>rylation level</li> </ol>                     | 1.The cytoprotection on PC12 cells<br>2. The neuroprotection on cerebral<br>injury before ischemia or after injury<br>3.Reduce cerebral infarction                                                                                                    | [62]  |
| Ligustrazine/Tetramethylpyrazine<br>( <b>19</b> ) | IHD                    | Ventricular myocytes of adult New<br>Zealand white rabbits  | 1. Inhibit l <sub>ca.</sub><br>2. Reduce intracellular Ca <sup>2+</sup> overload                                          | <ol> <li>Inhibit LTCCs</li> <li>Reduce myocardial contractility<br/>and oxygen consumption</li> </ol>                                                                                                                                                 | [81]  |
|                                                   | MSD                    | Soleus muscle of SD rats                                    | 1. Inhibit LTCC Cav1.3<br>2. Decrease the mRNA expression<br>levels of caspase-3, caspase-9, Cav1.<br>3                   | <ol> <li>Enhance the activity<br/>of Ca<sup>2+</sup>-ATPase and expression<br/>of RyR1</li> <li>Inhibit expression of Cav1.3</li> <li>Maintain the homeostasis of Ca<sup>2+</sup><br/>and inhibit the apoptosis of soleus<br/>muscle cells</li> </ol> | [82]  |
|                                                   | AD                     | Hippocampal neuronal cells of Wistar<br>rats                | 1. Inhibit I <sub>Cal</sub> .<br>2. Reduce intracellular Ca <sup>2+</sup> overload                                        | <ol> <li>Inhibit LTCCs</li> <li>The cytoprotection on hippocam-<br/>pal neuronal cells</li> </ol>                                                                                                                                                     | [83]  |

| Table 2 (continued)          |                    |                                                                        |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                            |       |
|------------------------------|--------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Compound                     | Disease            | Model                                                                  | Mechanism involved in inhibition<br>of LTCCs                                                                                                                         | Effects                                                                                                                                                                                                                                                                                                    | Refs. |
| Berberine ( <b>20</b> )      | DM                 | Diabetic rats                                                          | <ol> <li>Inhibit I<sub>GaL</sub></li> <li>Reduce intracellular Ca<sup>2+</sup> overload</li> <li>Reduce the a<sub>1</sub>C-subunit expressions of LTCCs</li> </ol>   | <ol> <li>Inhibit LTCCs</li> <li>Reduce glucose levels</li> <li>Inhibit cerebral artery contraction<br/>in diabetic rats</li> </ol>                                                                                                                                                                         | [86]  |
|                              | AD                 | Streptozotocin-induced sporadic dementia of Alzheimer's type in rats   | Synergies with LTCCs blocker<br>verapami                                                                                                                             | <ol> <li>Improve cognitive performance<br/>and relieve neuroinflammatory</li> <li>Attenuate oxidative stress<br/>in both hippocampus and frontal<br/>cortex</li> <li>Attenuate the AChE activity<br/>and TNF-a level</li> <li>Restore mitochondrial enzyme<br/>complex I, II, and IV activities</li> </ol> | [87]  |
| Coptisine ( <b>21</b> )      | Pulmonary diseases | Male BALB/c mice, mouse ASM cells                                      | 1. Inhibit VDLCC and NSCC currents<br>2. Reduce intracellular Ca <sup>2+</sup> overload                                                                              | <ol> <li>Relax abnormal contracted mouse<br/>ASM</li> <li>Block VDLCCs and NSCCs</li> <li>Alter the intracellular Ca<sup>2+</sup> con-<br/>centration</li> </ol>                                                                                                                                           | [06]  |
| Ibogaine ( <b>22</b> )       | Drug abuse         | Adult ventricular guinea pig<br>Cardiomyocytes, TSA-201 cells          | Inhibit Cav 1.2 channel                                                                                                                                              | 1. Inhibit LTCC<br>2. Prolong the AP                                                                                                                                                                                                                                                                       | [92]  |
| Cinobufagin ( <b>23</b> )    | DHI                | Adult SD rat ventricular myocytes                                      | Inhibit l <sub>caL</sub>                                                                                                                                             | <ol> <li>Inhibit LTCC</li> <li>Alter the intracellular Ca<sup>2+</sup> concentration</li> </ol>                                                                                                                                                                                                            | [93]  |
| Bufalin (2 <b>4</b> )        | 머                  | Adult rat ventricular myocytes                                         | <ol> <li>Inhibit I<sub>ca.</sub><sup>1</sup> by reducing the Ca<sup>2+</sup><br/>current amplitude</li> <li>Reduce intracellular Ca<sup>2+</sup> overload</li> </ol> | <ol> <li>Inhibit LTCC</li> <li>Alter the intracellular Ca<sup>2+</sup> concentration</li> <li>The negative inotropic action in myocardial cells</li> </ol>                                                                                                                                                 | [94]  |
| Cinnamaldehyde ( <b>25</b> ) | Hypertension       | Male Wistar rats, male C57BL/6 mice,<br>and blood pressure normal mice | 1. In VCM and VSMC<br>2. Inhibit LTCC Cav1.2                                                                                                                         | 1. Inhibit aortic contraction<br>2. Reduce $Ca^{2+}$ concentration<br>in VSMC and VCM                                                                                                                                                                                                                      | [95]  |

| Table 2 (continued)       |                                    |                                                                               |                                                                                                                                                                     |                                                                                                                                                                                                                                         |       |
|---------------------------|------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Compound                  | Disease                            | Model                                                                         | Mechanism involved in inhibition<br>of LTCCs                                                                                                                        | Effects                                                                                                                                                                                                                                 | Refs. |
| Salidroside ( <b>26</b> ) | Hypoxic-ischemic brain damage      | Hippocampus neurons of SD neo-<br>natal rats                                  | 1. Inhibit LTCC Cav1.3<br>2. Decrease the mRNA expression<br>levels of NMDAR1 and Cav1. 3<br>3.Reduce intracellular Ca <sup>2+</sup> overload                       | 1. Reduce cell damage caused by hypoxia of hippocampal neurons 2. Inhibit expression of Cav1.3 3. Maintain the homeostasis of $Ca^{2+}$ and inhibit the apoptosis of soleus muscle cells                                                | [96]  |
|                           | Vascular complications of diabetis | Male diabetic Goto-Kakizaki<br>and non-diabetic control Wistar-<br>Kyoto rats | <ol> <li>Inhibit l<sub>Ca,L</sub></li> <li>Reduce the expressions of α<sub>1</sub>C-<br/>subunit at protein and mRNA levels<br/>in cerebral arteries</li> </ol>     | <ol> <li>Lower blood glucose</li> <li>Reduce blood pressure and allevi-<br/>ated cerebrovascular contractile<br/>activity</li> <li>Inhibit the function and expres-<br/>sion of Ca<sub>L</sub> channel in cerebral<br/>VSMCs</li> </ol> | [26]  |
| Crocin ( <b>27</b> )      | П                                  | Adult SD rat ventricular myocytes                                             | <ol> <li>Inhibit l<sub>cal.</sub> and LTCCs activity<br/>in the cardiomyocyte membrane</li> <li>Regulate intracellular Ca<sup>2+</sup> homeo-<br/>stasis</li> </ol> | <ol> <li>Reduce myocardial contractility<br/>and oxygen consumption</li> <li>Inhibit oxidative stress</li> <li>3.Inhibit LTCCs and reduce Ca<sup>2+</sup><br/>overload</li> </ol>                                                       | [66]  |



**Fig. 2** The LTCCs antagonists from natural products. The excitation–contraction coupling process begins with the entry of Ca<sup>2+</sup> into the cell through LTCCs, followed by the triggering of Ca<sup>2+</sup> release on SR by RyR2, and ultimately triggering intracellular Ca<sup>2+</sup> concentration mediated contraction. Subsequently, Ca<sup>2+</sup> in the cytoplasm is brought back to SR by SERCA and transported back to extracellular space via NCX (black arrow). Activated CaMKII induces stimulatory actions by phosphorylating major Ca<sup>2+</sup> homeostatic proteins, activating I<sub>Ca,L</sub> (mediated by the Thr498 terminal of *a* and  $\beta_{2a}$  subunits), phospholamban to increase cytosolic Ca<sup>2+</sup> uptake by the SR, and RyR to increase SR Ca<sup>2+</sup> release (blue arrow). Some active ingredients in TCM can antagonize LTCCs through various mechanisms. Inhibition of LTCCs subunits ( $\alpha_1$ C,  $\alpha_1$ D,  $\alpha_2\delta$ ), CaMKII phosphorylation and I<sub>Ca,L</sub> reduced the release of Ca<sup>2+</sup> from the sarcoplasmic reticulum

and PHE and its vasorelaxant action was different from that of dihydropyridines. The study revealed that calycosin was a noncompetitive  $Ca^{2+}$  channel blocker that its vasorelaxant effect was endothelium-independent and was unrelated to intracellular  $Ca^{2+}$  release [57].

#### Puerarin

Puerarin (6, Fig. 4) is an isoflavone *C*-glucoside isolated from *Pueraria lobata* (Willd.). The increased intraocular iron stimulates ROS generation lead to retinal injury. ROS showed the biphasic effect on the Ca<sup>2+</sup> transport in cells: on one side, ROS reduced the Ca<sup>2+</sup>-ATPase of sarcoplasmic reticulum (SR), which can diminish the Ca<sup>2+</sup> level in the cell; and on the other side, ROS deactivated the plasma membrane Ca<sup>2+</sup>-ATPase, which increase the Ca<sup>2+</sup>-loading and ultimately leads to apoptosis [58]. Puerarin was reported the protection effect against retinal injury caused by iron overload though reducing the Cav1.2 expression in retinal tissue [59]. Puerarin inhibited the level of Cav1.2 expression in ARPE-19 cells, indicating that puerarin attenuated the iron deposition by regulating the iron-handling proteins [59]. The above results suggested that LTCC might be a potential target for puerarin on iron-mediated retinal injury. However, the specific target of puerarin inhibiting Cav1.2 needs further study.

## Scutellarin

Scutellarin (7, Fig. 4) is a flavonoid glycoside from *Erigeron breviscapus* Hand Mazz. It had been reported that LTCC was activated by CaMKII, and CAMKII-mediated changes in calcium current may be associated with cardiovascular disease [60]. The Ca<sup>2+</sup>-calcineurin and CaMKII were two important effector of Ca<sup>2+</sup>-medicated cardiac hypertrophy [61]. In this study, scutellarin suppressed the cardiac hypertrophy exposed to



Fig. 3 Chemical structures of polyphenols, including paeonol, salvianic acid A and salvianolic acid B



Fig. 4 Chemical structures of flavonoids, including luteolin, calycosin, puerarin, scutellarin and hydroxysafflor yellow A

phenylephrine (PHE) by inhibiting the  $Ca^{2+}$ -mediated calcineurin and CaMKII pathways [61]. Accordingly, scutellarin may be used as candidate against cardiac hypertrophy in future.

## Hydroxysafflor yellow A

Hydroxysafflor yellow A (8, Fig. 4) is a water soluble constituent from *Carthamus tinctorius* L. and exerts various effects on cardiovascular diseases [62]. Hydroxysafflor yellow A showed the cardioprotective effect on HR-induced myocardial injury in neonatal rat primary cardiomyocytes (NPCMs) and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Further study showed that hydroxysafflor yellow A attenuated the expression of  $\alpha 1C$  and  $\alpha 2\delta$  subunits of LTCC in vivo and in vitro. Bay-K8644, an LTCC agonist, was used to stimulate the LTCC excessive in study. As a result, Hydroxysafflor yellow A inhibited the electrical signal disturbances and the higher calcium currents caused by the excessive activation of LTCC in hiPSC-CMs, suggesting that hydroxysafflor yellow A treated MI/RI via regulating LTCC to inhibit Ca<sup>2+</sup> overload and apoptosis [63].

# Terpenoids

## Safranal

Safranal (9, Fig. 4), an active monoterpene derived from *Crocus sativus* L. (saffron). Safranal protected MI injury

induced by Isoproterenol (ISO) in rats via regulating Ca<sup>2+</sup> homeostasis, inhibiting oxidative stress and reducing cardiac systolic dysfunction [64]. Specifically, safranal decreased the cell contraction, Ca<sup>2+</sup> transient and I<sub>Ca-L</sub> in myocardial cells [64].

# Paeoniflorin

Radix Paeoniae Alba, the root of *Paeonia lactiflora* Pall, has the effect of relieving depression and regulating menstruation in Chinese medicine. Paeoniflorin (**10**, Fig. 4) is the main bioactive terpene glycoside of paeony extract and has anti-depressive and neuroprotective effects.

It was confirmed that paeony extract and Shuyu capsule improved the depressive hehaviour, such as body weight, open-field test scores, and sucrose preference in premenstrual syndrome (PMS) rats by regulating Cav1.2 mediated CaM/CaMKII signalling. Further results revealed that paeoniflorin inhibited intracellular Ca<sup>2+</sup> overloading induced by K<sup>+</sup> and inhibited Cav1.2 current density in a dosage-dependent manner [65]. Thus, paeoniflorin played an antidepressant role by mediating LTCCs.

## Ginsenosides

Ginsenosides are the major bioactive ingredients from *Panax ginseng*. The total ginsenosides (TG) displayed cardioprotective effects on ISO-induced MI rats by inhibiting of  $I_{Ca-L}$ , myocytes shortening and  $Ca^{2+}$  transient [66]. Ginsenoside Rb<sub>1</sub> and ginsenoside Rd (**11–12**, Fig. 5) have been reported the anti-MI effect in rat ventricular myocytes by inhibiting L-type  $Ca^{2+}$  current in a dosagedependent manner [67–69]. Ginsenoside Rb<sub>1</sub> and Re (**13**, Fig. 5) inhibited the mRNA expression of Cav1.2 on rat cardiomyocyte injury induced by aconitine alkaloids [70]. Further study revealed that the inhibition of  $I_{Ca,L}$  induced by ginsenoside Rd was abolished by pertussis toxin, a Gi protein inhibitor, suggesting that Gi protein was the potential target of Rd for treating MI/RI in rat [69].

#### Glycyrrhizic acid and its derivatives

Glycyrrhizic acid (14, Fig. 5) is a bioactive component isolated from *Glycyrrhiza uralensis* Fisch with wide range of pharmacological effects such as antiviral, antitumor, anti-inflammatory, bactericidal, and anti-MI [71]. The neuroprotective mechanisms of glycyrrhizic acid was verified to be related with modulating multiple anti-apoptotic and pro-apoptotic factors and inhibiting intracellular  $Ca^{2+}$  overload [72]. Glycyrrhizic acid exhibited the cardioprotective effects by inhibiting L-type  $Ca^{2+}$  channels and reducing the  $Ca^{2+}$  transient in ISO-induced myocardial ischemia injury rats [73]. Specifically, Glycyrrhizic acid decreased the elevation of ST segment, reduced the heart rate, increased the QT-interval shortening induced by ISO, and amended the heart morphology. Furthermore, Glycyrrhizic acid blocked L-type  $Ca^{2+}$  channels in a dose-dependent manner and reduced the  $Ca^{2+}$  transient in the rats ventricular myocardial cells [73].

The derivatives of glycyrrhizic acid also have similar biological functions. It has been reported that the calcium antagonists can suppress IKr in ventricular myocardial cell that causes long QT syndrome (LQTS), which was a serious disease with a high risk of developing cardiac arrhythmias [74]. An isomerized derivatives of glycyrrhizic acid, Magnesium isoglycyrrhizinate (15, Fig. 5), exerted cardiovascular protective effect by restraining  $I_{Ca-I}$  and inhibiting Ca<sup>2+</sup> transient and decreasing myocardial contractility [75]. In addition, Magnesium isoglycyrrhizinate showed no effect on the expression of  $I_{Kr}$  in HEK293 cells, indicating that the usage of Magnesium isoglycyrrhizinate may not bring out drug-induced LQTS [75]. Monoammonium glycyrrhizinate (16, Fig. 5), an ammonium salt hydrate of glycyrrhizic acid, often clinically applied in treating viral hepatitis. Monoammonium glycyrrhizinate protected cardiomyocytes in ISO-induced MI model by inhibiting LTCCs and reducing oxidative stress, with the similar mechanism as glycyrrhizic acid [76]. Above results suggested derivatives of glycyrrhizic acid may be a promising drug for treating cardiovascular disease.

#### Calenduloside E

Aralia elata (Miq.) Seem is a traditional Chinese medicinal plant used for treating arrhythmia, diabetes and coronary heart disease. Calenduloside E (17, Fig. 5), a pentacyclic triterpenoid saponin from Aralia elata (Miq.) Seem., has the anti-MI, anti-hypoxia and anti-endothelial injury activity [77]. Calenduloside E was verified the protection effect by suppressing calcium overload though restoring the expression of calcium transporters, such as SERCA,  $\alpha_1$ C(Cav1.2), RyR2 and NCX, and regulating the calcium transients in MI/RI rats [77]. Further research showed that Calenduloside E enhanced the interaction between LTCCs and Bcl2-associated athanogene 3 (BAG3), specifically by inhibiting the  $\alpha_1$ C (Cav1.2) and  $\alpha_2 \delta$  subunits of LTCCs, restoring the interaction between BAG3 and  $\alpha_1$ C to alleviated MI/R injury [77]. In addition, the mechanism of calenduloside E has been found to be similar to that of nisoldipine, a dihydropyridine calcium channel blocker, suggesting that calenduloside E has the potential to be developed as an LTCCs antagonist.

## Alkaloids

#### Sinomenine

Sinomenine (**18**, Fig. 6), a major bioactive alkaloid from *Sinomenium acutum*, has protective effects on cardio-cerebrovascular system [78]. Sinomenine protected



Fig. 5 Chemical structures of terpenoids, including safranal, paeoniflorin, ginsenosides, glycyrrhizic acid and calenduloside E

against the oxygen–glucose deprivation-reperfusion induced neurotoxicity in PC12 cell, and improved functional recovery in cerebral ischaemia rats [79]. Specifically, sinomenine inhibited L-type calcium currents, decreased  $[Ca^{2+}]i$  induced by acidification, and reduced ASIC1a currents, which directly induced  $Ca^{2+}$  entry in rat cultured cortical neurons [79]. The sinomenine is expected to be applied in the prevention and treatment of stroke.

#### Ligustrazine

Ligustrazine (19, Fig. 6) is an alkaloid purified from *Ligusticum wallichil* and has been reported to be a calcium antagonist in treating cardiovascular and cerebrovascular diseases [80]. Ligustrazine protected cardiomyocytes against Ischemic heart disease (IHD) by inhibiting  $I_{Ca,L}$ , reducing intracellular Ca<sup>2+</sup> overload, and surpressing calcium transient in rabbit ventricular myocytes [81]. Ligustrazine alleviated musculoskeletal



Fig. 6 Chemical structures of alkaloids, including sinomenine, ligustrazine, berberine and coptisine

disorders (MSD) in rats caused by static posture load via enhancing the activity of  $Ca^{2+}$ -ATPase, inhibiting expression of LTCC Cav1.3 and maintaining the homeostasis of  $Ca^{2+}$  in soleus muscle cells [82].

In addition, the neuroprotective effects of ligustrazine have also been reported [83, 84]. Ligustrazine showed protective effects on hippocampal neuron cells mainly by inhibiting  $I_{Ca,L}$  and reducing intracellular calcium concentration [83]. Moreover, the protection of ligustrazine on SH-SY5Y human neuroblastoma cells by inhibiting LTCC were reported [84].

#### Berberine and coptisine

Berberine and coptisine (**20–21**, Fig. 6) are active alkaloids widely existing in *Coptis* species, which have anti-tumor, anti-microbial and cardio-cerebrovascular protection effects [85]. Berberine treatment inhibited LTCCs by decreasing the expression of  $\alpha_1$ C subunit and the intracellular Ca<sup>2+</sup> level in smooth muscle cells of streptozotocin-induced diabetes rats [86]. Berberine enhanced the neuroprotective effect of verapamil in sporadic dementia of Alzheimer's type rats induced by intracerebroventricular streptozocin by inhibiting of P-gp efflux and regulating calcium homeostasis [87]. Berberine exerted the positive inotropic effect on left ventricular myocytes of rat heart by enhancing the Ca<sup>2+</sup> influx [88]. In addition, bromibenzyltetrahydroberberine (CPU86035), a tetrahydroberberine derivative, strongly inhibited LTCCs in single ventricular myocyte of guinea pig, which can be used in the treatment of myocardial infarction [89]. Therefore, the effects of berberine and its derivatives may provide therapeutic strategies for calcium channel diseases.

Coptisine relaxed abnormal contracted mouse airway smooth muscle (ASM) by eliminating LTCCs and and regulating intracellular  $Ca^{2+}$  concentration, and exhibited the similar calcium antagonism as nifedipine [90].

#### Ibogaine

Ibogaine (**22**, Fig. 6), an indole alkaloid isolated from the root bark of the African shrub *Tabernanthe iboga* with a long history usage as medicinal agent to treat drug abuse in local aera [91]. The study revealed that its anti-addictive effect of ibogaine was associated with the inhibition of Cav 1.2 channel in guinea pig cardiomyocytes [92].

## Steroids

### Cinobufagin and bufalin

Chan Su, a Chinese medicine made from the dried white secretions of Chinese toads (*Bufo melanostictus* Schneider or *Bufo bufo gargarizans* Cantor) [93]. Cinobufagin and bufalin (**23–24**, Fig. 7), two natural bufaldienolides



Fig. 7 Chemical structures of steroids and phenylpropanoids, including cinobufagin, bufalin and cinnamaldehyde

from Chan Su, have been reported the cardioprotective effect by inhibiting LTCCs. Cinobufagin induced certain electrophysiological changes in the properties of  $I_{Ca,L}$  in a concentration–dependent manner [93]. Bufalin inhibited the  $I_{Ca,L}$ , and contractility in rat ventricular myocytes induced by Bay K8644, an LTCCs agonist [94].

# Phenylpropanoids

# Cinnamaldehyde

Cinnamaldehyde (25, Fig. 7), an active natural ingredient from the *Cinnamomum tamala* (Bauch.-Ham.), has been used in treating cardiovascular diseases [95]. Cinnamaldehyde exhibited complex effects on rat aortic rings and isolated mouse hearts by activating the chemosensory cation channel TRPA1 as well as inhibiting LTCCs. The inhibitory action of cinnamaldehyde on  $I_{Ca,L}$  in both ventricular cardiomyocytes (VCM) and vascular smooth muscle cells(VSMC) was obtained and these effects were similar to those of classic LTCCs blocker verapamil [95].

#### Others Salidroside

Salidroside (**26**, Fig. 8) is a phenylethanoid derivative in *Rhodiola rosea* L. and has obvious hypoglycemic effect in diabetes. Recently, studies have explored the antihypertensive mechanism of salidroside in diabetic vascular complications. Salidroside dilated the cerebral arteries of diabetic rats, but could not recover to the normal level, and had no diastolic effect on the cerebral arteries of normal rats. In this process, calcium current density, the protein and mRNA expressions of  $\alpha_1$ C subunit at diabetic rats were inhibited by salidroside [96]. Salidroside also showed the protection hippocampal neurons against hypoxic-induced injury based on inhibiting LTCCs and reducing the mRNA expression levels of Cav1.3 and NMDAR1 to alleviate the intracellular calcium overload [97].



Fig. 8 Chemical structures of others, including salidroside and crocin

#### Crocin

Crocin (27, Fig. 8), a major bioactive substance from *Crocus sativus* L., have various effects on cardio-cerebrovascular system, including anti-oxidation, anti-MI and MI/ RI [98]. In terms of anti-MI, crocin exerted negative inotropic effects on myocardium, reduced oxygen consumption and protected myocardium cells by inhibiting  $I_{Ca,L}$ and reducing Ca<sup>2+</sup> influx [99].

#### LTCCs activators from natural products

There are few studies on LTCCs activators in TCM. Studies have shown that quercetin (28, Fig. 9, 10 µM) activated Cav1.2 channel current  $(I_{Ca1.2})$ , negative shifted the steady-state inactivation curve and slowed recovery rate from inactivation in rat tail artery [100]. However, the electrophysiological features of quercetin on I<sub>Ca(L)</sub> were different from Bay K 8644, a known Ca<sup>2+</sup> channel agonist. The in-depth research showed that the ineffective concentrations of quercetin (0.1 and 0.3  $\mu$ M) inhibited the max response induced by Bay K 8644, indicating that low dosage of quercetin may restricted the LTCC reaction stimulated by Bay K 8644 [101]. Another study showed that quercetin induced insulin secretion by directly activating LTCCs in insulin-secreting cell line INS-1, which has potential for controlling type 2 diabetes [102]. Myricetin (29, Fig. 9), a analogue of quercetin, exerted the similar activatation on L-type  $Ca^{2+}$  channel with (S)-(-) Bay K 8644, by slowing down the activation kinetics and stabilizeing the channel in its inactivated state [103, 104].

The regulatory ability of flavonoid constituents on Cav1.2 channels were summarized [105]. Twenty-four flavonoids were conducted to measure their effects on  $I_{Ca1.2}$  in rat tail artery myocytes with patch-clamp Method. As a result, the effect of flavonoids on calcium channels is voltage dependent, six compounds including quercetin (28), myricetin (29), isorhamnetin (30), luteolin (31), apigenin (32) and kaempferol (33) enhanced the  $I_{\rm Ca1.2}$  with the  $\rm EC_{50}$  of ranging between 2.9 and 16.0 mM (Fig. 9). The affinity of quercetin to Cav1.2 was 3 times that of myricetin, and the effect of quercetin was significantly better than that of myricetin. The hydroxyl position and the double bond between C2 and C3 in skeleton of flavonoids were the important determinants for predicting the activity of flavonoids on calcium channels by molecular modelling method [105].

## Discussion

LTCCs is an important voltage-gated channel that are responsible for regulating intracellular calcium balance and participating in a variety of human diseases, which has been considered as the potential therapeutic target. Abnormal LTCCs expression is closely related to the progression of cardiovascular, neurological and psychological diseases. Correcting calcium homeostasis disorders may be successful therapeutic strategies in the treatment



Fig. 9 Chemical structures of quercetin, myricetin, isorhamnetin, luteolin, apigenin and kaempferol

of above diseases or delay the progression of diseases [106]. Many non-natural LTCCs antagonists have been used in clinical practice for decades, such as nimodipine, diltiazem and verapamil [11]. Multiple types of natural LTCCs antagonists from TCM, including polyphenols, flavonoids, terpenoids, alkaloids, steroids and phenylpropanoids were summarized in this review (Fig. 10). Most natural LTCCs antagonists mentioned in the article were isolated from herbs (92.6%), but part of them, such as Cinobufagin and bufalin, were obtained from animal (7.4%) [93, 94]. Animal medicine was one of the main sources of TCM, that has received enough attention in TCM research. However, it is necessary to pay attention to the sustainable utilization of resources and the protection of ecological environment during the exploration of new animal medicine resources [107]. Actually, these natural LTCCs antagonists have been still in laboratory stage and not used in clinic so far.

Research revealed that non-selective calcium channel antagonists were dose-limited clinically by vascular effects and were prone to cause adverse reactions such as peripheral oedema, headache and dizziness [108]. Currently, the selective Cav1.3 blockers had significant therapeutic effects but without those vascular side effects of non-selective LTCCs blockers [43]. Therefore, specific LTCCs antagonists need to be developed in future. Furthermore, the LTCCs were new promising targets for many diseases, such as drug-addiction [33, 34], depressive disorder [109], age-related macular degeneration-retinal pigment epithelium (AMD-RPE) [110], intrauterine growth restriction [111], local infiltration analgesia [112], myalgia [113], which expanded the scope of application. In addition, calcium channel blocker (CCB) have a short plasma half-life especially in rodents and show high first-pass metabolism upon oral application [114]. The dosage of CCB should be tightly noticed as the CCBs lose specificity for their specific receptors and can show all the manifestations of toxicity such as bradycardia, peripheral vasodilation, and hypotension in high concentrations [115].

## Conclusions

LTCCs is a promising target to develop as its involvement in various heritable complex diseases..Nowadays, many natural products from TCM have been reported the inhibitary activity on LTCCs, but their molecular characteristics, intricate mechanisms, and shortage of clinical evidence limits their development and usage.



Fig. 10 Pharmacological summary of Natural LTCC antagonists

# Thus, the specific LTCCs antagonists with distinct clinically evidence should be discovered in future.

#### Abbreviations

| AD                | Alzheimer's disease                                         |
|-------------------|-------------------------------------------------------------|
| AMD-RPE           | Age-related macular degeneration-retinal pigment epithelium |
| APAs              | Aldosterone-producing adenomas                              |
| ASM               | Airway smooth muscle                                        |
| BAG3              | Bcl2-associated athanogene 3                                |
| BD                | Bipolar disorder                                            |
| BrS               | Brugada syndrome                                            |
| CaMKII            | Calmodulin-dependent protein kinase II                      |
| CB2R              | Cannabinoid receptor 2                                      |
| CCB               | Calcium channel blocker                                     |
| CHI               | Congenital hearing impairment                               |
| CSNB2             | Congenital stationary night blindness type 2                |
| ECC               | Excitation-contraction coupling                             |
| hiPSC-CMs         | Human-induced pluripotent stem cell-derived cardiomyocytes  |
| HPP-1             | Hypokalemic periodic paralysis type 1                       |
| IHD               | Ischemic heart disease                                      |
| ISO               | Isoproterenol                                               |
| LQTS              | Long QT syndrome                                            |
| LTCCs             | L-type calcium channels                                     |
| I <sub>Ca,L</sub> | L type Ca <sup>2+</sup> channel currents                    |
| MI                | Myocardial ischemia                                         |
| MI/RI             | Myocardial ischemia/reperfusion injury                      |
| MSD               | Musculoskeletal disorder                                    |
| NCX               | Sodium/calcium exchanger                                    |
| NPCMs             | Neonatal rat primary cardiomyocytes                         |
| PD                | Parkinson's disease                                         |
| PHE               | Phenylephrine                                               |
| PMS               | Premenstrual syndrome                                       |
| RyR1              | Type 1 ryanodine receptor                                   |
| SD                | Sprague–Dawley                                              |
| SR                | Sarcoplasmic reticulum                                      |
| TCM               | Traditional Chinese medicine                                |
| TS                | Timothy syndrome                                            |
| TSC               | Tuberous sclerosis complex                                  |
| VCM               | Ventricular cardiomyocytes                                  |
| VGCCs             | Voltage-gated calcium channels                              |
| VSMC              | Mesenteric artery smooth muscle cells                       |
| ZG                | Zona glomerulosa                                            |

#### Acknowledgements

Not applicable

#### Author contributions

XQZ organized the review. FFX, WNC and BL drafted the manuscript. XQZ and ZWQ revised the manuscript. All authors read and approved the final manuscript.

#### Funding

This research is funded by the National Natural Science Foundation of China (Nos. 82073712, U1801287, 82173700), Science and Technology Key Project of Guangdong Province (Nos. 2017BT01Y036, 2020B1111110004), Science and Technology Planning Project of Guangzhou City (No. 20212210005).

#### Availability of data and materials

Data sharing is not applicable to this article.

#### Declarations

Ethics approval and consent to participate Not applicable.

#### **Consent for publication**

Not applicable.

#### **Competing interests**

The authors declare that they have no competing interests.

Received: 27 December 2023 Accepted: 8 May 2024 Published online: 21 May 2024

#### References

- Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev. 2005;57(4):411–25.
- 2. Xu L, Sun L, Xie L, Mou S, Zhang D, Zhu J, Xu P. Advances in L-Type calcium channel structures, functions and molecular modeling. Curr Med Chem. 2021;28(3):514–24.
- Striessnig J, Pinggera A, Kaur G, Bock G, Tuluc P. L-type Ca channels in heart and brain. Wiley Interdiscip Rev Membr Transp Signal. 2014;3(2):15–38.
- Striessnig J, Bolz HJ, Koschak A. Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels. Pflugers Arch. 2010;460(2):361–74.
- 5. Flucher BE. Skeletal muscle Cav1.1 channelopathies. Pflugers Arch. 2020;472(7):739–54.
- Ortner NJ, Striessnig J. L-type calcium channels as drug targets in CNS disorders. Channels. 2016;10(1):7–13.
- Gargus JJ. Ion channel functional candidate genes in multigenic neuropsychiatric disease. Biol Psychiatr. 2006;60(2):177–85.
- Cipriani A, Saunders K, Attenburrow MJ, Stefaniak J, Panchal P, Stockton S, Lane TA, Tunbridge EM, Geddes JR, Harrison PJ. A systematic review of calcium channel antagonists in bipolar disorder and some considerations for their future development. Mol Psychiatry. 2016;21(10):1324–32.
- 9. Simms BA, Zamponi GW. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron. 2014;82(1):24–45.
- Wang R, Wang M, He S, Sun G, Sun X. Targeting calcium homeostasis in myocardial ischemia/reperfusion injury: an overview of regulatory mechanisms and therapeutic reagents. Front Pharmacol. 2020;11:872.
- Best JM, Kamp TJ. Different subcellular populations of L-type Ca<sup>2+</sup> channels exhibit unique regulation and functional roles in cardiomyocytes. J Mol Cell Cardiol. 2012;52(2):376–87.
- Doering CJ, Zamponi GW. Molecular pharmacology of high voltageactivated calcium channels. J Bioenerg Biomembr. 2003;35(6):491–505.
- Li Y, Zhang Z, Li S, Yu T, Jia Z. Therapeutic effects of traditional Chinese medicine on cardiovascular diseases: the central role of calcium signaling. Front Pharmacol. 2021;12:682273.
- Liang YX, He YS, Jiang LD, Yue QX, Cui S, Li B, Ye XT, Zhang XH, Zhang YL. Discovering L-type calcium channels inhibitors of antihypertensive drugs based on drug repositioning. China J Chin Mater Med. 2015;40(18):3650–4.
- Jorquera G, Altamirano F, Contreras-Ferrat A, Almarza G, Buvinic S, Jacquemond V, Jaimovich E, Casas M. Cav1.1 controls frequencydependent events regulating adult skeletal muscle plasticity. J Cell Sci. 2013;126:1189–98.
- Pickel S, Cruz-Garcia Y, Bandleon S, Barkovits K, Heindl C, Völker K, Abeßer M, Pfeiffer K, Schaaf A, Marcus K, Eder-Negrin P, Kuhn M, Miranda-Laferte E. The β2-subunit of voltage-gated calcium channels regulates cardiomyocyte hypertrophy. Front Cardiovasc Med. 2021;8:704657.
- Wu J, Yan Z, Li Z, Yan C, Lu S, Dong M, Yan N. Structure of the voltagegated calcium channel Cav1.1 complex. Science. 2015;350(6267):2395.
- Wu J, Yan Z, Li Z, Qian X, Lu S, Dong M, Zhou Q, Yan N. Structure of the voltage-gated calcium channel Ca(v)1.1 at 3.6 Å resolution. Nature. 2016;537(7619):191–6.
- Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119(1):19–31.

- Wu MY, Yiang GT, Liao WT, Tsai APY, Cheng YL, Cheng PW, Li CY, Li CJ. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem. 2018;46:1650–67.
- Serebruany VL, Solomon SR, Herzog WR, Gurbel PA. Plasma fibronectin during myocardial ischemia-reperfusion: effects of magnesium, diltiazem, and a novel Mac-1 inhibitor. Am J Hematol. 1998;57(4):309–14.
- Liao J, Zhang Y, Ye F, Zhang L, Chen Y, Zeng F, Shi L. Epigenetic regulation of L-type voltage-gated Ca<sup>2+</sup> channels in mesenteric arteries of aging hypertensive rats. Hypertens Res. 2017;40(5):441–9.
- Touyz R, Alves-Lopes R, Rios F, Camargo L, Anagnostopoulou A, Arner A, Montezano A. Vascular smooth muscle contraction in hypertension. Cardiovasc Res. 2018;114:529–39.
- Zhang Q, Chen J, Qin Y, Wang J, Zhou L. Mutations in voltage-gated L-type calcium channel: implications in cardiac arrhythmia. Channels. 2018;12(1):201–18.
- 25. Di Mauro V, Ceriotti P, Lodola F, Salvarani N, Modica J, Bang ML, Mazzanti A, Napolitano C, Priori SG, Catalucci D. Peptide-based targeting of the L-type calcium channel corrects the loss-of-function phenotype of two novel mutations of the CACNA1 gene associated with Brugada syndrome. Front Physiol. 2021;11:616819.
- Krey JF, Paşca SP, Shcheglovitov A, Yazawa M, Schwemberger R, Rasmusson R, Dolmetsch RE. Timothy syndrome is associated with activitydependent dendritic retraction in rodent and human neurons. Nat Neurosci. 2013;16(2):201–9.
- 27. Marcantoni A, Calorio C, Hidisoglu E, Chiantia G, Carbone E. Cav1.2 channelopathies causing autism: new hallmarks on Timothy syndrome. Pflugers Arch. 2020;472(7):775–89.
- Hurley MJ, Brandon B, Gentleman SM, Dexter DT. Parkinson's disease is associated with altered expression of CaV1 channels and calciumbinding proteins. Brain. 2013;136(Pt 7):2077–97.
- Bezprozvanny I, Mattson MP. Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease. Trends Neurosci. 2008;31(9):454–63.
- Nimmrich V, Eckert A. Calcium channel blockers and dementia. Br J Pharmacol. 2013;169(6):1203–10.
- Radzicki D, Yau HJ, Pollema-Mays SL, MIsna L, Cho K, Koh S, Martina M. Temperature-sensitive Cav1.2 calcium channels support intrinsic firing of pyramidal neurons and provide a target for the treatment of febrile seizures. J Neurosci. 2013;33(24):9920–31.
- Hisatsune C, Shimada T, Miyamoto A, Lee A, Yamagata K. Tuberous sclerosis complex (TSC) inactivation increases neuronal network activity by enhancing Ca<sup>2+</sup> influx via L-type Ca<sup>2+</sup> channels. J Neurosci. 2021;41(39):8134–49.
- Hitoshi M, Cara CY, Jasper AS. Usage of L-type calcium channel blockers to suppress drug reward and memory driving addiction: past, present, and future. Neuropharmacology. 2022;221:109290.
- 34. Jia WB, Kawahata I, Cheng A, Fukunaga K. The role of CaMKII and ERK signaling in addiction. Int J Mol Sci. 2021;22:3189.
- Liu YD, Harding M, Dore J, Chen XH. Cav1.2, but not Cav1.3, L-type calcium channel subtype mediates nicotine-induced conditioned place preference in mice. Prog Neuro-Psych. 2017;75:176–82.
- Uhrig S, Vandael D, Marcantoni A, Dedic N, Bilbao A, Vogt MA, Hirth N, Broccoli L, Bernardi RE, Schönig K, Gass P, Bartsch D, Spanagel R, Deussing JM, Sommer WH, Carbon E, Hansson AC. Differential roles for L-type calcium channel subtypes in alcohol dependence. Neuropsychopharmacolgy. 2017;42:1058–69.
- Little HJ. L-type calcium channel blockers: a potential novel therapeutic approach to drug dependence. Pharmacol Rev. 2021;73:127–54.
- 38. Dao DT, Mahon PB, Cai X, Kovacsics CE, Blackwell RA, Arad M, Shi J, Zandi PP, O'Donnell P, Bipolar Genome Study (BiGS) Consortium, Knowles JA, Weissman MM, Coryell W, Scheftner WA, Lawson WB, Levinson DF, Thompson SM, Potash JB, Gould TD. Mood disorder susceptibility gene CACNA1C modifies mood-related behaviors in mice and interacts with sex to influence behavior in mice and diagnosis in humans. Biol Psychiatry. 2010;68(9):801–10.
- Giusti-Rodríguez P, Sullivan PF. The genomics of schizophrenia: update and implications. J Clin Invest. 2013;123(11):4557–63.
- Green EK, Grozeva D, Jones I, Jones L, Kirov G, Caesar S, Gordon-Smith K, Fraser C, Forty L, Russell E, Hamshere ML, Moskvina V, Nikolov I, Farmer A, McGuffin P, Wellcome Trust Case Control Consortium, Holmans PA,

Owen MJ, O'Donovan MC, Craddock N. The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatr. 2010;15(10):1016–22.

- Nguyen RL, Medvedev YV, Ayyagari TE, Schmunk G, Gargus JJ. Intracellular calcium dysregulation in autism spectrum disorder: an analysis of converging organelle signaling pathways. BBA Mol Cell Res. 2018;1865:1718–32.
- 42. Harrison PJ, Husain SM, Lee HM, de los Angeles A, Colbourne L, Mould A, Hall NAL, Haerty W, Tunbridge EM. CACNA1C (CaV1.2) and other L-type calcium channels in the pathophysiology and treatment of psychiatric disorders: advances from functional genomics and pharmacoepidemiology. Neuropharm. 2022;220:109262.
- Xie CB, Shaikh LH, Garg S, Tanriver G, Teo AE, Zhou J, Maniero C, Zhao W, Kang S, Silverman RB, Azizan EA, Brown MJ. Regulation of aldosterone secretion by Cav1.3. Sci Rep. 2016;6:24697.
- 44. Baig SM, Koschak A, Lieb A, Gebhart M, Dafinger C, Nürnberg G, Ali A, Ahmad I, Sinnegger-Brauns MJ, Brandt N, Engel J, Mangoni ME, Farooq M, Khan HU, Nürnberg P, Striessnig J, Bolz HJ. Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nat Neurosci. 2011;14(1):77–84.
- 45. Bijveld MM, Florijn RJ, Bergen AA, van den Born LI, Kamermans M, Prick L, Riemslag FC, van Schooneveld MJ, Kappers AM, van Genderen MM. Genotype and phenotype of 101 Dutch patients with congenital stationary night blindness. Ophthalmology. 2013;120:2072–81.
- Koschak A, Fernandez-Quintero ML, Heigl T, Ruzza M, Seitter H, Zanetti L. Cav1.4 dysfunction and congenital stationary night blindness type 2. Pflugers Arch. 2021;473(9):1437–54.
- 47. Li YK, Hong XH, Zhang D. Protective effect of paeonol, paeoniflorin and their different proportion combinations on acute myocardial infarction in rats. Tradit Chin Drug Res Clin Pharmacol. 2010;21:254–6.
- Zhang GQ, Hao XM, Zhou PA, Wu CH. Effect of paeonol on L-type calcium channel in rat ventricular myocytes. Methods Find Exp Clin Pharmacol. 2003;25(4):281–5.
- Zhang JY, Cao YX, Weng WL, Li YK, Zhao L. Paeonol induces vasodilatation in rat mesenteric artery via inhibiting extracellular Ca<sup>2+</sup> influx and intracellular Ca<sup>2+</sup> release. Chin J Integr Med. 2013;19(7):510–6.
- Peng Y, Zheng X, Fan Z, Zhou H, Zhu X, Wang G, Liu Z. Paeonol alleviates primary dysmenorrhea in mice via activating CB2R in the uterus. Phytomedicine. 2020;68:153151.
- Chen L, Nie YW, Zhang YX, Wan MX, Li Z, Li DK, Ju AC. Research progress on signaling pathway effect of cardiovascular and cerebrovascular system of *Salvia miltiorrhiza* monomer and its preparationson. Drug Eval Res. 2021;44(11):2333–42.
- 52. Song Q, Chu X, Zhang X, Bao Y, Zhang Y, Guo H, Liu Y, Liu H, Zhang J, Zhang Y, Chu L. Mechanisms underlying the cardioprotective effect of Salvianic acid A against isoproterenol-induced myocardial ischemia injury in rats: possible involvement of L-type calcium channels and myocardial contractility. J Ethnopharmacol. 2016;189:157–64.
- 53. Song Q, Han X, Xue Y, Song T, Chu X, Zhang X, Zhang Y, Zhang Y, Zhang J, Chu L. Effects of salvianolic acid B on L-type calcium channels and myocardial contractility in isolated rat ventricular myocytes and hERG K<sup>+</sup> channels expressed in HEK293 cells. Naunyn Schmiedebergs Arch Pharmacol. 2017;390(8):791–9.
- Lam FF, Yeung JH, Kwan YW, Chan KM, Or PM. Salvianolic acid B, an aqueous component of danshen (*Salvia miltiorrhiza*), relaxes rat coronary artery by inhibition of calcium channels. Eur J Pharmacol. 2006;553(1–3):240–5.
- Abu-Elsaad N, El-Karef A. The falconoid luteolin mitigates the myocardial inflammatory response induced by high-carbohydrate/high-fat diet in wistar rats. Inflammation. 2018;41(1):221–31.
- 56. Yan Q, Li Y, Yan J, Zhao Y, Liu Y, Liu S. Luteolin improves heart preservation through inhibiting hypoxia-dependent L-type calcium channels in cardiomyocytes. Exp Ther Med. 2019;17(3):2161–71.
- 57. Wu XL, Wang YY, Cheng J, Zhao YY. Calcium channel blocking activity of calycosin, a major active component of Astragali Radix, on rat aorta. Acta Pharmacol Sin. 2006;27(8):1007–12.
- Krylatov AV, Maslov LN, Voronkov NS, Boshchenko AA, Popov SV, Gomez L, Wang H, Jaggi AS, Downey JM. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr Cardiol Rev. 2018;14(4):290–300.

- Song Q, Zhao Y, Li Q, Han X, Duan J. Puerarin protects against iron overload-induced retinal injury through regulation of iron-handling proteins. Biomed Pharmacother. 2020;122:109690.
- 60. Anderson ME, Brown JH, Bers DM. CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol. 2011;51(4):468–73.
- Pan ZW, Zhang Y, Mei DH, Zhang R, Wang JH, Zhang XY, Xu CQ, Lu YJ, Yang BF. Scutellarin exerts its anti-hypertrophic effects via suppressing the Ca<sup>2+</sup>-mediated calcineurin and CaMKII signaling pathways. Naunyn Schmiedebergs Arch Pharmacol. 2010;381(2):137–45.
- Li L, Dong P, Hou C, Cao F, Sun S, He F, Song Y, Li S, Bai Y, Zhu D. Hydroxysafflor yellow A (HSYA) attenuates hypoxic pulmonary arterial remodelling and reverses right ventricular hypertrophy in rats. J Ethnopharmacol. 2016;186:224–33.
- Ye J, Wang R, Wang M, Fu J, Zhang Q, Sun G, Sun X. Hydroxysafflor yellow A ameliorates myocardial ischemia/reperfusion injury by suppressing calcium overload and apoptosis. Oxid Med Cell Longev. 2021;2021:6643615.
- 64. Xue Y, Jin W, Xue Y, Zhang Y, Wang H, Zhang Y, Guan S, Chu X, Zhang J. Safranal, an active constituent of saffron, ameliorates myocardial ischemia via reduction of oxidative stress and regulation of Ca<sup>2+</sup> homeostasis. J Pharmacol Sci. 2020;143(3):156–64.
- Song C, Wang J, Gao D, Yu Y, Li F, Wei S, Sun P, Wang M, Qiao M. Paeoniflorin, the main active ingredient of shuyu capsule, inhibits Cav1.2 and regulates calmodulin/calmodulin-dependent protein kinase II signalling. Biomed Res Int. 2017;2017:8459287.
- 66. Han X, Li M, Zhao Z, Zhang Y, Zhang J, Zhang X, Zhang Y, Guan S, Chu L. Mechanisms underlying the cardio-protection of total ginsenosides against myocardial ischemia in rats in vivo and in vitro: possible involvement of L-type Ca<sup>2+</sup> channels, contractility and Ca<sup>2+</sup> homeostasis. J Pharmacol Sci. 2019;139(3):240–8.
- Zhang WJ, Li LI, Zhao CY, Li X, Zhao M, Zhong GG. Effects of panaxadiol saponins monomer Rb1 on action potential and L-type calcium channel in ischemic cardiomyocytes. J Jilin Univ. 2007;33:978–81.
- Pei JH, Zhang YH, Chen JZ, Chen JZ, Huang J, Pu JL. Electrophysiological effect of ginsenoside Rb1 on L-type calcium current and transient outward potassium current in isolated rat ventricular myocytes. Mol Cardiol Chin. 2011;11:230–4.
- Lu C, Sun Z, Wang L. Inhibition of L-type Cal<sup>2+</sup>) current by ginsenoside Rd in rat ventricular myocytes. J Ginseng Res. 2015;39(2):169–77.
- Dong X, Zhao SP, Liu Y, Li P. Protective effect of ginsenodides Rb1 and Re on injury of the neonate rat cardiomyocyte induced by aconitine alkaloids. Chin J Inform TCM. 2007;09:33–5.
- Li X, Li J. The research progress of the pharmacological function of active components extracted from Gancao. Jiangsu J TCM. 2019;51(05):81–6.
- Teng L, Kou C, Lu C, Xu J, Xie J, Lu J, Liu Y, Wang Z, Wang D. Involvement of the ERK pathway in the protective effects of glycyrrhizic acid against the MPP+-induced apoptosis of dopaminergic neuronal cells. Int J Mol Med. 2014;34(3):742–8.
- 73. Li M, Wen Z, Xue Y, Han X, Ma D, Ma Z, Wu Z, Guan S, Sun S, Chu L. Cardioprotective effects of glycyrrhizic acid involve inhibition of calcium influx via L-type calcium channels and myocardial contraction in rats. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(6):979–89.
- Chouabe C, Drici MD, Romey G, Barhanin J, Lazdunski M. HERG and KvLQT1/IsK, the cardiac K<sup>+</sup> channels involved in long QT syndromes, are targets for calcium channel blockers. Mol Pharmacol. 1998;54(4):695–703.
- 75. Lin Y, Zhang Y, Song Q, Song T, Han X, Zhang Y, Zhang X, Chu X, Zhang F, Chu L, Zhang J. Magnesium isoglycyrrhizinate inhibits L-type Ca<sup>2+</sup> channels, Ca<sup>2+</sup> transients, and contractility but not hERG K<sup>+</sup> channels. Arch Pharm Res. 2017;40(10):1135–45.
- 76. Zhao Z, Liu M, Zhang Y, Liang Y, Ma D, Wang H, Ma Z, Guan S, Wu Z, Chu X, Lin Y, Chu L. Cardioprotective effect of monoammonium glycyrrhizinate injection against myocardial ischemic injury in vivo and in vitro: involvement of inhibiting oxidative stress and regulating Ca<sup>2+</sup> homeostasis by L-type calcium channels. Drug Des Devel Ther. 2020;14:331–46.
- 77. Wang R, Wang M, Zhou J, Dai Z, Sun G, Sun X. Calenduloside E suppresses calcium overload by promoting the interaction between L-type calcium channels and Bcl2-associated athanogene 3 to alleviate myocardial ischemia/reperfusion injury. J Adv Res. 2020;34:173–86.

- Wu WN, Wu PF, Chen XL, Zhang Z, Gu J, Yang YJ, Xiong QJ, Ni L, Wang F, Chen JG. Sinomenine protects against ischaemic brain injury: involvement of co-inhibition of acid-sensing ion channel 1a and L-type calcium channels. Br J Pharmacol. 2011;164(5):1445–59.
- Ma XQ, Feng WK, Xin D, Guo P. Study progress on effect of ligustrazine on cardio-cerebrovascular disease and the underlying mechanism. Shandong JTCM. 2020;39(05):530–3.
- Ren Z, Ma J, Zhang P, Luo A, Zhang S, Kong L, Qian C. The effect of ligustrazine on L-type calcium current, calcium transient and contractility in rabbit ventricular myocytes. J Ethnopharmacol. 2012;144(3):555–61.
- Xiao K, Yang L, Zhou JH, Gao XF, Zhao JJ, Huang NK. Effect of ligustrazine on calcium channel and apoptosis of soleus muscle in rats with musculoskeletal diseases. Chin J Pathophysiol. 2021;37(03):512–7.
- Su MH, Zhu W, Zhou YG. Preventing role of telramethylpyraze in [Ca<sup>2+</sup>] overload of hippocampal neuronal cells on Alzheimer disease. J Clin Emerg. 2009;10(06):332–5.
- Du YF, Sun ZL, Li Y, Han ZY, Sheng SL. Effects of ligustrazine on L-type calcium current in SH-SY5Y human neuroblastoma. Chin J Neuroimmunol Neurol. 2004;01:43–5.
- Fu L, Fu Q, Li J, Tong X. Advances in chemical constituents and pharmacological action of *Coptis chinensis*. Acta Chin Med Pharmacol. 2021;49(02):87–92.
- Ma YG, Zhang YB, Bai YG, Dai ZJ, Liang L, Liu M, Xie MJ, Guan HT. Berberine alleviates the cerebrovascular contractility in streptozotocininduced diabetic rats through modulation of intracellular Ca<sup>2+</sup> handling in smooth muscle cells. Cardiovasc Diabetol. 2016;15:63.
- Kumar A, Ekavali, Mishra J, Chopra K, Dhull DK. Possible role of P-glycoprotein in the neuroprotective mechanism of berberine in intracerebroventricular streptozotocin-induced cognitive dysfunction. Psychopharmacology. 2016;233(1):137–52.
- Zhao J, Wang Y, Gao J, Jing Y, Xin W. Berberine mediated positive inotropic effects on rat hearts via a Ca<sup>2+</sup>-dependent mechanism. Front Pharmacol. 2020;11:821.
- Li C, Guo JH, Liu TQ. Inhibitory action of CPU86035 on L-type current in single ventricular myocyte of guinea pig. Nat Med J China. 2002;01:60–3.
- Wen N, Xue L, Yang Y, Shi S, Liu QH, Cai C, Shen J. Coptisine, a protoberberine alkaloid, relaxes mouse airway smooth muscle via blockade of VDLCCs and NSCCs. Biosci Rep. 2020;40(2): BSR20190534.
- 91. Alper KR. Ibogaine: a review. Alkaloids Chem Biol. 2001;56:1–38.
- Koenig X, Kovar M, Rubi L, Mike AK, Lukacs P, Gawali VS, Todt H, Hilber K, Sandtner W. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: a study to assess the drug's cardiac ion channel profile. Toxicol Appl Pharmacol. 2013;273:259–68.
- Li P, Song Q, Liu T, Wu Z, Chu X, Zhang X, Zhang Y, Gao Y, Zhang J, Chu L. Inhibitory effect of cinobufagin on L-type Ca<sup>2+</sup> currents, contractility, and Ca<sup>2+</sup> homeostasis of isolated adult rat ventricular myocytes. Sci World J. 2014;2014:496705.
- Song T, Chu X, Zhang X, Song Q, Zhang Y, Zhang Y, Han X, Zhang J, Chu L. Bufalin, a bufanolide steroid from the parotoid glands of the Chinese toad, inhibits L-type Ca<sup>2+</sup> channels and contractility in rat ventricular myocytes. Fundam Clin Pharmacol. 2017;31(3):340–6.
- Alvarez-Collazo J, Alonso-Carbajo L, López-Medina AI, Alpizar YA, Tajada S, Nilius B, Voets T, López-López JR, Talavera K, Pérez-García MT, Alvarez JL. Cinnamaldehyde inhibits L-type calcium channels in mouse ventricular cardiomyocytes and vascular smooth muscle cells. Pflugers Arch. 2014;466(11):2089–99.
- 96. Ma YG, Wang JW, Bai YG, Liu M, Xie MJ, Dai ZJ. Salidroside contributes to reducing blood pressure and alleviating cerebrovascular contractile activity in diabetic Goto-Kakizaki Rats by inhibition of L-type calcium channel in smooth muscle cells. BMC Pharmacol Toxicol. 2017;18(1):30.
- Kou TL, Zhang YL. Expression influence of salidroside on calcium ion content, calcium activated neutral protease and calcium channel protein of rat hippocampal neurons cultured in vitro by physical hypoxic injury. J Xinxiang Med Univ. 2012;29(04):260–4.
- 98. Dong Y, Jin MJ, Liu BB, Qian XD, Zhao C, Wan B, Jiang FQ. Research progress in the application of crocin and its metabolite saffron crocus

in cardiovascular and cerebrovascular diseases. Zhejiang J TCM. 2019;54(08):621–3.

- Liu T, Chu X, Wang H, Zhang X, Zhang Y, Guo H, Liu Z, Dong Y, Liu H, Liu Y, Chu L, Zhang J. Crocin, a carotenoid component of Crocus cativus, exerts inhibitory effects on L-type Ca(<sup>2+</sup>) current, Ca(<sup>2+</sup>) transient, and contractility in rat ventricular myocytes. Can J Physiol Pharmacol. 2016;94(3):302–8.
- Saponara S, Sgaragli G, Fusi F. Quercetin as a novel activator of L-type Ca(<sup>2+</sup>) channels in rat tail artery smooth muscle cells. Br J Pharmacol. 2002;135(7):1819–27.
- Saponara S, Sgaragli G, Fusi F. Quercetin antagonism of Bay K 8644 effects on rat tail artery L-type Ca(<sup>2+</sup>) channels. Eur J Pharmacol. 2008;598(1–3):75–80.
- 102. Bardy G, Virsolvy A, Quignard JF, Ravier MA, Bertrand G, Dalle S, Cros G, Magous R, Richard S, Oiry C. Quercetin induces insulin secretion by direct activation of L-type calcium channels in pancreatic beta cells. Br J Pharmacol. 2013;169(5):1102–13.
- Fusi F, Saponara S, Frosini M, Gorelli B, Sgaragli G. L-type Ca<sup>2+</sup> channels activation and contraction elicited by myricetin on vascular smooth muscles. Naunyn Schmiedebergs Arch Pharmacol. 2003;368:470–8.
- Fusi F, Sgaragli G, Saponara S. Mechanism of myricetin stimulation of vascular L-type Ca<sup>2+</sup> current. J Pharmacol Exp Ther. 2005;313:790–7.
- 105. Saponara S, Carosati E, Mugnai P, Sgaragli G, Fusi F. The flavonoid scaffold as a template for the design of modulators of the vascular Ca(v) 1.2 channels. Br J Pharmacol. 2011;164(6):1684–97.
- 106. Guo S, Li P, Fu B, Chuo W, Gao K, Zhang W, Wang J, Chen J, Wang W. Systems-biology dissection of mechanisms and chemical basis of herbal formula in treating chronic myocardial ischemia. Pharmacol Res. 2016;114:196–208.
- 107. Wang H, Lu Z, Tan B, Huang R. Present situation and prospect of animal drug research in China. Asia-Pacific Trad Med. 2023;19(2):240–5.
- 108. Brown MJ, Palmer CR, Castaigne A, de Leeuw PW, Mancia G, Rosenthal T, Ruilope LM. Morbidity and mortality in patients randomised to doubleblind treatment with a long-acting calcium-channel blocker or diuretic in the International Nifedipine GITS study: Intervention as a Goal in Hypertension Treatment (INSIGHT). Lancet. 2000;356(9227):366–72.
- Chen T, Cheng L, Ma JW, Yuan JY, Pi C, Xiong LJ, Chen JL, Liu HY, Tang J, Zhong YT, Zhang XM, Liu ZR, Zuo Y, Shen HP, Wei YM, Zhao L. Molecular mechanisms of rapid-acting antidepressants: new perspectives for developing antidepressants. Pharmacol Res. 2023;194:106837.
- 110. Karema-Jokinen V, Koskela A, Maria H, Hongisto H, Viheriälä T, Liukkonen M, Torsti T, Skottman H, Kauppinen A, Soilerk N, Kaarniranta K. Crosstalk of protein clearance, inflammasome, and Ca<sup>2+</sup> channels in retinal pigment epithelium derived from age-related macular degeneration patients. J Biol Chem. 2023;299(6):104770.
- 111. Sengul M, Karadas B, Acar-Sahan S, Simsek F, Horoz E, Cem Özok I, Temiz T. Functional and histological changes in umbilical artery and myometrium isolated from IUGR complicated pregnancies. Fetal Pediatr Pathol. 2023;42(6):845–59.
- 112. Madhusudanan P, Jerard C, Raju G, Katiyar N, Shankarappa SA. Nerve terminals in the tumor microenvironment as targets for local infiltration analgesia. Neurosci Res. 2023;196:40–51.
- Periviita V, Palmio J, Jokela M, Hartikainen P, Vihola A, Rauramaa T, Udd B. CACNA1S variant associated with a myalgic myopathy phenotype. Neurology. 2023;101(18):e1779–86.
- 114. Theinera T, Ortner NJ, Oberacher H, Stojanovic G, Tuluc P, Striessnig J. Novel protocol for multiple-dose oral administration of the L-type Ca<sup>2+</sup> channel blocker isradipine in mice: a dose-finding pharmacokinetic study. Channels. 2024;18(1):2335469.
- 115. Andrusaitis JG, Givertz A. Calcium channel blocker overdose. J Educ Teach Emerg Med. 2024;9(1):1–25.

# **Publisher's Note**

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.