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Abstract 

Danggui Buxue (DGBX) decoction is a classical prescription composed of Astragali Radix (AR) and Angelicae Sin-
ensis Radix (ASR), used to enrich blood, and nourish Qi in Chinese medicine, with the potential to recover energy 
and stimulate metabolism. Chronic inflammation is a risk factor in the development of inflammatory bowel disease 
(IBD)-related colorectal cancer (CRC). More importantly, AR and ASR have anti-inflammatory and anti-cancer activi-
ties, as well as prefiguring a potential effect on inflammation-cancer transformation. We, therefore, aimed to review 
the immunometabolism potential of DGBX decoction and its components in this malignant transformation, to pro-
vide a helpful complement to manage the risk of IBD-CRC. The present study investigates the multifaceted roles 
of DGBX decoction and its entire components AR and ASR, including anti-inflammation effects, anti-cancer proper-
ties, immune regulation, and metabolic regulation. This assessment is informed by a synthesis of scholarly literature, 
with more than two hundred articles retrieved from PubMed, Web of Science, and Scopus databases within the past 
two decades. The search strategy employed utilized keywords such as “Danggui Buxue”, “Astragali Radix”, “Angelicae 
Sinensis Radix”, “Inflammation”, and “Metabolism”, alongside the related synonyms, with a particular emphasis on high-
quality research and studies yielding significant findings. The potential of DGBX decoction in modulating immunome-
tabolism holds promise for the treatment of IBD-related CRC. It is particularly relevant given the heterogeneity of CRC 
and the growing trend towards personalized medicine, but the precise and detailed mechanism necessitate further 
in vivo validation and extensive clinical studies to substantiate the immunometabolic modulation and delineate 
the pathways involved.

Highlights 

•	 Danggui Buxue decoction is  a  classical prescription consisting of  Astragali Radix and  Angelicae Sinensis Radix 
with the efficacy of tonifying blood and invigorating qi in traditional Chinese medicine.

•	 Astragali Radix and  Angelicae Sinensis Radix, both  have a  variety of  pharmacological activities, including  anti-
inflammation and anti-cancer effects.
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•	 In view of inflammation and malignant transformation in inflammatory bowel disease-related colorectal cancer 
and the curative effects of Astragali Radix and Angelicae Sinensis Radix, immunometabolism modulation poten-
tial of DGBX were reviewed and discussed in the present study.

Keywords  Danggui Buxue Decoction, Astragali Radix, Angelicae Sinensis Radix, Immunometabolism, IBD-CRC​

Graphical Abstract

Danggui Buxue (DGBX) decoction is a classical prescrip-
tion consisting of Astragali Radix (AR) and Angelicae 
Sinensis Radix (ASR) in traditional Chinese medicine. 
Given the documented anti-inflammatory and anti-
neoplastic properties, this review aims to discuss the 
potential of mitigating the inflammation-cancer transfor-
mation and to offer an immunometabolic adjunct in IBD-
CRC risk management.

Overview of IBD and CRC​
Pathogenesis and epidemiological characteristics of IBD
IBD includes ulcerative colitis (UC) and Crohn’s disease 
(CD) and is a chronic inflammatory disease occurring in 
the gastrointestinal tract [1]. UC characteristically initi-
ates in the rectum, and subsequently spreads to the entire 
colon in a continuous manner, while CD predominately 
involves the terminal ileum and perianal region with a 
discontinuous pattern of involvement extending through-
out the gastrointestinal tract [2]. UC inflammation in 
the mucous membrane leads to ulcers and bloody diar-
rhea [3]. CD typically involves abdominal pain, chronic 

diarrhea, weight of loss, and fatigue [4]. In the past, 
IBD was regarded as a Western disease; however, in the 
twenty-first century, the incidence and prevalence of 
IBD are increasing worldwide. Although still lower than 
in Western countries, the incidence and prevalence of 
IBD in Asia is increasing over time [5]. Therefore, com-
prehending the evolving epidemiological patterns and 
pathogenesis thereof is crucial in addressing the escalat-
ing global burden. The pathogenesis of IBD is related to 
heredity, the intestinal microbe, the environment, and 
immunity [6]. Genome-wide associated studies of genes 
and genetic loci involved in IBD identified 99 non-over-
lapping genetic risk loci and revealed the exact role of 
disease-related genes. Nucleotide-binding oligomeriza-
tion domain containing protein 2 (NOD2), for example, 
is appropriately regulated to maintain intestinal homeo-
stasis [2]. Tens of thousands of microbes living in the 
human gut are involved in the regulation of health and 
disease [7], and the human gut contains more than 2000 
species of microbes, including Firmicutes, Bacteroides, 
Actinomycetes, and Proteus [8]. Patients with IBD have 
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significantly less microbial diversity than that of healthy 
individuals [9]. Environmental determinants, such as 
tobacco smoking, appendectomy, oral contraceptive use, 
and dietary habits, exert distinct influences on the risk 
profiles for celiac disease and CD. Appendectomy has 
different effects on UC and CD, with a general protective 
effect and reduced risk of UC, and with an increased risk 
of stenosis and reduced risk of anal fistula in CD [10, 11]. 
Contraceptive use in women with a history of smoking is 
also associated with the occurrence and development of 
IBD [12, 13]. Even though there is no conclusive evidence 
that dietary factors are directly related to the pathogen-
esis of IBD, low-fiber and high-fat foods have been pro-
posed as risk factors [14]. In healthy people, the initial 
immune response is rigorously regulated, this regulation 
determines immune tolerance or defensive inflammatory 
responses, and some disturbances in the balance of these 
responses may lead to IBD [15]. IBD in patients who are 
failing to achieve effective disease control may ultimately 
lead to the development of cancer.

Pathogenesis and epidemiological characteristics 
of colorectal cancer
CRC is the fourth leading cause of cancer-related deaths 
and the most common malignancy worldwide [16]. In 
2020, there were nearly 4.56 million newly diagnosed 
cancer cases and 30 million cancer deaths in China [17]. 
Of the 147,000 people diagnosed with colorectal cancer, 
approximately 53,000 will eventually die. Despite vari-
ations in CRC incidence and mortality by age, ethnicity, 
and geographic location, a concerning trend of escalating 
incidence and mortality rates has been observed for CRC 
[18]. The susceptibility to CRC is influenced by a spec-
trum of individual-specific factors, encompassing age, 
lifestyle, and a history of chronic disease. IBD patient are 
notably at an elevated risk for the development of CRC. 
Chronic inflammation is postulated to foster aberrant 
cell proliferation, and prolonged exposure to inflamma-
tion can lead to cellular atypia, potentially culminating 
in the formation of neoplastic lesion [19–21]. The occur-
rence and development of CRC goes through several 
stages, including normal mucosal epithelium, abnormal 
crypt foci, microadenoma, and finally the malignant 
tumor. The progression from normal mucosal epithelium 
to abnormal crypts is ordinarily considered to be the 
onset of dysplasia, and a single dysplasia crypt is consid-
ered the first histological manifestation of a tumor [22]. 
Adenomatous polyps progressing to sporadic CRC typi-
cally undergo a protracted period of development, and 
CRC associated with colitis is believed to evolve through 
multiple stages of precursor lesions, ranging from inflam-
mation to low-grade dysplasia, high-grade dysplasia, 
and finally, CRC [23]. CRC is not an abrupt occurrence; 

hence, timely detection and treatment during its forma-
tion can effectively prevent it.

Risk and epidemiological characteristics of CRC in IBD
Patients with IBD have an elevated risk of developing 
CRC, and chronic inflammation leads to dysplastic pre-
cursor lesions that may appear in multiple regions of 
the colon through a local carcinization process. Patients 
with IBD are at 2–6 times higher risk of developing CRC 
compared to the general population. IBD-related colo-
rectal cancer accounts for approximately 2% of total 
annual CRC mortality and 10–15% of annual mortality in 
patients with IBD [24]. The pathogenesis of IBD-related 
CRC diverges from that of sporadic CRC, typically mani-
festing through a distinct sequence characterized by 
chronic inflammation, dysplastic transformation, and 
eventual carcinomatous progression. Research has dem-
onstrated that intestinal inflammation can lead to the 
dysregulation of the host’s immune response and a dis-
ruption in the homeostasis of the intestinal microbiota. 
The gut microbiota plays a crucial role in maintaining 
intestinal homeostasis by impeding pathogen coloniza-
tion and modulating immune cell networks. Bacteroides 
fragilis, Fusobacterium nucleatum, and Porphyromonas 
gingivalis are known to be closely related to IBD-CRC 
[25]. Intestinal microbiota and their metabolites modu-
late the metabolic pathways of immune cells, thereby 
ameliorating IBD within the gastrointestinal tract and 
augmenting the efficacy of CRC immunotherapy [26–29]. 
Colonoscopy and staging biopsies should be performed 
in patients with long-term IBD since early detection of 
dysplasia is critical for the prevention of CRC [30]. A slow 
transition from IBD to cancer is associated with chronic 
inflammation, so reducing inflammation caused by coli-
tis is a preventive approach and strategy to decrease risk 
of IBD-CRC [31–33]. Chemoprophylaxis is also one of 
the main means of continuous and complete control of 
inflammation [34, 35]. The risk of IBD patients develop-
ing CRC has decreased recently, which may be due to 
early monitoring and appropriate treatments.

Immunometabolism regulation in IBD‑related CRC​
Immune regulation in the tumor microenvironment (TME)
The TME is a cellular environment in which the tumor 
exists, and the continuous interaction between tumor 
cells and the surrounding microenvironment plays a 
crucial role in the genesis, progression, and metasta-
sis of tumors. This complex microenvironment consists 
of tumor cells, stromal cells, and extracellular matrix. 
Stromal cells include immune cells and the cytokines 
or chemokines secreted by these cells [36, 37]. Immune 
cells play an important role in tumorigenesis, including 
innate immune cells, such as natural killer (NK) cells, 
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macrophages, dendritic cells (DCs), myeloid-derived 
suppressor cells (MDSCs), and adaptive immune cells, 
such as T cells and B cells [38, 39]. The cytotoxic activ-
ity of NK cells is primarily mediated through two well-
characterized mechanisms, one is the release of cytotoxic 
granules containing perforin and granzymes, and the 
other is the secretion of pro-inflammatory cytokines. NK 
cells from IBD patients exhibit a diminished production 
of interferon-gamma (IFN-γ), yet an increased secretion 
of tumor necrosis factor-alpha (TNF-α) [40]. Elevated 
levels of TNF-α have been correlated with the presence 
of aberrant crypt foci within colorectal polyps [41]. The 
dynamic equilibrium between M1 and M2 macrophage 
polarization is a critical determinant of the inflamma-
tory microenvironment and has profound implications 
for tumor and inflammation [42–45]. Clinical observa-
tions have highlighted a significant association between 
the overexpression of M2 macrophages and the progres-
sion of CRC [46, 47]. DCs function as specialized antigen 
presenting cells, whereas MDSCs consist of monocytes 
and polymorphonuclear immature bone marrow cells. In 
the CRC microenvironment, MDSCs represent the pre-
dominant immunosuppressive cell population within the 
TME and play a critical role in promoting immune resist-
ance [48–53]. T cells play a pivotal role in orchestrat-
ing the immune response against CRC, rendering them 
one of the most critical components of immune system. 
Activated CD8+ T cells have cytotoxic effects on CRC 
cells, while activated CD4+ T cells can differentiate into 
subtypes that promote or inhibit tumor growth. Tumor-
infiltrating B lymphocytes are considered the main effec-
tor cells of the humoral adaptive immune response, and B 
cells are recognized in the immune system for their abil-
ity to produce antibodies and secrete pro-inflammatory 
and anti-inflammatory cytokines regulating CRC pro-
gression [54]. Immune cells play a multifaceted role in the 
pathogenesis of CRC, influencing the survival, prolifera-
tion, and metastatic potential of CRC cells, and actively 
participating in the regulation of cancer progression. The 
activation and differentiation of these immune cells are 
accompanied by significant metabolic reprogramming, 
which is essential for their functional capabilities. The 
unique metabolic characteristics of immune cells also 
have a profound impact on their ability to perform their 
immune functions [38, 55].

Immunometabolism aspects in the TME
Metabolic dysregulation is a defining characteristic 
of cancer cells and significantly influences the devel-
opment and progression of CRC. Immunometabo-
lism, the interplay between immune cell function and 
metabolism, is a critical determinant in cancer pro-
gression, particularly in the context of CRC [56]. 

Abnormal metabolic pathways of cancer include fatty 
acid, glucose, and amino acid metabolism. Other met-
abolic pathways include the one-carbon metabolism, 
pentose phosphate pathway, and nicotinamide adenine 
dinucleotide phosphate metabolism [57–60]. Metabo-
lism and immunity are both important components 
in maintaining the normal operation of human body. 
They reinforce each other, and the components com-
plement one another, as shown in Fig.  1. Glycolytic 
metabolism is the process of converting glucose uptake 
from the extracellular environment to pyruvate and 
releasing adenosine triphosphate (ATP) [61]. T-cell 
activation significantly increases glycolytic flux and 
transports glycolytic pyruvate into the tricarboxylic 
acid (TCA) cycle [62]. The metabolic profile of CD4+ 
T cells significantly influence their immune functions, 
which in turn, can modulate the pathogenesis of IBD 
[63, 64]. The macrophages undergo differentiation 
into either M1 or M2 cells [65].In M1 macrophages, 
the TCA cycle results in metabolite accumulation and 
enhances cell immune function. Fatty acid oxidation 
regulates the balance between inflammatory effector 
and suppressor T cells. Increased fatty acid oxidation 
and oxidative phosphorylation support Treg differ-
entiation and function. Treg accumulates in inflamed 
tissues of colitis and is involved in the progression of 
CRC [66]. The differentiation of M2 macrophages 
also depends on the fatty acid oxidation program. The 
fatty acid synthesis pathway produces lipids, which are 
essential for cell growth and proliferation. Fatty acid 
synthesis also links innate and adaptive immunity by 
regulating DCs function. Amino acid metabolism is 
closely related to the mTOR pathway and nucleotide 
synthesis, and the metabolism of glutamine, arginine, 
and tryptophan regulates the activity of immune cells. 
The intricate metabolic demands shared by cancer and 
immune cells imply that effective targeting on cancer 
metabolism necessitates consideration of gene type, 
tumor type, and the composition of the tumor micro-
environment. A comprehensive understanding of their 
respective roles and mechanisms is essential to realize 
the cancer metabolic therapy. The main regulation of 
immunometabolism in the TME involves the various 
critical signaling pathways in immunity. The phos-
phatidylinositol 3-kinase (PI3K)/AKT (also known 
as protein kinase B, PKB)/mammalian target of rapa-
mycin (mTOR) and liver kinase B1-5’ (LKB1)-AMP-
activated protein kinase (AMPK) signaling pathways 
are important in regulating immune metabolism [67]. 
The PI3K/AKT/mTOR signaling cascade is a criti-
cal cellular signaling pathway that governs a myriad 
of cellular processes, including cell growth, prolif-
eration, metabolism, and survival. mTORC1 is highly 
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activated in the intestinal mucosa of IBD patients, and 
inhibition of mTORC1 is effective in the treatment of 
UC [68]. mTORC1 subsequently activates the tran-
scription factor hypoxia-inducible factor 1 (HIF1). 
In macrophages of IBD patients, glycolysis is signifi-
cantly enhanced by mTORC1 and HIF-1 [69]. HIF-1 
promotes glycolysis and cancer-related inflammation 
by stimulating hexokinase and pyruvate dehydroge-
nase kinase, co-inducing glycolytic gene expression 
with other oncogenes or transcription factors. On the 
flip side, glycolysis affects immature DCs (iDCs) [38, 
67, 70, 71]. mTOR is an effector target of AKT sign-
aling that increases glycolysis and reduces lipid oxida-
tion. This pathway is essential for the differentiation of 
CD4+ T cells into immunologically specific effector T 
cells (Teff ) or the induction of regulatory T-cell (Treg) 
subsets [72]. As an energy sensor in cells, AMPK acti-
vation reduces the levels of mitochondrial aerobic gly-
colysis and oxidative phosphorylation, and inhibits the 
migration, invasion, and metastasis formation of CRC 
cells [38, 73–76]. Targeting immunometabolism in the 
TME represents a highly promising therapeutic strat-
egy [55, 77].

Astragali Radix, Angelicae Sinensis Radix, 
and DGBX decoction advances
Astragali Radix (AR, Huang Qi in Chinese), the dried 
root of Astragalus membranaceus (Fisch.), Bge. var. 
mongholicus (Bge.) Hsiao or Astragalus membranaceus 
(Fisch.) Bge., and the components isolated and identi-
fied included polysaccharides, saponins, flavonoids, and 
amino acids [78, 79]. As a traditional Chinese medicine 
employed in clinical treatment, AR exhibits diverse bio-
logical activities, including anti-inflammatory and anti-
tumor functions [80–83]. Angelicae Sinensis Radix (ASR, 
Dang Gui in Chinese) is the root of Angelica sinensis 
(Oliv.) Diels [84]. The main chemical components of ASR 
include organic acids, volatile oil, polysaccharides, and 
flavonoids. It also has a variety of pharmacological activi-
ties, including anti-inflammatory activity, cardiac protec-
tion, antioxidant activity, and neuroprotection, as well 
as functioning in the cardiovascular and cerebrovascu-
lar systems [85, 86]. As a Chinese classical prescription, 
DGBX decoction is recorded with AR and ASR, in a ratio 
of 5:1. It is a classic recipe to invigorate Qi and tonify the 
blood [87, 88]. The main effective components in DGBX 
decoction are polysaccharides, calycosin, formononetin, 

Fig. 1  The immunometabolism modulation. LKB1-AMPK signaling pathway and PI3K/AKT/mTOR signaling pathway are the main pathways 
regulating the metabolism of fatty acids and glucose. Consequently, the metabolic outcomes impact immune cells such as T cells, DCs, M1 and M2 
macrophages, thereby influencing immunity. Furthermore, immune responses reciprocally recast metabolic regulation
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astragaloside IV, ferulic acid, and ligustilide [89]. DGBX 
decoction exerts supporting Qi and enriches the blood, 
enhancing efficacy and reducing toxicity [90]. In recent 
years, traditional Chinese medicine and the classical pre-
scriptions have been found to be widely used [83, 91], 
such as AR, ASR, and DGBX decoctions, especially for 
their anti-cancer activities, immune regulation, and met-
abolic regulation, as shown in Tables 1, 2 and 3. Accord-
ingly, the schema of the present study is shown in Fig. 2.

AR and ASR exhibit promising anti‑inflammatory 
properties
By subcutaneous injection of air and Zymosan solu-
tion into the back of mice, a Zymosan air–pouch mouse 
model was established to induce inflammation. The 

higher dose of aqueous AR extract (100 mg/kg) effectively 
inhibited the expression of interleukin (IL)-1β, IL-6, and 
tumor necrosis factor (TNF)-α, indicating its anti-inflam-
matory effect through suppression of pro-inflammatory 
cytokines production. In addition, in lipopolysaccharide 
(LPS)-induced inflammation of RAW 264.7 cells, AR was 
found to inhibit the synthesis of inflammatory media-
tor nitric oxide (NO) and the expression of nitrite oxide 
synthase (iNOS) [111]. Astragalus polysaccharides and 
astragaloside IV are the primary bioactive compounds 
extracted from AR. Astragaloside IV enhances the tyros-
ine phosphatase activity of CD45 protein to induce T-cell 
activation, manages the balance of Teff/Treg cells to reg-
ulate immunity, and inhibits pro-inflammatory cytokines 
and nuclear factor-κB (NF-κB) pathways to enhance 

Table 1  The main active ingredients derived from AR and ASR or the corresponding TCM prescriptions

Source Active ingredients Effects on CD/UC/CRC​ Refs

Astragalus membranaceus Calycosin Attenuate TGF-β1 stimulation and ameliorates CD-
induced intestinal fibrosis;

[92]

Inhibit the growth and induces apoptosis of CRC 
cells;

[93]

Formononetin Formononetin significantly inhibits the growth 
and metastasis of CRC cells;

[94]

Astragaloside II Improve intestinal epithelial barrier function 
to alleviate CD;

[95]

Alleviate DSS-induced UC in mice by reducing 
the level of inflammatory factors;

[96]

Astragaloside IV Regulate immune function and antioxidant stress, 
and alleviates DSS-induced UC in mice;

[97]

Inhibit the growth and proliferation of CRC cells 
by regulating cell cycle;

[98, 99]

Astragalus polysaccharide Alleviate colonic mucosal injury and improve DSS-
induced UC by regulating immune balance;

[100, 101]

Attenuate inflammation by regulating cytokines 
and improves DSS-induced UC;

[102]

Protect intestinal mucosa by regulating cytokines 
and improves DSS-induced UC;

[103]

Aidi injection (including Mylabris phalerata Pallas, 
Astragalus membranaceus (Fisch.) Bge., Panax 
ginseng C. A. Mey., and Acanthopanax gracilistylus 
W.W. Smith)

Calycosin-7-O-β-D-glucoside Induce apoptosis synergistically inhibits the growth 
of colorectal cancer;

[104]

Danggui Buxue Danggui Buxue Decoction Inhibit the growth of CRC cells and induced 
autophagy;

[105]

Induce apoptosis of tumor cells and alleviates 
metastatic CRC;

[106]

Angelicae Sinensis ASR extract Deplete ROS to resist oxidative stress and treat 
AOM/DSS-induced CRC​

[107]

z-ligustilide Decrease the viability of CRC cells and inhibits their 
proliferation;

[108]

Angelica sinensis polysaccharide Inhibit myeloperoxidase activity and reduces 
proinflammatory cytokine levels to combat DSS-
induced UC;

[109]

Protect against oxidative stress and DNBS-induced 
acute UC;

[110]



Page 7 of 24Zhang et al. Chinese Medicine          (2024) 19:117 	

Ta
bl

e 
2 

Im
m

un
om

od
ul

at
or

y 
eff

ec
ts

 o
f a

ct
iv

e 
in

gr
ed

ie
nt

s 
de

riv
ed

 fr
om

 A
R 

an
d 

A
SR

 o
r t

he
 c

or
re

sp
on

di
ng

 T
C

M
 p

re
sc

rip
tio

ns

So
ur

ce
A

ct
iv

e 
in

gr
ed

ie
nt

s
A

ct
io

n 
an

d 
M

ec
ha

ni
sm

Re
fs

A
st

ra
ga

li 
Ra

di
x

Ca
ly

co
si

n
Re

du
ce

 m
ig

ra
tio

n 
of

 m
ac

ro
ph

ag
es

 to
 e

nd
ot

he
lia

l c
el

ls
, w

hi
ch

 p
la

ys
 

a 
ke

y 
ro

le
 in

 d
ia

be
te

s;
[1

45
]

Fo
rm

on
on

et
in

Re
du

ce
 a

cu
te

 lu
ng

 in
ju

ry
 c

au
se

d 
by

 h
yp

er
ox

ia
 in

 m
ic

e 
by

 re
du

ci
ng

 M
1 

m
ac

ro
ph

ag
es

 a
nd

 in
cr

ea
si

ng
 M

2 
m

ac
ro

ph
ag

es
;

[1
46

]

A
st

ra
ga

lo
si

de
 IV

In
hi

bi
t M

2 
m

ac
ro

ph
ag

e 
po

la
riz

at
io

n 
by

 in
hi

bi
tin

g 
A

M
PK

 s
ig

na
lin

g,
 

th
er

eb
y 

in
hi

bi
tin

g 
tu

m
or

 g
ro

w
th

 a
nd

 m
et

as
ta

si
s;

[1
16

]

A
tt

en
ua

te
 th

e 
se

ve
rit

y 
of

 a
ut

oi
m

m
un

e 
en

ce
ph

al
om

ye
lit

is
 d

is
ea

se
 

by
 in

hi
bi

tin
g 

D
C

 m
at

ur
at

io
n 

an
d 

fu
nc

tio
n;

[1
47

]

A
st

ra
ga

lo
si

de
 IV

In
cr

ea
se

 T
 ly

m
ph

oc
yt

e 
pr

ol
ife

ra
tio

n,
 in

hi
bi

t I
L-

1 
pr

od
uc

tio
n 

an
d 

de
cr

ea
se

d 
TN

F-
α 

ac
tiv

ity
;

[1
48

]

A
st

ra
ga

lu
s 

po
ly

sa
cc

ha
rid

e
Pr

om
ot

e 
th

e 
di

ffe
re

nt
ia

tio
n 

an
d 

m
at

ur
at

io
n 

of
 D

C
 a

nd
 e

nh
an

ce
 a

da
p-

tiv
e 

an
tit

um
or

 im
m

un
e 

re
sp

on
se

;
[1

49
, 1

50
]

Re
gu

la
te

 th
e 

di
ffe

re
nt

ia
tio

n 
of

 T
fh

 s
ub

se
ts

 in
 c

ol
iti

s 
m

ic
e,

 in
hi

bi
t 

th
e 

re
sp

on
se

 o
f T

fh
 c

el
ls

, i
m

pr
ov

e 
th

e 
fu

nc
tio

n 
of

 T
re

g 
ce

lls
, a

nd
 a

m
e-

lio
ra

te
s 

U
C

 b
y 

re
gu

la
tin

g 
th

e 
ba

la
nc

e 
be

tw
ee

n 
Tf

h 
an

d 
Tr

eg
 c

el
ls

;

[1
01

]

As
tr

ag
al

us
 m

em
br

an
ac

eu
s

A
st

ra
ga

lo
si

de
 IV

In
hi

bi
t T

fh
 c

el
l d

iff
er

en
tia

tio
n 

in
 v

iv
o,

 e
xp

an
d 

TF
R 

ce
ll 

re
sp

on
se

, 
an

d 
im

pr
ov

e 
pu

lm
on

ar
y 

hy
pe

rt
en

si
on

;
[1

51
]

In
du

ce
 th

e 
po

la
riz

at
io

n 
of

 M
2 

m
ac

ro
ph

ag
es

 in
to

 M
1 

m
ac

ro
ph

ag
es

, 
re

su
lti

ng
 in

 a
 s

ig
ni

fic
an

t r
ed

uc
tio

n 
of

 M
2 

an
d 

an
 in

cr
ea

se
 o

f M
1 

ph
e-

no
ty

pe
;

[1
52

]

Re
st

or
e 

im
m

un
e 

ho
m

eo
st

as
is

 a
nd

 a
lle

vi
at

e 
D

SS
-in

du
ce

d 
co

lit
is

 
by

 re
sh

ap
in

g 
th

e 
ba

la
nc

e 
of

 T
h1

7 
/ T

re
g 

ce
lls

;
[9

7]

A
st

ra
ga

lu
s 

po
ly

sa
cc

ha
rid

e
A

ct
iv

at
e 

ly
m

ph
oc

yt
es

 a
nd

 im
pr

ov
es

 im
m

un
ity

, u
pr

eg
ul

at
e 

th
e 

ex
pr

es
-

si
on

 o
f I

L-
2,

 T
N

F-
α 

an
d 

IF
N

-γ
 in

 p
er

ip
he

ra
l b

lo
od

, a
nd

 e
nh

an
ce

 a
nt

i-
tu

m
or

 d
ef

en
se

;

[1
53

]

En
ha

nc
e 

M
1 

po
la

riz
at

io
n,

 in
cr

ea
se

 th
e 

ra
tio

 o
f M

1/
M

2 
m

ac
ro

ph
ag

es
 

in
 c

el
ls

, a
nd

 in
hi

bi
te

d 
tu

m
or

 g
ro

w
th

;
[1

15
]

A
st

ra
ga

lu
s 

m
on

gh
ol

ic
us

A
st

ra
ga

lu
s 

po
ly

sa
cc

ha
rid

e
In

du
ce

 th
e 

pr
od

uc
tio

n 
of

 N
O

 in
 m

ac
ro

ph
ag

es
 to

 k
ill

 tu
m

or
 c

el
ls

;
[1

54
]

m
od

ifi
ed

 Ji
an

-p
i-y

an
g-

zh
en

g 
(m

JP
YZ

, i
nc

lu
di

ng
 A

st
ra

ga
lu

s 
m

on
gh

ol
i-

cu
s 

(H
ua

ng
qi

))
Ca

ly
co

si
n,

 F
or

m
on

on
et

in
D

ec
re

as
e 

th
e 

le
ve

l o
f a

er
ob

ic
 g

ly
co

ly
si

s 
in

 g
as

tr
ic

 c
an

ce
r c

el
ls

 
th

ro
ug

h 
PK

M
2/

H
IF

-1
α,

 re
gu

la
te

 tu
m

or
-a

ss
oc

ia
te

d 
m

ac
ro

ph
ag

es
, 

an
d 

in
hi

bi
te

d 
th

e 
pr

ol
ife

ra
tio

n,
 m

ig
ra

tio
n 

an
d 

in
va

si
on

 o
f g

as
tr

ic
 c

an
ce

r 
ce

lls
;

[1
55

]

Li
gu

st
ic

um
 c

hu
an

xi
on

g
A

st
ra

ga
lo

si
de

 IV
A

tt
en

ua
te

 D
SS

-in
du

ce
d 

co
lit

is
 b

y 
di

ffe
re

nt
ia

tin
g 

im
m

at
ur

e 
m

ac
-

ro
ph

ag
es

 in
to

 m
at

ur
e 

m
ac

ro
ph

ag
es

 th
ro

ug
h 

ST
AT

1 
si

gn
al

in
g;

[1
56

]

Bu
-S

he
n-

Yi
-Q

i f
or

m
ul

ae
 (B

SY
Q

F, 
in

cl
ud

in
g 

As
tr

ag
al

us
 m

em
br

an
ac

eu
s 

(F
is

ch
.) 

Bu
ng

e)
A

st
ra

ga
lo

si
de

 II
, A

st
ra

ga
lo

si
de

 IV
, 

Ca
ly

co
si

n,
 F

or
m

on
on

et
in

Re
du

ce
 n

eu
tr

op
hi

ls
 a

nd
 ly

m
ph

oc
yt

es
, r

ed
uc

e 
ai

rw
ay

 in
fla

m
m

at
io

n 
an

d 
tr

ea
t a

st
hm

a 
by

 re
gu

la
tin

g 
th

e 
ba

la
nc

e 
of

 T
re

g/
Th

17
 c

el
ls

;
[1

57
, 1

58
]

Bu
sh

en
 H

uo
xu

e 
re

ci
pe

 (B
H

R,
 in

cl
ud

in
g 

16
.7

%
 A

st
ra

ga
lu

s m
en

br
an

a-
ce

us
 B

un
ge

. (
M

ilk
ve

tc
h 

Ro
ot

), 
8.

3%
 A

ng
el

ic
a 

sin
en

sis
 D

ie
ls

 (A
ng

el
ic

ae
 

Si
ne

ns
is

 R
ad

ix
))

Ca
ly

co
si

n,
 F

er
ul

ic
 a

ci
d

A
tt

en
ua

te
 o

va
ria

n 
dy

sf
un

ct
io

n 
by

 re
du

ci
ng

 C
D

4 
T 

ce
lls

, T
h1

 a
nd

 T
h1

7 
ce

lls
;

[1
59

]

As
tr

ag
al

us
 m

em
br

an
ac

eu
s a

nd
 P

an
ax

 g
in

se
ng

Fo
rm

on
on

et
in

Re
gu

la
te

 im
m

un
ity

 a
nd

 im
pr

ov
es

 a
da

pt
iv

e 
im

m
un

ity
;

[1
60

]



Page 8 of 24Zhang et al. Chinese Medicine          (2024) 19:117 

Ta
bl

e 
2 

(c
on

tin
ue

d)

So
ur

ce
A

ct
iv

e 
in

gr
ed

ie
nt

s
A

ct
io

n 
an

d 
M

ec
ha

ni
sm

Re
fs

Bu
ya

ng
 H

ua
nw

u 
D

ec
oc

tio
n 

(B
YH

W
D

, i
nc

lu
di

ng
 A

st
ra

ga
li 

Ra
di

x 
(1

20
 g

), 
A

ng
el

ic
ae

 S
in

en
si

s 
Ra

di
x 

(6
 g

))
Fe

ru
lic

 a
ci

d,
 C

al
yc

os
in

, F
or

m
on

on
et

in
Re

du
ce

 th
e 

pr
ol

ife
ra

tio
n 

of
 ro

d 
ce

lls
 in

du
ce

d 
by

 C
on

 A
, a

nd
 h

ad
 a

nt
i-

in
fla

m
m

at
or

y 
an

d 
va

so
di

la
to

r e
ffe

ct
s;

[1
61

]

D
ah

ua
ng

 Z
he

ch
on

g 
pi

ll 
(D

H
ZC

P)
Fo

rm
on

on
et

in
Re

gu
la

te
 th

e 
im

m
un

e 
st

at
us

 o
f l

iv
er

 c
an

ce
r m

ic
e 

by
 d

ec
re

as
in

g 
Tr

eg
 

an
d 

in
cr

ea
si

ng
 T

h1
 c

el
l l

ev
el

;
[1

62
]

A
ng

el
ic

ae
 S

in
en

si
s

Li
gu

st
ili

de
Re

du
ce

 IL
-6

 p
ro

du
ct

io
n 

in
 c

el
ls

, i
nh

ib
it 

m
ac

ro
ph

ag
e 

re
cr

ui
tm

en
t 

an
d 

M
2 

po
la

riz
at

io
n,

 a
nd

 a
tt

en
ua

te
 c

an
ce

r p
ro

gr
es

si
on

;
[1

63
]

A
ng

el
ic

a 
si

ne
ns

is
 p

ol
ys

ac
ch

ar
id

e
In

du
ce

 s
pl

en
oc

yt
e 

pr
ol

ife
ra

tio
n 

in
 v

itr
o 

an
d 

st
im

ul
at

e 
pe

rit
on

ea
l 

m
ac

ro
ph

ag
es

 to
 s

ec
re

te
 s

ol
ub

le
 fa

ct
or

s, 
w

hi
ch

 p
la

y 
an

 im
po

rt
an

t r
ol

e 
in

 tu
m

or
 d

ev
el

op
m

en
t;

[1
64

]

A
ct

iv
at

e 
a 

va
rie

ty
 o

f i
m

m
un

e 
ce

lls
, i

nc
lu

de
 p

ro
m

ot
in

g 
th

e 
pr

ol
ife

ra
tio

n 
of

 M
D

SC
 a

nd
 e

nh
an

ce
 it

s 
im

m
un

os
up

pr
es

si
ve

 fu
nc

tio
n 

in
 a

 c
on

ce
nt

ra
-

tio
n-

de
pe

nd
en

t m
an

ne
r;

[1
65

]

In
cr

ea
se

 th
e 

nu
m

be
r o

f p
er

ito
ne

al
 m

ac
ro

ph
ag

es
 a

nd
 T

 c
el

ls
, a

nd
 p

ro
-

m
ot

e 
th

e 
se

cr
et

io
n 

of
 c

yt
ok

in
es

 IL
-2

 a
nd

 IF
N

-γ
;

[1
66

]

Pr
om

ot
e 

th
e 

ph
ag

oc
yt

os
is

 o
f p

er
ito

ne
al

 m
ac

ro
ph

ag
es

 a
nd

 th
e 

ki
ll-

in
g 

ac
tiv

ity
 o

f N
K 

ce
lls

, a
nd

 in
du

ce
 a

 p
ro

te
ct

iv
e 

im
m

un
e 

re
sp

on
se

 
ag

ai
ns

t l
eu

ke
m

ia
;

[1
27

, 1
29

, 1
67

]

Ra
di

x 
An

ge
lic

ae
 si

ne
ns

is 
an

d 
Li

gu
st

ic
um

 c
hu

an
xi

on
g

Li
gu

st
ili

de
In

cr
ea

se
 th

e 
ex

pr
es

si
on

 le
ve

l o
f a

nt
i-i

nfl
am

m
at

or
y 

cy
to

ki
ne

s 
in

 T
re

g 
ce

lls
 a

nd
 s

up
pr

es
se

 n
eu

ro
in

fla
m

m
at

io
n 

by
 re

gu
la

tin
g 

ad
ap

tiv
e 

im
m

u-
ni

ty
;

[1
68

]

An
ge

lic
a 

ac
ut

ilo
ba

Z-
lig

us
til

id
e

In
hi

bi
t I

L-
6 

an
d 

TN
F-

α 
to

 e
xe

rt
 a

nt
i-i

nfl
am

m
at

or
y 

ac
tiv

ity
;

[1
69

]



Page 9 of 24Zhang et al. Chinese Medicine          (2024) 19:117 	

anti-inflammatory activity [112, 113]. In an orthotopic 
implantation lung cancer model utilizing C57 BL/6 mice, 
which was established using 3LL-LUS-IDO cells, astra-
galoside IV, administered at a dosage of 40  mg/kg, has 
been demonstrated to effectively suppress the expression 
of indoleamine 2,3-dioxygenase in  vivo. It also down-
regulates the population of Tregs while concurrently 
up-regulating the activity of cytotoxic T lymphocytes 
to enhance the immune response, thereby showcas-
ing anti-cancer activity [114]. By culturing human lung 
cancer cells and human mononuclear cells in  vitro, it 
was found that astragaloside IV at a dosage of 40  mg/
kg, significantly inhibits the M2 macrophage polariza-
tion of tumor-associated macrophages (TAMs) through 

the modulation of AMPK signaling pathway. This find-
ing was corroborated through parallel experiments con-
ducted on primary human macrophages, which further 
substantiate the immunomodulatory role of astragalo-
side IV in regulating macrophage function within the 
tumor microenvironment [115, 116]. Astragalus poly-
saccharides, administered at a dosage of 3  mg/kg, exert 
comparable effects on a lung cancer subcutaneous model 
in vivo, enhancing the anti-cancer efficacy of cisplatin by 
modulating the activity of inflammation-associated mac-
rophages. The anti-inflammatory effects of astragalus 
polysaccharides and astragaloside IV on bovine mam-
mary epithelial cells induced by LPS were also studied. 
Bovine mammary epithelial cells stimulated with LPS 

Table 3  Metabolic regulation of active ingredients derived from AR and ASR or the corresponding TCM prescriptions

Source Active ingredients Effects Mechanisms Refs

Astragali Radix Calycosin Inhibit oxidative stress and improve 
autophagy

AMPK/SKP2/CARM1 signaling pathway [192]

Calycosin-7-O-β-D-glucoside Attenuate lipid accumulation AMPK signaling pathway [193]

Calycosin Regulate lipid metabolism and increase 
fatty acid β-oxidation

Farnesoid X receptor [194]

Regulate lipid metabolism, inhibit fat 
generation, and promote fat decom-
position

mTOR/autophagy pathway [170]

Formononetin Protect mitochondrial membrane 
integrity

ROS signal, PI3K/Akt signaling pathway [195]

Anti-inflammatory and reduces muscle 
atrophy

PI3K/Akt/FoxO3a pathway [160]

Astragaloside IV Promote fatty acid oxidation 
and improve lipid metabolism

AMPK/ACC1/mitochondrial β-oxidation 
signal axis

[196]

Inhibit lipid production and reduce lipid 
accumulation

AMPK pathway [197]

Reduce triglyceride ester, alleviate lipid 
metabolism disorder

PI3K/AKT pathway [175]

Reduce lipid accumulation ROS signal [198]

Astragaloside A Enhance fatty acid oxidation and regu-
late energy metabolism

Peroxisome proliferator-activated recep-
tor alpha (PPARα)

[199]

Astragalus polysaccharide Increase glucose uptake AMP-AMPK-AS160 pathway [200]

Enhance autophagy level PI3K/AKT/mTOR pathway [178]

Inhibition of oxidative stress PI3k/Akt pathway, p38MAPK pathway [201]

Regulate glucose and lipid metabolism STRs pathway [202]

Regulate lipid accumulation SCFA-GPR signaling pathway [203]

Enhance glucose uptake AMPK pathway [204]

Angelicae Sinensis Radix Ligustilide Inhibition of glycolytic metabolism PTEN/AKT signaling [205]

Angelica sinensis polysaccharide Relieve lipid disorder and improve 
oxidative stress

Adiponectin-SIRT1-AMPK signaling [206]

Regulate glucose metabolism PI3K/AKT pathway [207]

Regulate the metabolism of glycine 
and arachidonic acid

—— [208]

Regulate lipid metabolism and amino 
acid metabolism

—— [209]

Z-ligustilide Regulate oxidative stress PI3K/Akt pathway [210]
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were utilized as an in  vitro model of inflammation to 
investigate the impact of astragalus polysaccharides (an 
efficacious concentration is 100 μg/mL) and astragaloside 
IV (an efficacious concentration is 1 mg/mL) on inflamed 
bovine mammary epithelial cells. It was found that both 
could significantly reduce the relative expression of IL-6, 
IL-8, and TNF-α, and activate the Wnt/β-catenin signal-
ing pathway to inhibit inflammation [117]. Atragaloside 
IV also exerts inhibitory effects on the TLR4/NF-κB sign-
aling pathway and the activation of autophagy, thereby 
attenuating cellular inflammation by reducing the release 
of inflammatory mediators [118]. CT26 cells were ortho-
topically implanted into BALB/c mice to establish a sub-
cutaneous tumor model. Astragaloside III, administered 
at a dosage of 50 mg/kg in five bi-daily treatments, signif-
icantly activated NK cells in tumor environment, thereby 
enhancing the cytotoxic capacity of NK cells and leading 
to a notable inhibition of tumor growth. Further assay 
via co-culture of NK cells with CT26 cells revealed that 
astragaloside III up-regulated the expression of NK group 
2D, Fas and IFN-γ in NK cells, thereby exerting a pro-
nounced suppressive effect on the proliferation of CT26 
colorectal tumor cells [119]. Flavonoids isolated from AR 
alleviate DSS-induced colitis by enhancing mitophagy 
levels, inhibiting NLRP3 inflammasome activation, and 

reducing the production of pro-inflammatory cytokines 
in colon tissue [120].

Calycosin is the predominant isoflavonoid in AR. Caly-
cosin, administered at a dosage of 4.67 mg/kg, effectively 
reduces the levels of TNF-α and IL-1 in the serum of rats 
with heart failure induced by ligation of the left anterior 
descending artery, indicating that calycosin could allevi-
ate the inflammatory response in rats with heart failure. 
In  vitro cardiomyocyte cultures showed that calycosin 
exerts anti-inflammatory effects via the PI3K-AKT sign-
aling pathway [121]. In glucocorticoid-induced osteone-
crosis of the femoral head in rats, calycosin, administered 
at a dosage of 10 mg/kg, promotes bone formation, inhib-
its the TLR4/NF-κB pathway, and significantly regulates 
inflammation, thus effectively alleviating osteonecrosis 
of the femoral head. In addition, calycosin also inhibits 
LPS-activated inflammation in  vitro by inhibiting the 
TLR4/NF-κB pathway [122]. Formononetin, a naturally 
occurring flavonoid derived from AR, has been reported 
to have immunomodulatory effects [123]. By pre-treat-
ment of LPS-induced mastitis model mice with formon-
onetin, administered at dosages of 10, 20 and 30 mg/kg, 
myeloperoxidase activity was reduced along with TNF-α 
and IL-1β production. In vitro experiments using EpH4-
Ev cells from mouse mammary epithelial cells stimulated 

Fig. 2  The scheme. DGBX decoction is composed of AR and ASR with a ratio of 5:1. AR and ASR both have anti-inflammatory and anti-cancer 
effects. Inflammation plays a pivotal role in the pathogenesis and progression of IBD, while anti-cancer effects show significant potential for CRC 
treatment. Hence, this review aims to comprehensively explore the therapeutic implications of DGBX decoction in IBD-associated CRC. DGBX 
Danggui Buxue, AR Astragali Radix, ASR Angelicae Sinensis Radix, IBD inflammatory bowel diseases, CRC​ colorectal cancer
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with LPS showed that formononetin, administered at 
dosages of 10, 20 and 30 μM, inhibits LPS-induced acti-
vation of the NF-κB signaling pathway [124]. Taken 
together, the active component from AR effectively mod-
ulates immune cells and cytokines to alleviate inflamma-
tory symptoms.

ASR is also an herb used to regulate the immune sys-
tem, and its active ingredient acts as an antioxidant and 
anti-inflammatory agent. Angelica sinensis polysaccha-
ride, extracted from the roots of ASR, is a β-D-pyranoid 
polysaccharide. It is also a crucial herbal constituent in 
various traditional formulations utilized for the man-
agement of inflammatory responses [125]. Four poly-
saccharides extracted from different roots of Angelica 
sinensis have anti-inflammatory activity on intestinal 
epithelial system, and their activity varies with the dif-
ference of structure [126]. Angelica sinensis polysaccha-
ride, administered at a dosage of 40 mg/kg, significantly 
reduced the levels of TNF, IF-2 and interferon-γ(IFN-γ) 
in L1210-bearing mice. In addition, angelica sinensis 
polysaccharide increased the number of lymphocytes, 
enhanced the ability of macrophages and natural killer 
cells, and induced a protective immune response [127]. 
Angelica sinensis polysaccharide, administered at a dos-
age of 6 mg/kg, significantly reduces the levels of TNF-α, 
IFN-γ, IL-2, and IL-6 in concanavalin A-induced mouse 
hepatitis models [128]. Both astragalus polysaccharides 
and angelica sinensis polysaccharide increase the levels of 
IL-2 and TNF-α in H22 tumor-bearing mice. Astragalus 
polysaccharides, administered at a dosage of 400  mg/
kg, enhance the phagocytic function of peritoneal mac-
rophages in H22 tumor-bearing mice, while angelica 
sinensis polysaccharide, administered at a dosage of 
200  mg/kg, enhance the activity of T, B lymphocytes, 
and NK cells, and improve the proportion of lymphocyte 
subsets in the peripheral blood of H22 tumor-bearing 
mice. Both significantly inhibit tumor growth in mice 
[129, 130]. Ligustilide is a bioactive phthalide deriva-
tive isolated from ASR, which significantly improves 
the infiltration of peripheral immune cells, inhibits Th1 
immunity, increases Th2 immunity, and re-establishes 
Th1/Th2 balance [131, 132]. Treatment of human umbili-
cal vein endothelial cells with ligustilide, administered at 
dosages of 1, 3, 10 μM, significantly inhibits TNF-α and 
activates the Nrf2/HO-1 signaling pathway, alleviating 
vascular inflammation, and protecting the blood ves-
sels [133]. Ferulic acid is a phenolic acid isolated from 
ASR, which has a variety of biological activities, includ-
ing regulation of inflammation. Ferulic acid was found 
to improve hepatic oxidative stress and inflammation 
by activating AMPK in mouse hepatic fibrosis induced 
by carbon tetrachloride and LPS-induced macrophage 
inflammation [134]. At an efficacious concentration of 

20  μM, ferulic acid inhibits LPS-induced expression of 
pro-inflammatory cytokines, including TNF-α, IL-6, and 
IL-1β, and ROS production in macrophages by blocking 
NLRP3 inflammasome activation [135]. Furthermore, 
within the concentration range of 1, 2, 4 mM, ferulic acid 
dose-dependently down-regulates the expression of LC3-
II, Beclin 1 and Atg12-Atg5 complex. This modulation 
of autophagy contributes to its efficacy as an anti-cancer 
agent by inhibiting the autophagic flux [136]. Addition-
ally, tributyltin ferulate, a derivate of ferulic acid with an 
efficacious concentration of 400  nM, has been demon-
strated to induce autophagic cell death in HCT-116 colon 
cancer cells, thereby exhibiting anti-tumor properties 
[137]. Therefore, ASR also effectively mitigates inflamma-
tion and modulates immune responses.

Regarding the aspect of inflammation modulation, 
DGBX decoction regulates immune responses and 
improves inflammatory symptoms, as shown in Fig.  3. 
For T lymphocytes, DGBX decoction induces cytokines 
released from T cells, such as interleukin (IL), granulo-
cyte–macrophage colony-stimulating factor (GM-CSF), 
IFN-γ, and TNF-α. Phosphorylation of extracellular sig-
nal-regulated kinase (ERK) 1/2 is induced to stimulate 
T lymphocyte proliferation. For macrophages, DGBX 
decoction treatment increases phagocytosis [138, 139]. 
Polysaccharides in DGBX decoction induce IκBα deg-
radation, and activate NF-κB signaling pathways, stimu-
lating the immune response. In macrophages, DGBX 
decoction exerts a pivotal role in host defense mecha-
nisms by dose-dependent suppression of the expression 
of pro-inflammatory cytokines IL-1β, IL-6, and tumor 
necrosis factor at both mRNA and protein levels [140]. 
DGBX decoction significantly reduces the production of 
pro-inflammatory cytokines, and effectively improves the 
inflammatory state and pathological structure of DSS-
induced IBD model, promoting inflammation resolution. 
MDSC inhibits the functional activity of CD8+ T activity 
and improves intestinal inflammation, and DGBX signifi-
cantly increases the level of MDSC to change the com-
position of intestinal mucosal immune cells eventually. 
At the same time, it boosts the proliferation of intestinal 
epithelial cells and facilitates swift repair of damage to 
the intestinal mucosal barrier [141, 142]. DGBX decoc-
tion attenuates tubulointerstitial fibrosis in rats with uni-
lateral ureteral obstruction by inhibiting the expression 
of NOD-like receptor family Pyrin domain 3 (NLRP3) 
inflammasome and significantly reduces the expression 
of α-smooth muscle actin (α-SMA) representative pro-
tein [143]. In 2,4-dinitrochlorobenzene induced mice 
atopic dermatitis, DGBX decoction significantly inhib-
its excessive production of IL-4 and IL-5 by Th2 cells, 
along with a notable reduction in eosinophil and mast 
cell infiltration, thereby mitigating inflammation and 
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swelling [144]. The potential impact of DGBX decoction 
on inflammation and immunity is supported by its anti-
inflammatory and immunomodulatory effects, mediated 
by the AR and ASR constituents. Further experimental 
validation is required to substantiate the immunometab-
olism potential.

Metabolism modulation aspect
Abnormal metabolism of cancer has highlighted thera-
peutic targets in recent years. Glucose and amino acids 
uptake, nutrition acquisition preference, the metabolic 
intermediates, even the metabolite-driven gene regula-
tion, have been highlighted to explore the novel treat-
ments or targets [57]. AR and ASR both interfere with 
cell metabolism and improve blood lipids and blood glu-
cose by regulating abnormal cellular metabolic pathways, 
including fatty acid metabolism and glucose metabo-
lism. AR extract significantly reduces HFD-induced 
lipid storage, increases the processes of lipolysis and 
lipid β-oxidation, and alleviates acquired hyperlipidemia 
in HFD-fed mice by regulating lipid metabolism [170]. 
Based on pharmacology network analysis and experi-
mental verification, it was found that AR water extract 
stimulates fat cells and promotes fatty acid metabolism 
to maintain fatty acid homeostasis [171]. Astragalus poly-
saccharides at a dosage of 0.25 g/kg regulate cholesterol 
homeostasis by reducing plasma total cholesterol (TC), 
triglycerides (TG), and low-density lipoprotein choles-
terol (LDL-C) in hypercholesterolemia hamsters [172]. 
Meanwhile, astragalus polysaccharides (700 mg/kg) reg-
ulates blood glucose in insulin resistant C57BL/6 J mice 
by alleviating ER stress [173]. Astragaloside IV, adminis-
tered at a dosage of 80 mg/kg, alleviates hepatic injury in 

type 2 diabetes mellitus rats by modulating the AMPK/
mTOR pathway, also attenuating dyslipidemia, oxidative 
stress, and inflammation [174]. Additionally, astraga-
loside IV, administered at a dosage of 50  mg/kg, exerts 
hypoglycemic effects in a rat model of diabetes induced 
by a high-sugar diet combined with streptozotocin by 
modulating intestinal microbiota [175]. Calycosin-7-glu-
coside, administered at a dosage of 0.05  mg per mouse, 
inhibits glycolysis in the db/db mouse model of diabe-
tes mellitus through the activation of AMPK pathway 
in an inflammatory environment, reducing the inflam-
matory response and promoting healing of diabetic 
wounds [176]. Abnormal metabolism in cancer results 
in different phenotypic characteristics from normal 
cells, including cell proliferation, migration, invasion, 
and angiogenesis [177]. Calycosin and Astragaloside IV 
both inhibit transforming growth factor-β (TGF-β). Caly-
cosin inhibits colorectal cancer cell growth through the 
PI3K/AKT pathway, upregulates basic leucine zip-ATF-
like transcription factor 2 (BATF2) and downregulates 
plasminogen activator inhibitor-1(PAI-1), and inhibits 
TGF-β-induced cell migration and enhances the effect 
of TGF-β induction on cell apoptosis. The mechanism of 
regulating autophagy is related to the PI3K/AKT/mTOR 
signaling pathways. Astragalus polysaccharides reduce 
the levels of p-AKT and p-mTOR in cells, block PI3K/
AKT/mTOR signaling pathways, increase autophagy, 
and alleviate inflammation, to effectively suppress gas-
tric cancer [178–181]. Angelica sinensis polysaccharide 
ameliorates the inflammatory response in PC12 cells 
induced by LPS, attenuates cellular apoptosis, and miti-
gates cellular damage by down-regulating COX-1 expres-
sion and the activation of PI3K/AKT signaling pathway 

Fig. 3  The anti-inflammatory activities of DGBX decoction. DGBX decoction contains polysaccharide, calycosin, formononetin, astragaloside IV, 
ferulic acid, and ligustilide. These active ingredients interfere with immune cells and modulate cytokines through various signaling pathways 
to attenuate inflammation
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[182]. In addition, Astragaloside IV regulates AMPK, 
NF-κB, and signal transducer and activator of transcrip-
tion (STAT) signaling pathways, inhibits the polarization 
of M2 macrophages, and reduces the progression and 
metastasis of liver cancer cells and lung cancer cells [116, 
183, 184]. Both Astragaloside IV and ligustilide allevi-
ates experimentally DSS-induced colitis. Astragaloside 
IV, administered at dosages of 50 and 100 mg/kg, effec-
tively inhibits the polarization of M1 macrophages and 
ameliorates colitis through modulation of STAT signal-
ing pathway. Astragalus saponins reduces the expression 
level of glycolytic enzymes to attenuate aerobic glycolysis 
and inflammation, inhibiting colitis eventually. Ligus-
tilide, administered at dosages of 15, 30 and 60  mg/kg, 
activates peroxisome proliferator-activated receptor γ 
(PPARγ) and inhibits NF-κB and AP-1 signaling, control-
ling the expression of pro-inflammatory cytokines IL-1β, 
IL-6, and TNF-α to alleviate experimental colitis in mice. 
[156, 185, 186]. ROS are byproducts of cellular metabo-
lism, and the ROS level of cancer cells is higher than 
that of non-tumor cells. Formononetin mitigates cispl-
atin-induced nephrotoxicity in LLC-PK1 porcine kidney 
epithelial cells by suppressing intracellular ROS accumu-
lation and oxidative stress [187]. Similarly, angelica sin-
ensis polysaccharide also inhibits oxidative stress in vivo 
and in vitro, decrease superoxide dismutase (SOD) activ-
ity, and improve acetaminophen-induced acute liver 
injury to achieve liver protection. Ferulic acid has anti-
oxidant activity, while tributyltin ferulate stimulates ROS 
production, leading to autophagy activation, showing 
an obvious anti-tumor effect in colon cancer cells [137, 
187, 188]. Astragalus polysaccharides, administered at 
a dosage of 200  mg/kg, regulate the intestinal microen-
vironment, including regulating the composition of the 
intestinal microbiota and its metabolic function, chang-
ing the composition of fecal metabolites, reducing the 
expression levels of IL-1β and IL-6 in serum, weakening 
the immunosuppressive activity of MDSC, and inhibiting 
the growth of melanoma in mice [189]. DGBX decoction 
induces ROS production in the mitochondria of osteo-
blasts, thereby activating the AMPK pathway, affect-
ing glycolytic capacity, and improving bioenergy [190]. 
In addition, the potent cardioprotective effect of DGBX 
decoction is mediated by the regulation of mitochondrial 
bioenergetics to improve the health status of H9C2 car-
diomyoblasts [191]. In conclusion, DGBX decoction and 
its principal constituents actively participate in metabolic 
regulation, modulate immune pathways, exerting a thera-
peutic effect.

Anti‑cancer aspect
AR is a traditional tonic herb widely used in the treat-
ment of various cancers. AR aqueous extracts were 

applied to different cancer cell lines and were found to 
inhibit a variety of cancer cell growths [211]. AR and its 
four major bioactive compounds, including calycosin, 
formononetin, astragaloside IV, and astragalus polysac-
charides, were found to have effects on breast cancer 
cells. Calycosin, at efficacious concentrations of 200 and 
400  μM, impedes the migration and invasion of breast 
cancer cells by suppressing the epithelial-mesenchymal 
transition process. Formononetin reduces autophagy 
by regulating mTOR, promotes apoptosis of paclitaxel-
resistant triple-negative breast cancer cells, and over-
comes paclitaxel resistance [212]. The combination 
treatment involving formononetin at efficacious con-
centrations of 40 and 80  μM, in conjunction with met-
formin, exerts synergistic inhibition of MCF-7 breast 
cancer cells proliferation and induces apoptosis. Through 
MDA-MB-231 breast cancer cells in  vitro experiments 
and orthotopic mouse tumor models for in vivo experi-
ments, astragaloside IV was found to inhibit cell viability 
and invasion of breast cancer cells. Astragalus polysac-
charides, administered at concentrations of 100, 200, 500 
and 1000  μM, did activate the macrophage-like RAW 
264.7 cells in in vitro models to induce apoptosis, thereby 
inhibiting the viability of MCF-7 cells [78, 213–216]. 
Calycosin and astragaloside IV shows anti-tumor activity 
against CRC and gastric cancer cells. Calycosin, admin-
istered at concentrations of 25, 50 and 100  μM, signifi-
cantly induces apoptosis in HCT116 cells and inhibits 
cell proliferation and invasion in a dose-dependent man-
ner. Calycosin exhibits significant cytotoxicity against 
AGS cells, with an IC50 value of 47.18 ± 1.27  μM, while 
demonstrating minimal toxicity towards normal cells. 
Astragaloside IV exhibits a dose-dependent inhibition of 
proliferation in both SW620 and HCT116 cells, while it 
had no significant effect on the proliferation of normal 
colonic fetal human cells. N-methyl-N’-nitro-N-nitro-
soguanidine was used to induce gastric precancerous 
lesions (GPL) in a model. Astragaloside IV, at efficacious 
concentrations of 50 and 100  mg/kg, has been demon-
strated to modulate autophagy and apoptosis, thereby 
exerting a protective effect on gastric mucosal injury 
and improving both intestinal metaplasia and dysplasia 
within precancerous gastric lesions [98, 217–219]. Astra-
galus polysaccharides have been shown to participate in 
a variety of biological processes, encompassing inflam-
mation, metabolism, and carcinogenesis. Cell experi-
ments have shown that astragalus polysaccharides reduce 
prostate cancer cell proliferation and lipid metabolism 
in a dose-dependent manner. Utilizing a tumor xeno-
graft model, astragalus polysaccharides, administered 
at a dosage of 100  mg/kg, have been shown to exert an 
inhibitory effect on tumor growth via modulation of the 
miR-138-5p/SIRT1/SREBP1 signaling pathway [220]. 
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Angelica sinensis polysaccharides obtained from ASR are 
primarily composed of arabinose, glucose, and galactose. 
Angelica sinensis polysaccharide, at efficacious concen-
trations of 25, 50, and 100  mg/kg, significantly inhibits 
tumor growth in H22 tumor-bearing mice by suppressing 
the production of hepcidin, thereby reducing intracellu-
lar iron concentration [221]. Ferulic acid shows inhibi-
tory effects on both Hela and Caski cervical cancer cell 
lines. By downregulating the expression of MMP-9, feru-
lic acid suppresses cell invasion in cervical cancer cells. 
Moreover, ferulic acid inhibits autophagy by decreasing 
the levels of related proteins LC3-II, Beclin-1, and Atg12-
Atg5 in a dose-dependent manner [136]. Ligustilide and 
two other phthalides extracted from ASR have cytotoxic 
and anti-proliferative effects on HT-29 [108]. Ligustilide 
can alter the immunosuppressive function of cancer-
associated fibroblasts. Cellular experiments show that 
ligustilide significantly inhibits prostate cancer and pros-
tate cancer-associated fibroblasts and induces apopto-
sis of prostate cancer-associated fibroblasts through the 
TLR4 pathway [222, 223].

DGBX decoction influences tumor development, 
including inducing cell apoptosis and inhibiting metasta-
sis, enhancing immune function, improving chemother-
apy sensitivity, and reducing bone marrow suppression, 
as shown in Fig.  4. Myelosuppression is a frequently 
encountered adverse effect of most chemotherapy drugs. 
In gemcitabine-induced myelosuppression mice, DGBX 
decoction enhances the anti-cancer effect of gemcit-
abine by regulating the expression of stress response pro-
tein Hu antigen R (HuR), deoxycytidine kinase (dCK), 
and nuclear factor erythroid 2-related factor (Nrf2). 
Meanwhile, it inhibits the proliferation of cancer cells, 
increases the number of bone marrow nucleated cells 

and the level of hematopoietic cytokine thrombopoietin 
to alleviate myelosuppression induced by gemcitabine, 
and improves hematopoietic function [224]. In addi-
tion, the combination of DGBX decoction and gemcit-
abine enhances anti-cancer activity, represented by the 
increased level of granulocyte–macrophage colony-stim-
ulating factor (GM-CSF), the enhanced immune ability, 
increased deoxycytidine kinase (dCK), and decreased 
P-glycoprote in a murine lewis lung carcinoma model 
[225]. Polysaccharide-depleted DGBX decoction par-
tially inhibits the cell viability of colorectal adenocarci-
noma cells, enhances the proliferation inhibition effect 
of 5-fluorouracil (5-FU), induces apoptosis, and increases 
sensitivity to chemotherapy or radiotherapy [105]. In 
addition, phase II clinical studies have shown that DGBX 
decoction prevents chemotherapy-induced myelosup-
pression in breast cancer patients [226]. According to 
network pharmacological analysis, 28 active compounds 
of DGBX decoction were predicted to hit 61 common 
targets. CT26 cells were employed to develop a murine 
model of metastatic colon cancer in BALB/c mice. In vivo 
experiments showed that DGBX decoction alleviates the 
progression of metastatic breast cancer by upregulat-
ing the expression of pro-apoptotic proteins Bax, induc-
ing the activation of Caspase-3, and downregulating 
the expression of anti-apoptotic protein Bcl-2 to induce 
apoptosis [106]. DGBX decoction induces autophagic 
death of colorectal cancer cells and inhibits the growth 
of colorectal adenocarcinoma by regulating the mTOR/
P70S6K signaling pathway and upregulating autophagy 
related protein 7 (Atg7) [227]. DGBX decoction, particu-
larly its polysaccharide-depleted fraction, potentiates the 
growth inhibitory effects of 5-fluorouracil and radiation 
treatment, possibly by inducing autophagy [105]. DGBX 
decoction also regulates intestinal flora, enhances immu-
nity of mice by regulating Lactobacillus and Odoribacter, 
and reduces cancer-related bacteria such as Helicobacter 
and Lactococcus, showing anti-tumor activity [228].

Immunometabolism potential of DGBX decoction 
in IBD‑related CRC​
Promoting intestinal mucosal repair
The intestinal mucosal barrier is essential to prevent bac-
terial invasion and maintaining intestinal homeostasis. 
Intestinal epithelial cells and the tight junction complex 
between epithelial cells serve as mechanical barriers. The 
disruption of the intestinal mucosal barrier may result 
in bacteria and toxins invading normal colon tissue, 
causing local inflammation, and promoting its carcino-
genic transformation [229]. AR has the effect of reduc-
ing intestinal inflammation. AR extract, administered at 
dosages of 5, 10, 50 and 100 μg/mL, reduces the expres-
sion of TNF-α and the activation of NF-κB, alleviates the 

Fig. 4  The anti-tumor activity of DGBX decoction. DGBX decoction 
regulates apoptotic proteins to induce apoptosis of breast 
cancer cells. Modulation of HuR, dCK and Nrf2 proteins alleviates 
the suppression of gemcitabine and enhances the anti-cancer effect 
of gemcitabine. Modulation of autophagic pathways has been shown 
to induce autophagic cell death in colorectal cancer cells
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inflammatory response of intestinal epithelial cells, and 
inhibits the destruction of the intestinal mucosal barrier 
and the increase of permeability caused by inflamma-
tion [230]. AR decoction reduces the levels of inflam-
matory factors, improves the intestinal mucosal injury 
induced by lipopolysaccharides in mice, and promotes 
tissue repair [94]. In addition, astragalus polysaccharides 
promote the proliferation of intestinal epithelial cells 
in vitro in a dose-dependent manner. Astragalus polysac-
charides stimulates the ornithine decarboxylase (ODC) 
gene to synthesize polyamine organisms and promote the 
proliferation, migration, and differentiation of intestinal 
epithelial cells [231]. Astragaloside IV, administered at 
a dosage of 3  mg/kg, has been demonstrated to attenu-
ate intestinal mucosal injury induced by sepsis through 
the downregulation of the RhoA/NLRP3 inflammasome 
signaling pathway [232]. When administered at the early 
stage of an AOM/DSS model, ASR extract was found to 
reduce DNA damage and exert an antioxidant effect in 
epithelial tissues [107]. In rats with 2,4-dinitrobenzene 
sulphonic acid (DNBS)-induced acute UC, the content 
of glutathione was decreased by angelica sinensis poly-
saccharide, and the protective effect on the intestinal 
mucosa may be attributed to oxidative stress [110]. Fer-
ulic acid, administered at a dosage of 1 μM, can reduce 
the LPS-induced inflammatory response in human intes-
tinal epithelial model Caco-2 cells, inhibit the activa-
tion of MAPK p38 and ERK1/2, inhibit the expression 
of iNOS, and alleviate intestinal inflammation [233]. 
DGBX decoction was found to repair intestinal mucosal 
barriers and improve IBD. DGBX decoction inhibits the 

activity of CD8+ T cells by increasing the number of 
MDSC immune cells, to improve intestinal inflammation. 
DGBX decoction treatment not only regulates immu-
nity, but also promotes the repair of intestinal mucosal 
damage by accelerating the proliferation of intestinal 
epithelial cells [141, 142]. Therefore, DGBX decoction 
exhibits the potential to enhance the restoration of intes-
tinal mucosal injury, alleviate local inflammation, and 
prevent carcinogenicity, as shown in Fig. 5.

Balancing intestinal microbiota
Intestinal microbes and their metabolites influence not 
only the immune response but also the occurrence and 
development of CRC. Traditional Chinese medicines 
and their natural compounds are typically administered 
orally, inevitably interacting with the gut microbiota 
[234, 235]. Studies have demonstrated that astragalus 
polysaccharides effectively ameliorate colonic mucosal 
injury, restore immune homeostasis, and modulate the 
overall composition of the intestinal microbiota in mice 
with DSS-induced acute colitis. Furthermore, it nor-
malizes the levels of Firmicutes and Bacteroides to their 
physiological states. In addition, astragalus polysac-
charides after honey processing could increase the pro-
portion of dominant bacteria such as Lactobacillus and 
Bacteroides, and significantly inhibit the upregulation of 
Firmicutes and Verrucomicrobia, thereby protecting the 
intestinal mucosa, affecting the diversity of microbiota, 
and alleviating the symptoms of colitis in mice. Honey-
processed astragalus polysaccharides exhibited supe-
rior anti-inflammatory efficacy compared to astragalus 

Fig. 5  Effects of DGBX decoction and its principal constituents on intestinal barrier. DGBX decoction increases MDSC immune cells and inhibits 
the activity of CD8 +T cells. Ferulic acid inhibits the expression of MAPK p38, ERK1/2 and iNOS. Astragalus polysaccharides stimulates ODC gene 
synthesis of polyamine organisms, which promotes the proliferation of intestinal epithelial cells and improves inflammatory symptoms
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polysaccharides in mice with colitis [100, 103]. The main 
components of Astragalus mongholicus Bunge-Curcuma 
aromatica Salisb. include calycosin, formononetin, and 
three astragalosides. The treatment effectively sup-
presses the proliferation of opportunistic pathogenic gut 
bacteria, such as Shigella, Streptococcus, and Enterococ-
cus, while promoting the growth of beneficial probiotic 
gut microbiota including Lactobacillus, Roseburia, and 
Mucispirillum. At the same time, significant growth of 
colon cancer in tumor-bearing mice is inhibited and the 
intestinal barrier damage is repaired [236]. Interestingly, 
using human gut microbiota to mimic the gut environ-
ment, 4-vinylguaiacol (2-methoxy-4-vinylphenol), a 
metabolite of ferulic acid, exhibits stronger anti-cancer 
effects than ferulic acid on both chemo-resistant HT-29 
and chemotherapy-sensitiveHCT116 cells. Therefore, 
oral ferulic acid provides a potential method for CRC 
treatment [237]. DGBX was found to partially restore the 
balance of intestinal microbiota destroyed by antibiot-
ics and improve the abundance of intestinal microbiota 
by increasing the prevalence of Bacteroides, Alistipes 
and Ruminiclostridium [238]. Therefore, the utilization 
of DGBX decoction for gut microbiota modulation not 
only ameliorates colitis but also exerts inhibitory effects 
on colon cancer progression, thus exhibiting promising 
prospects in the management of IBD-associated CRC.

Clinical research
A formulation developed from the DGBX decoc-
tion significantly ameliorates postoperative immuno-
suppression in cancer patients, sustainably bolsters 
immune function, and possesses anti-tumor properties, 
thereby promoting postoperative recovery [239]. In 
individuals sustaining severe abdominal trauma, there 
is a notable diminishment in cellular immunity. Clinical 
trials have evidenced that the administration of Astra-
galus injection as an adjuvant therapy is efficacious in 
the restoration of cellular immune function [240]. A 
Phase II clinical trial was conducted involving a cohort 
of healthy, naturally postmenopausal women. The study 
intervention involved the administration of escalating 
doses of oral DGBX decoction for a period of 12 weeks. 
Throughout the trial, physiological parameters and 
adverse events were closely monitored, with blood 
samples analyzed for a spectrum of health indicators. 
Notably, no significant alterations were observed in 
serum levels of total cholesterol, triglycerides, low-
density lipoprotein cholesterol, or high-density lipo-
protein cholesterol in either intra-group or inter-group 
comparative analyses. Further research is warranted to 
ascertain the potential therapeutic effects of DBT on 
blood lipid profiles in comparable populations [241]. 

Clinical studies also have demonstrated the efficacy of 
Astragalus extract TA-65 in ameliorating conditions 
associated with metabolic syndrome, including a sig-
nificant elevation in high-density lipoprotein (HDL) 
cholesterol levels accompanied by a concurrent reduc-
tion in the low-density lipoprotein (LDL) to HDL cho-
lesterol ratio, and a marked decrease in plasma TNF-α 
level [242, 243]. Some clinical trials of DGBX decoction 
and its main components are shown in Table 4.

Conclusion
Immunometabolism, the intricate interplay between 
immune cell metabolism and immune function, has 
emerged as a promising field with potential therapeu-
tic utility in various pathophysiological conditions. The 
anti-inflammatory and anti-cancer properties of AR 
and ASR within the traditional Chinese prescription 
DGBX decoction, prefigures its immunometabolism 
potential utility in the context of inflammation-can-
cer transformation, particularly in the setting of IBD-
related CRC. It is evidenced by promoting intestinal 
mucosal repair and balancing intestinal microbiota. 
While the field of immunometabolism has made signifi-
cant strides, it is important to acknowledge the limita-
tions inherent in current research methodologies, such 
as the choice of experimental models, the fundamental 
biological differences between mice and humans, and 
clinical verification in the future. Further investigation 
into the therapeutic application of DGBX decoction for 
colorectal cancer is imperative, with a particular focus 
on elucidating its underlying mechanisms of immuno-
metabolism modulation. Concurrently, it is crucial to 
implement stringent quality control measures and to 
standardize the production process of DGBX decoction 
to ensure its safety and reliability for clinical use.
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