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Abstract 

The aim of this study was to develop a three-dimensional (3D) cell model in order to evaluate the effectiveness 
of a traditional Chinese medicine decoction in the treatment of arthritis. Chondrocytes (ATDC5) and osteoblasts 
(MC3T3-E1) were 3D printed separately using methacryloyl gelatin (GelMA) hydrogel bioinks to mimic the natural 
3D cell environment. Both cell types showed good biocompatibility in GelMA. Lipopolysaccharide (LPS) was added 
to the cell models to create inflammation models, which resulted in increased expression of inflammatory factors 
IL-1β, TNF-α, iNOS, and IL-6, and decreased expression of cell functional genes such as Collagen II (COLII), transcrip-
tion factor SOX-9 (Sox9), Aggrecan, alkaline phosphatase (ALP), RUNX family transcription factor 2  (Runx2), Collagen 
I (COLI), Osteopontin (OPN), and bone morphogenetic protein-2 (BMP-2). The created inflammation model was then 
used to evaluate the effectiveness of Dangguiniantongtang (DGNT) decoctions. The results showed that DGNT 
reduced the expression of inflammatory factors and increased the expression of functional genes in the cell model. 
In summary, this study established a 3D cell model to assess the effectiveness of traditional Chinese medicine (TCM) 
decoctions, characterized the gene expression profile of the inflammatory state model, and provided a practical refer-
ence for future research on TCM efficacy evaluation for arthritis treatment.
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Introduction
Arthritis is an inflammatory disease that affects the 
joints in the limbs and the surrounding tissues. It is 
a major source of pain, disability, and socioeconomic 
costs globally. In patients with arthritis, various tissues 
are stimulated by inflammation and secrete high levels 
of inflammatory factors and matrix metalloproteinases 
(MMPs). This leads to massive matrix loss and excessive 
apoptosis of chondrocytes and osteoblasts, ultimately 
resulting in joint destruction and deformity. Nonsteroidal 
anti-inflammatory drugs (NSAIDs) and glucocorticoids 
are widely recognized as the primary pharmacologi-
cal interventions for the treatment of arthritis [1]. The 
NSAIDs have the propensity to induce adverse reactions 
within the digestive, cardiovascular, and renal systems 
[2]. Furthermore, prolonged administration of gluco-
corticoids is associated with an increased susceptibility 
to hypertension, osteoporosis, and various other meta-
bolic disorders [3, 4]. Despite the extensive clinical use 
of Dangguiniantong (DGNT) decoctions in China for 
the treatment of arthritis for thousands of years, there 
is limited scientific research to validate their therapeutic 
efficacy.

Relying solely on the conventional two-dimensional 
(2D) cell culture model for drug screening has shown 
limitations in achieving satisfactory in  vivo and clinical 
efficacy for the screened drugs. This approach has been 
the prevailing method for a significant period of time, but 
its effectiveness has been questioned. Therefore, it is nec-
essary to explore alternative models for drug screening. 
The scientific community is increasingly emphasizing 
and acknowledging the crucial role of the extracellular 
matrix (ECM) in governing cell behavior [5]. In order 
to achieve a more accurate representation of the condi-
tions present within living organisms, extensive advances 
have been made in the field of three-dimensional (3D) 
cell culture techniques. 3D cultures offer a more accurate 
and in-depth portrayal of organismal conditions in vitro 
by faithfully replicating the intercell and ECM signaling 
microenvironment [6, 7].

This disparity is evident at the gene and protein expres-
sion levels [8]. 3D models are now extensively utilized in 
the study of various diseases, including lung cancer [9], 
breast cancer [10], retinal glial cells [11] and skeletal mus-
cle [12]. However, the availability of 3D models specific 
to joints is still relatively limited. Currently, most studies 
of 3D printed joint scaffold models focus on tissue engi-
neering for articular cartilage repair [13–16]. There are 
very few in vitro models targeting the assessment of drug 
efficacy in arthritis [17, 18]. In  vitro models for efficacy 
studies of herbal decoction are not yet available.

ATDC5 and MC3T3-E1 cells are widely used in arthri-
tis research. Many studies have shown that LPS can 

induce inflammatory factor expression in ATDC5 cells 
[19–21], and induces the down-regulation of functional 
genes in MC3T3-E1 cells [22, 23]. This study aimed to 
establish a 3D cell model using methacryloyl gelatin 
(GelMA) that accurately replicates the inflammatory 
conditions of ATDC5/MC3T3-E1 cells. The pioneering 
model was developed to evaluate the therapeutic efficacy 
of Traditional Chinese medicine (TCM) decoctions in 
the treatment of arthritis. Initially, the biocompatibility 
of the model used in this study was assessed, followed by 
the observation of gene expression in ATDC5/MC3T3-
E1 cells under inflammatory conditions. Subsequently, 
the model was used as a platform to evaluate the anti-
inflammatory properties of DGNT decoctions. The find-
ings collectively confirmed the 3D model that effectively 
validates the effectiveness of TCM decoctions in treating 
arthritis.

Materials and methods
Cells culture
The ATDC5 and MC3T3-E1 cell lines were obtained 
from the prestigious Cell Bank of the Chinese Academy 
of Sciences (Shanghai, China). The complete medium for 
ATDC5 cell line comprised DMEM/F12 supplemented 
with 10% fetal bovine serum and 1% penicillin–strepto-
mycin solution. The complete culture medium required 
for the MC3T3-E1 cell line consisted of α-MEM supple-
mented with 10% fetal bovine serum and 1% Penicillin–
streptomycin solution.

Bioink
The materials GelMA and Lithium phenyl-2,4,6-trimeth-
ylbenzoylphosphinate (LAP) were procured from EFL-
Tech Co., Ltd. (Suzhou, China). 5% (w/v) of GelMA and 
0.25% (w/v) of LAP were solubilized in PBS to prepare 
the hydrogel solution. The solution thus obtained was 
sterilized in a 60  °C oven for one hour and later stored 
in a 37  °C incubator. Subsequently, ATDC5/MC3T3-E1 
cells were added to the prepared hydrogel solution at a 
concentration of 2 ×  106/ml. This mixture constituted the 
bioink used in this study.

The preparation process of the 3D cell model
The 3D printing of the cell model was carried out using 
a 3D printer manufactured by Regenovo Biotechnology 
Co. Ltd. Detailed parameters for the printing programs 
are provided as follows: temperature control set to 20 
℃, model layer thickness of 0.3 mm, with a total number 
of 4 layers. The height of each individual layer was set to 
1.2  mm, while the total height of the model measured 
2 mm, width measured 6.5 mm × 6.5 mm. Following the 
printing process, the bioink was exposed to UV light for a 
duration of 10–15 s to achieve instant solidification.
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CCK‑8 assays
To evaluate cell proliferation, the CCK-8 assay (Dojindo, 
Shanghai, China) was performed using the respective 
CCK-8 kit. Following the culture of 3D cell constructs 
for assorted durations in 48-well plates, the CCK-8 assay 
solution was introduced, and the resultant enzymatic 
marker was assessed for its corresponding OD value.

Live/dead staining
The 3D cell constructs were seeded into 48-well plates. 
Staining reagents were added on day 1, day 2, day 4, day 7 
and day 10 according to kit instructions (Sigma), and cells 
growth was observed using a fluorescent microscope.

Detection of alkaline phosphatase (ALP) activity
The ALP staining kit was purchased from Shanghai Beyo-
time Biotechnology Co., Ltd. Cells or 3D cell models were 
treated with Western and IP cell lysates (3D printed mod-
els were homogenized by adding grinding beads). Add 
the samples to 96-well plates and measure the absorb-
ance following the instructions provided in the kit.

Drug administration
The herbal medicines used to prepare the DGNT decoc-
tions were obtained from the Longhua Hospital,  which 
is affiliated with the Shanghai University of Traditional 
Chinese Medicine. The herb dosage was converted using 
a conversion factor of 9.01. The concentration of the herb 
after the decoctions was determined to be 1.89 g/ml. The 
preparation of the DGNT decoctions involved 15 types 
of herbs, as shown in Table  1. To prepare the DGNT 

decoctions lyophilized powder, the prepared decoctions 
were centrifuged, and the resulting supernatant was fil-
tered and then stored at −80  °C. It was further lyophi-
lized in a vacuum dryer for 48–72 h and stored at −80 °C. 
For the in vitro experiments, the lyophilized powder was 
dissolved in complete medium, filtered using a 0.22  μm 
filter, and subsequently used.

Quantitative RT‑PCR
Cells were harvested, and cDNA was generated using 
Trizol (Invitrogen) and PrimeScriptTM RT reagent 
Kit (cat. #RR037A). The gene expression was quanti-
fied by RT-PCR using QuantiTect SYBR Green (Hief-
fTM). The primers for qPCR are shown in Table 2. All 

Table 1 The composition of DGNT decoctions

Latin name Chinese name of 
medicine

Dosage, g

Notopterygium incisum Qiang Huo 15

Rhizoma Cimicifugae Sheng Ma 3

Atractylodes macrocephala Bai Shu 3

Angelica sinensis (Oliv.) Diels Dang Gui 9

Glycyrrhiza uralensis Fisch Gan Cao 15

Scutellaria baicalensis Georgi Huang Qin 3

ArtemisiacapillarisThunb Yin Chen 15

Anemarrhena asphodeloides Bunge Zhi Mu 9

Saposhnikovia divaricata Fang Feng 9

Puerariae Lobatae Radix Ge Gen 6

Atractylodes lan cea Cang Shu 9

Panax ginseng C. A. Mey Ren Shen 6

Sophora flavescens Ku Shen 6

Alisma plantago-aquatica Linn Ze Xie 9

Polyporus Zhu Ling 9

Table 2 Primer sequence for RT-PCR

F, forward; R, reverse

Gene 5′to 3′

COLI F: CTT TGC TTC CCA GAT GTC CT

R: CGG TGT CCC TTC ATT CCA G

COLII F: ACC TTG GAC GCC ATG AAA 

R: CAG GGC AGT GTA TGT GAA CC

IL-6 F: TGC CTT CTT GGG ACT GAT 

R: TTG CCA TTG CAC AAC TCT TT

iNOS F: GAG CGA GTT GTG GAT TGT C

R: CCA GGA AGT AGG TGA GGG 

MMP13 F: GCA GTT CCA AAG GCT ACA 

R:CTC GGA GAC TGG TAA TGG 

Sox9 F: AGT ACC CGC ATC TGC ACA AC

R: ACG AAG GGT CTC TTC TCG CT

IL-1β F: CTG GTA CAT CAG CAC CTC AC

R:AGA AAC AGT CCA GCC CAT AC

TNF-α F: AGT GAC AAG CCT GTA GCC C

R: GAG GTT GAC TTT CTC CTG GTAT 

ALP F: AAC AAC CTG ACT GAC CCT TC

R: ATC CTG CCT CCT TCC ACT A

Runx2 F: AAC TTC CTG TGC TCC GTG CTG 

R: TCG TTG AAC CTG GCT ACT TGG 

Osterix F: AGG AGG CAC AAA GAA GCC ATACG 

R:ATG CCT GCC TTG TAC CAC GAGC 

OCN F:GGA CCA TCT TTC TGC TCA CTCTG 

R: GTT CAC TAC CTT ATT GCC CTC CTG 

OPN F: CCA GCA GCA GGA CTG AAG GAGC 
R: TTC ACC GGG AGA CAG GAG GC

BMP-2 F: CAA CAC CGT TCA GCT TCC 

R: TTC CCA CTC ATT TCT TTC C

Aggrecan F: GAC TGT CTA TCT ACA CGC CAA CCA 

R: GAT GTC GTC TTC ACC ACC CAC 

β-Actin F: GGT GGG AAT GGG TCA GAA GG

R: GTT GGC CTT AGG GTT CAG GG
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primers were purified and synthesized by the Huada 
Company (HuaDa, Shenzhen, China).

Statistical analysis
Statistical analyses were performed with GraphPad 
Prism 9.0 software. Data are presented as mean ± SEM. 
Analyses between 2 groups used unpaired Student 
t-test. When comparing the difference among > 2 
groups, one-way ANOVA analysis of variance was used 
followed by a Tukey multiple comparisons posttest. P 
values < 0.05 were considered statistically significant.

Results
The design of the 3D cell model
Regenovo Bio-3D printers offer design pathways and 
printing functions, guaranteeing reasonable porosity and 
consistent printing performance (Fig. 1).

The excellent biological characterization of the 3D cell 
model
The schematic diagram showed in Fig.  2A depicts the 
construction process of the ATDC5 cells model and 
the corresponding biological studies. ATDC5-contain-
ing hydrogel scaffolds were cultured for 1, 2, 4, 7, and 
10 days, followed by live/dead cells staining. Analysis of 
the results demonstrated that the survival rate of ATDC5 
cells within the 3D model exceeded 90% (Fig.  2B, C). 
The cell activity assay using CCK-8 was conducted, and 
the hydrogel scaffolds containing ATDC5 demonstrated 
notable proliferative activity compared to the blank scaf-
fold group (Fig. 2D). It is important to identify and ana-
lyze specific marker genes in order to understand the 
functional traits and properties of chondrocytes. In con-
trast to the conventional 2D culture of ATDC5 cells, our 

3D cell model exhibited a significant upregulation in the 
expression of the functional gene Collagen II (COLII) 
mRNA, with a 1.5-fold increase on day 7 (Fig.  2E). 
Moreover, the expression of Aggrecan mRNA exhibited 
a remarkable 4.5-fold increase on day 7 (Fig.  2F), while 
the expression of transcription factor SOX-9 (Sox9) 
mRNA demonstrated an even greater increase of fivefold 
(Fig. 2G). 

The schematic diagram showed in Fig.  3A depicts 
the construction process of the MC3T3-E1 cell model 
and the corresponding biological studies. MC3T3-
E1-containing hydrogel scaffolds were cultured for 
varying durations of 1, 2, 4, 7, and 10 days. Afterward, 
they were subjected to live/dead cell staining. Analysis 
of the obtained results revealed that the survival rate of 
MC3T3-E1 cells within the 3D model surpassed 90%, as 
depicted in Fig. 3B–C. The CCK-8 assay was performed 
to assess cell activity, where the hydrogel scaffolds con-
taining MC3T3-E1 cells exhibited a significant increase 
in proliferative activity compared to the blank scaf-
fold group, as illustrated in Fig.  3D. Quantification of 
ALP activity in MC3T3-E1 cells revealed a noteworthy 
increase within the 3D model compared to the conven-
tional 2D culture. Specifically, ALP activity within the 
3D model was twofold higher on day 14 and reached 
a threefold increase on day 21, as depicted in Fig.  3E. 
RT-PCR analysis of MC3T3-E1 cells revealed distinct 
differences in gene expression profiles between the 3D 
model and the conventional 2D culture. In the MC3T3-
E1 cell 3D model, ALP mRNA expression was twofold 
higher than in the 2D culture on day 7 and nearly four-
fold higher on day 14. Similarly, the expression of Col-
lagen I (COLI) mRNA showed a twofold increase on 
day 14. However, there was no significant difference 

Fig. 1 The design of a 3D cell model. A 3D printed cell model samples. The height of each individual layer was set to 1.2 mm, while the total height 
of the model measured 2 mm, width measured 6.5 mm × 6.5 mm. B 3D printing design path of the scaffol. The printing programs are provided 
as follows: temperature control set to 20 ℃, model layer thickness of 0.3 mm, with a total number of 4 layers
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in the expression of RUNX family transcription factor 
2(Runx2) mRNA compared to the control 2D culture 
(Fig. 3F–H). 

Construction of 3D cell model in LPS‑induced 
inflammatory state
The process of stimulating the 3D cell model (ATDC5) 
with lipopolysaccharide (LPS) is depicted in Fig.  4A. 

The CCK-8 assay was used to evaluate the impact of 
LPS on cell activity within a 3D model of ATDC5 cells. 
The results showed significant inhibition of activity at a 
concentration of 50  μg/ml (Fig.  4B). The investigation 
further revealed that LPS stimulation negatively influ-
enced the gene expression of ATDC5 cells. The analysis 
of RT-qPCR indicates a significant upregulation in the 
expression of inflammatory mediators such as IL-1β, 

Fig. 2 Biological characterization of the ATDC5 cell model. A Schematic diagram of the experimental. B ATDC5 Cell were stained using the LIVE/
DEAD Cell Viability/Cytotoxicity Assay Kit, with green fluorescence indicating live cells and red fluorescence indicating dead cells. C The survival rate 
of cell in 3D cell model after various days of culture is shown (n = 6). D Cell proliferation was analyzed using the CCK-8 assay (n = 5, t-test, *P < 0.05). 
E–G RT-PCR assay was performed to analyze the mRNA expression of COLII, Sox9 and Aggrecan in ATDC5 cells (n = 5, t-test, *P < 0.05, **P < 0.01, 
***P < 0.001 VS. 2D group)
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IL-6, TNF-α, and iNOS after LPS treatment in the 3D 
model of ATDC5 cells (Fig.  4C–F). Concurrently, a 
substantial decrease was observed in the expression of 
COLII, Aggrecan, and Sox9 (Fig. 4G–I). Moreover, LPS 
stimulation elicited an increased expression of matrix 
metallopeptidase 13 (MMP13) (Fig. 4J).

The process of stimulating the 3D cell model 
(MC3T3-E1) with lipopolysaccharide (LPS) is depicted 
in Fig.  5A. The CCK-8 assay showed that LPS inhib-
ited cell activity in the 3D model of MC3T3-E1 cells 
(Fig. 5B) at a 5 μg/ml concentration. In the 3D model of 
MC3T3-E1 cells, LPS stimulation resulted in decreased 
expression of functional genes ALP, Runx2, COLI, 

Osterix, Osteocalcin (OCN), Osteopontin (OPN), and 
bone morphogenetic protein-2(BMP-2) (Fig. 5C–I).

DGNT attenuates inflammation and promotes bone 
formation in cell models of inflammatory states
The experimental procedure of DGNT affecting 3D cell 
models (ATDC5) in inflammatory states was depicted 
in a schematic diagram (Fig.  6A). The cytotoxicity of 
the drug was assessed using the ATDC5 cell model. The 
ATDC5 cells were treated with DGNT for 24 h, and cell 
viability was evaluated using CCK-8. It was observed 
that DGNT at concentrations of 200  μg/ml, 500  μg/ml, 
1000  μg/ml and 2000  μg/ml had minimal effect on the 
ATDC5 cell model (Fig. 6B). A concentration-dependent 

Fig. 3 Biological characterization of the MC3T3-E1 cell model. A Schematic diagram of the experimental. B MC3T3-E1 Cell were stained using 
the LIVE/DEAD Cell Viability/Cytotoxicity Assay Kit, with green fluorescence indicating live cells and red fluorescence indicating dead cells. C The 
survival rate of cells in 3D cell model after various days of culture is shown (n = 6). D Cell proliferation was analyzed using the CCK-8 assay (n = 5, 
t-test, *P < 0.05). E Alkaline phosphatase activity assay of MC3T3-E1 cells (n = 5, t-test, ***P < 0.001 VS. 2D group). F–H RT-PCR assay was performed 
to analyze the mRNA expression of ALP, COLI and Runx2 in MC3T3-E1 cells (n = 5, t-test, *P < 0.05, ***P < 0.001 VS. 2D group)
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inhibitory effect on IL-1β, IL-6, TNF-α, and iNOS in the 
3D model of ATDC5 cell was observed in the RT-qPCR 
results, indicating the suppressing inflammation proper-
ties of the DGNT (Fig. 6C–F). Furthermore, the expres-
sion of functional genes, including Aggrecan, COLII, and 
Sox9, were upregulated, while the expression of MMP13 
was downregulated in response to the DGNT treatment 
(Fig. 6G–J).

The experimental procedure of DGNT affecting 3D 
cell models (MC3T3-E1) in inflammatory states was 
depicted in a schematic diagram (Fig. 7A). The 3D model 
of MC3T3-E1 cell was intervened with DGNT for 24 h, 
and cell viability was assessed using the CCK8 assay. It 
was observed that DGNT, at concentrations of 200  μg/
ml, 500 μg/ml, 1000 μg/ml, and 2000 μg/ml, had a neg-
ligible impact on the cell activity of the MC3T3-E1 3D 
model (Fig.  7B). RT-PCR analysis revealed that DGNT 
concentration-dependently enhanced the expression 
of ALP, Runx2, COLI, Osterix, OCN, OPN, and BMP-2 
(Fig. 7C–I).

Discussion
In this study, a 3D cell model of ATDC5/MC3T3-E1 
cells and an inflammation model were constructed. We 
constructed a preliminary 3D cell model. On this model 

we can use LPS to induce a simple inflammatory osteo-
blast/chondrocyte model. The various types of arthritis 
have different characteristics, they all show a pathologi-
cal process of inflammatory infiltration of bone and car-
tilage during their development. Rather than looking at 
a specific type of arthritis, we have focused on bone and 
cartilage damage. By comparison, it was found that the 
expression of inflammatory factors in ATDC5 cells was 
up-regulated in the model, which is consistent with exist-
ing studies. The down-regulation of functional genes, 
such as COLII, Runx2, and ALP in ATDC5/MC3T3-
E1 cells is consistent with previous studies [24–27]. We 
found that the normal 3D model exhibited excellent 
biological effects in the absence of LPS stimulation. In 
3D cellular inflammation models, LPS needs to be used 
at double or even higher doses to achieve the desired 
inflammation induction [19, 28–33]. The cause of the 
discrepancy may be related to the bioink, but we prefer 
to attribute it to the spatial distribution of cells. DGNT 
decoctions reduced the expression of inflammatory fac-
tors in  vitro, which is consistent with previous efficacy 
studies of DGNT decoctions [34, 35]. The ability of 
DGNT decoctions to enhance the expression of func-
tional genes aligns with the findings of other studies on 
drugs targeting genes that enhance osteoblast function 

Fig. 4 The expression of genes associated with the ATDC5 3D cell model was changed by distinct concentrations of lipopolysaccharide (LPS). 
A Schematic diagram of the experimental. B Effect of LPS on the cell activity of ATDC5 cells (n = 5, one way ANOVA, ***P < 0.001 VS. PBS group). 
C–F The mRNA expression of inflammatory factors (IL-1β, IL-6, TNF-α, and iNOS) under the LPS-induced inflammatory state (n = 3, one way 
ANOVA, *P < 0.05, **P < 0.01, ***P < 0.001 VS. PBS group). (G-J) The mRNA expression of functional genes (COLII, Sox9, Aggrecan and MMP13) 
under the LPS-induced inflammatory state (n = 3, one-way ANOVA, *P < 0.05, **P < 0.01, ***P < 0.001 VS. PBS group)
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[36–38]. The experimental results suggest that these 3D 
cell models can be used to assess the efficacy of TCM 
decoctions.

In conventional 2D cell culture models, cells are 
restricted to adhering to the substrate in contact with 
the culture surface [5, 39]. Hydrogel scaffolds provide 
a 3D structure that more closely resembles in  vivo tis-
sues [40, 41], in 3D culture, cells are capable of adher-
ing to the culture surface in a more widespread manner. 
3D culture helps maintain the morphology and function 
of osteoblasts/chondrocytes [42]. The degree of cells 
adhesion and stretching can impact crucial functions 
related to proliferation, apoptosis, and differentiation. 
The morphology of cells growth becomes more diverse 
in 3D model culture and resembles the diversity in vivo 
tissues [39, 43, 44]. Additionally, physiological interac-
tions between cells and the ECM are replicated in a 3D 
model culture, which more accurately mimics the growth 
environment within the body [45, 46]. Compared to 2D 
cell culture, 3D model culture better simulate signal-
ing between cells. This is important for studying cellular 

molecular pathways and signaling involved in the devel-
opment of arthritis.

Although the application of 3D cell model to arthritis 
drug screening is in its early stages, several studies have 
researched their potential advantages. Researchers chose 
chondrocytes [47–50], synovial fibroblasts [51], RA 
fibroblast-like-synoviocytes [52] and vascular endothe-
lial cells [51] as the research subjects in the constructed 
models, based on the pathological characteristics of dif-
ferent types of arthritis. Of particular interest is the fact 
that the vast majority of researchers chose to simulate 
the 3D state by culturing the cells in a hydrogel matrix 
without using 3D printing technology. Compared to cells 
cultured within a 3D matrix gel system, implementing 
3D printed scaffolds offers a clear advantage in provid-
ing cells with a spatial structure. The strategies employed 
by the researchers to induce inflammation varied in their 
approaches to modeling inflammatory activation. Y [47] 
and Satyavrata Samavedi [49] chose to use co-culture 
with macrophages activated by LPS as an inflamma-
tory activation condition. However, Lin [51] and Rosser 

Fig. 5 The expression of genes associated with the MC3T3-E1 3D cell model was changed by distinct concentrations of LPS. A Schematic diagram 
of the experimental. B Effect of LPS on the cell activity of MC3T3-E1 cells (n = 5, one way ANOVA, **P < 0.01 VS. PBS group). C–I The mRNA expression 
of functional genes (ALP, Runx2, COLI, Osterix, OCN, OPN, and BMP-2) under the LPS-induced inflammatory state. (n = 3, one-way ANOVA, *P < 0.05, 
**P < 0.01, ***P < 0.001 VS. PBS group)
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[48] used cytokines such as TNF-α, Li [50] used IL-1β. 
The utility in assessing the efficacy of herbal decoctions, 
which has not been reported in other studies. It is worth 
mentioning that the 3D model is easy to construct, has a 
low construction cost, and can be reproduced easily. This 
makes it, which provides a valuable and practical refer-
ence for research in this field. In most studies of arthri-
tis, the TNF-α gene is overexpressed under inflammatory 
conditions [21, 53, 54]. In the 3D cellular inflammation 
model of this study, ATDC5 cells had elevated TNF-a 
gene expression (Fig. 4E).

While the current study has provided significant find-
ings, it is essential to acknowledge certain limitations. 
Notably, LPS, a constituent of the outer membranes of 

gram-negative bacteria, can induce inflammation and 
impair the functioning of osteoblasts and chondrocytes 
in cell cultures [23, 55, 56]. Therefore, we have prioritized 
using LPS as the stimulus, acknowledging its singular 
but essential role. However, it is worth noting that future 
investigations could also explore alternative stimulation 
modalities, such as TNF-α or IL-1β. Due to the dispari-
ties in the culture conditions utilized for ATDC5 cells and 
MC3T3-E1 cells, it was not feasible to achieve a mixed 
culture of these cell types under inflammation-inducing 
conditions. Consequently, we were unable to establish a 
hybrid model with our current efforts. However, this will 
be a crucial aspect of our future research endeavors.

Fig. 6 DGNT has reduced inflammation caused by LPS in ADTC5 cell and increased the expression of relevant functional genes. A Schematic 
diagram of the experimental. B Effect of DGNT on the activity of ATDC5 cell models. C–F LPS-induced mRNA expression of inflammatory factors 
(IL-1β, IL-6, TNF-α, and iNOS) in response to DGNT intervention (n = 10, one way ANOVA, *P＜0.05, ****P < 0.0001 VS. LPS + PBS group). G–J 
LPS-induced mRNA expression of functional genes (Aggrecan, COLII, Sox9 and MMP13) in the inflammatory state under DGNT intervention (n = 10, 
one-way ANOVA, ****P < 0.0001 VS. LPS + PBS group)
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Conclusion
In this study, our utilization of 3D printing technology 
allowed us to create a model of joint inflammation, which 
enabled us to objectively assess the potential therapeutic 
effects of herbal decoctions. Our results revealed that the 
ATDC5/MC3T3-E1 cells exhibited enhanced viability 
and functionality when seeded in scaffolds, as opposed 
to conventional 2D cultures. Moreover, our study 
revealed the anti-inflammatory effects demonstrated 
by the DGNT in our inflammation model. Crucially, 
our research holds essential implications as it provides 
a valuable reference and establishes the foundation for 
integrating 3D printing technology in investigating the 
therapeutic effectiveness associated with traditional Chi-
nese medicine decoctions.
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