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Polyphyllin I exerts anti‑hepatocellular 
carcinoma activity by targeting ZBTB16 
to activate the PPARγ/RXRα signaling pathway
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Abstract 

Background  Studies have reported that polyphyllin I (PPI) had effective anti-tumor activity against hepatocellular 
carcinoma (HCC). However, the precise molecular mechanism of this action and the direct target remain unclear. The 
aim of this study was to discover the molecular targets and the exact mechanism of PPI in the treatment of HCC.

Methods  Various HCC cells and Zebrafish xenotransplantation models were used to examine the efficacy of PPI 
against HCC. A proteome microarray, surface plasmon resonance (SPR) analysis, small molecule transfection, 
and molecular docking were conducted to confirm the direct binding targets of PPI. Transcriptome and Western 
blotting were then used to determine the exact responding mechanism. Finally, the anticancer effect and its precise 
mechanism, as well as the safety of PPI, were verified using a mouse tumor xenograft study.

Results  The results demonstrated that PPI had significant anticancer activity against HCC in both in vitro studies 
of two cells and the zebrafish model. Notably, PPI selectively enhanced the action of the Zinc finger and BTB domain-
containing 16 (ZBTB16) protein by directly binding to it. Furthermore, specific knockdown of ZBTB16 markedly 
attenuated PPI-dependent inhibition of HCC cell proliferation and migration caused by overexpression of the gene. 
The transcriptome and Western blotting also confirmed that the interaction between ZBTB16 and PPI also activated 
the PPARγ/RXRα pathway. Finally, the mouse experiments confirmed the efficacy and safety of PPI to treat HCC.

Conclusions  Our results indicate that ZBTB16 is a promising drug target for HCC and that PPI as a potent ZBTB16 
agonist has potential as a therapeutic agent against HCC by regulating the ZBTB16/PPARγ/RXRα signaling axis.
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Background
Hepatocellular carcinoma (HCC) is one of the most 
common malignancies and ranks as the third leading 
cause of cancer-related death worldwide [1]. China is 
one of the areas with the highest risk for HCC, contrib-
uting 45.3% of all HCC cases worldwide in 2020 [2, 3]. 
Research has shown that the survival time of over 80% 
of HCC patients is less than 5  years [4], with surgery 
currently the first choice and most effective treatment 
[5]. However, the high recurrence rate for HCC of over 
70% over 5 years is the major barrier to prolonging sur-
vival and improving the quality-of-life of patients [6]. 
Traditional Chinese medicine (TCM) has significant 
advantages in treating HCC [7, 8], with the screening 
of lead TCM compounds with significant therapeutic 
effects having great importance for the future develop-
ment of targeted therapeutic drugs [9].

Zinc finger and BTB domain-containing 16 (ZBTB16, 
a.k.a. PLZF) is a protein-coding gene that was first iden-
tified in a patient with acute promyelocytic leukemia 
(APL) [10]. The gene codes for zinc finger transcription 
factors and affects a diverse number of signaling path-
ways related to the cell cycle, differentiation, and pro-
grammed cell death pathways [11–14]. Previous reports 
have demonstrated that ZBTB16 is under-expressed 
or silenced in multiple tumor tissues or various cancer 
types, including HCC [15, 16]. Furthermore, published 
results have indicated that ZBTB16 in HCC was closely 
related to the level of alkaline phosphatase in patients 
while showing good diagnostic value in distinguishing 
tumors from normal tissues, suggesting its potential as 
an HCC biomarker [15].

Polyphyllin I (PPI, PubChem CID: 129316759) is an 
anticancer molecular extracted from Rhizoma Paridis 
that has significant anticancer effects in various cancers 
including HCC [17–19]. Despite this, its direct targets 
and the potential molecular mechanism remain to be 
elusive. Therefore, it is important to perform compre-
hensive in-depth research on the mechanisms of PPI, 
facilitating the development of novel treatments to 
improve patient outcomes.

The current study investigated the key direct tar-
get of PPI using proteomic microarrays that was con-
firmed using surface plasmon resonance (SPR) analysis. 
Further investigation was conducted using cell tran-
scriptomics to identify the signaling pathway of PPI 
that inhibited key direct targets associated with HCC, 
which was then validated in both in  vitro and in  vivo 
experiments. We also evaluated the safety of thera-
peutic doses of PPI that provided a solid foundation 
for the development of PPI as a novel targeted cancer 
treatment drug. The workflow of this study is shown in 
Fig. 1.

Methods
Cell proliferation assay
The primary HCC cells (Hep3B 2.1–7 and SK-Hep-1) 
were purchased from Procell (Wuhan, China) and cul-
tured in medium (Procell) supplemented with 10% FBS 
(Corning, VA, USA) and 1% penicillin–streptomycin 
(Gibco, Waltham, Massachusetts, USA). The cells were 
seeded in 96-well culture plates at a density of 1 × 104 
cells/well. The next day, 200  mL of fresh medium with 
different concentrations of PPI (Chengdu Herbpurify Co., 
Ltd, Chengdu, China) were added to the cells, followed 
by incubation for 24 h. At the end of the experiment, the 
cell counting kit-8 (CCK-8; Beyotime, Beijing, China) 
was used to assess the effect of PPI on cell proliferation, 
with the absorbance at 450 nm measured in a microplate 
reader (Synergy H1, Biotek, Vermont, USA) to calculate 
the dose–effect curve prepared using GraphPad Prism 
8.0 (GraphPad Software, La Jolla, USA).

Apoptosis analysis
Based on the results of the CCK8 experiment, the drug 
concentration for the subsequent in  vitro cell experi-
ments was determined to be 2.5  μg/mL (low-dose 
group, L) and 5  μg/mL (high-dose group, H). The cells 
were cultured and then administered PPI as described 
above. At the endpoint of the experiment, 1 × 107 cells 
from the different groups were collected, incubated with 
5  μL of Annexin V-fluorescein isothiocyanate (FITC) 
at room temperature in the dark for 15  min and then 
incubated with 5  μL of propidium iodide (PI). Finally, 
the stains were analyzed using a flow cytometer and the 
Pharmingen™ FITC Annexin V Apoptosis Detection Kit 
I according to the manufacturer’s instructions (BD Bio-
sciences, Franklin Lakes, USA).

Transcriptome analysis by RNA‑seq
Hep3B 2.1–7 cells (1 × 108) from the different treatment 
groups and control were collected. The transcriptome 
analysis by RNA-seq was conducted according to our 
previous study [20, 21]. TRIzol reagent (R0016, Beyo-
time, Beijing, China) was used to extract the total RNA, 
which was then used to prepare the RNA-seq transcrip-
tome library using the TruSeqTM RNA sample prepa-
ration Kit (Illumina, CA, USA). The Illumina NovaSeq 
6000 platform (Illumina, San Diego, California) was used 
to process the short-sequenced fragments.

Western blotting
The total protein of the cells in the different groups was 
extracted using a protein extraction kit and the protein 
concentration estimated by the bicinchoninic acid (BCA) 
method (Biorigin, Beijing, China). SDS-PAGE (Millipore, 
Darmstadt, Germany) was used to separate the proteins, 
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Fig. 1  Workflow of the current study
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which were then transferred electrophoretically to a pol-
yvinylidene difluoride membrane, blocked in 5% milk/
Tris-buffered saline/Tween buffer and incubated over-
night at 4 ℃ with the primary antibody. The following 
primary antibodies were used against GAPDH (Protein-
tech, Wuhan, China; Cat No. 60004-1-Ig, Lot #10028230, 
1:1000), Caspase 3 (Proteintech, Cat No. 19677-1-AP, 
Lot #10018674, 1:1000), cleaved Caspase 3 (Affinity, 
Jiangsu, China; Cat No. AF7022, Lot #15z0096, 1:1000), 
ZBTB16 (Santa Cruz, CA, USA; Cat No. sc-28319, Lot 
#I1022, 1:500), PPARγ (Affinity, Cat No. AF6284, Lot 
#58o2063, 1:1000), RXRα (Affinity, Cat No. DF8459, Lot 
#00094775, 1:1000), Bcl2 (Affinity, Cat No. AF6139, Lot 
#11o9905, 1:1000), and Bax (Affinity, Cat No. AF0120, 
Lot #44q6915, 1:1000). The membranes were then incu-
bated at room temperature for 90 min with the secondary 
antibodies (HRP conjugated anti-rabbit or anti-mouse 
IgG). Finally, the result of Western blotting was visual-
ized using the ChemiDocTM MP Imaging System (Bio-
Rad, State, USA; 734BR2920, USA) and analyzed using 
Image J software (NIH, Bethesda, MD, USA).

Xenograft tumor assay on zebrafish
The zebrafish embryos were obtained from spawning 
adults (5–8 months old) and raised at 28.5 °C in zebrafish 
embryo culture medium until 48  h after fertilization 
(hpf, hours after fertilization). The healthy zebrafish lar-
vae were selected and microinjected with Hep3B 2.1–7 
cells stained with CM-Dil (Beyotime, city, China) and 
then divided randomly into model, experimental, and 
control groups. After 24  h, the culture medium of the 
experimental groups was replaced with a culture medium 
containing different concentrations of PPI (low-dose 
group: 0.3  μg/mL, high-dose group: 0.6  μg/mL). An ali-
quot of 100 ng/ml of sorafenib (MCE, Shanghai, China) 
was added to the positive group [22, 23]. After 48  h, 
images were obtained using a Zeiss Axio Zoom V16 ste-
reo fluorescent dissecting microscope (Carl Zeiss, Jena, 
Germany), and the fluorescence integrated density was 
calculated by Image J.

Proteome microarray assays
Arrayit HuProt™ 20  K human proteome microarrays 
(CDI Laboratories, MD, USA) were used and the experi-
ment conducted according to the operating standard for 
chip detection. The microarrays were incubated with 
40  mM biotinylated-PPI or free-biotin for 1  h at room 
temperature. After washing, 30  mL of Cy5 Streptavidin 
solution (1:100, Sigma-Aldrich, MO, USA) was added. 
The data were obtained by Genepix 4000B (Axon Instru-
ments, Sunnyvale, CA, USA) and analyzed by Gene-
PixTM Pro 6.0.

Surface plasmon resonance (SPR) analysis
The binding affinity of PPI to recombinant human 
ZBTB16 was determined at 22  °C using OpenSPR™ 
(manufacturer, city/state, country). Briefly, ZBTB16 pro-
teins in PBS were immobilized on the sensor after acti-
vation by 200  μL EDC/NHS (1:1) in a water solution. 
Different concentrations of PPI were prepared in a run-
ning buffer (1% DMSO + HEPES). The binding time was 
240 s, the dissociation time was 400 s, and the flow rate 
was 20  mL/min. The data were analyzed using Trace-
Drawer (Ridgeview Instruments ab, Vänge, Sweden).

Transfection of plasmids and small‑interfering RNA
The siRNA oligonucleotides of ZBTB16 and Flag-tagged 
ZBTB16 plasmids were obtained from Jingmiga Tech-
nology Co. Ltd (Beijing, China). The Hep3B 2.1–7 cells 
were cultured to about 50% confluence before transfec-
tion. The siRNA and plasmids dissolved in an appropri-
ate volume of MEM without the serum and antibiotics 
were incubated with appropriate transfection reagent and 
added to the cultured cells for 6 h according to the manu-
facturer’s instructions. The medium was then changed to 
MEM containing 10% FBS and antibiotics. At the end of 
the experiments, the cell samples were collected for fur-
ther analysis.

Mouse tumor xenograft studies
Specific pathogen-free (SPF) BALB/c nude mice 
(4–6  weeks old) were purchased from Beijing SiPeiFu 
Biotechnology Co., Ltd., and housed and fed in an SPF 
animal laboratory. The animal experiment was approved 
by the Animal Ethics Committee of Beijing University 
of Traditional Chinese Medicine (Animal Protocol No. 
BUCM-4-2021032003-1091). After a week of adaptive 
feeding, the mice were injected subcutaneously with 
cells (1 × 107 in 100 μL of PBS) and then randomized into 
treatment and control groups (eight mice per group), 
until the tumors reached a volume of 50  mm3. Mice in 
the experimental groups were treated with 4  mg/kg (L) 
or 8 mg/kg (H) of PPI [24, 25] and the positive and model 
group with sorafenib (30  mg/kg) [17] or PBS, respec-
tively. Each mouse was injected twice a week during the 
trial. The tumor size and body weight were monitored 2 
or 3  times per week. The mice were anesthetized using 
isofluorane gas, followed by collection of the tumor xeno-
grafts, main organs, and blood samples.

Statistical analysis
All the statistical analyses were performed using Graph-
Pad Prism 8.0 software. The results were expressed as 
mean ± SD based on a minimum of three independent 
repeated experiments. Dead animals were eliminated 
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from the data analysis. Comparison between the two 
groups was conducted using Student’s t-test, while mul-
tiple group comparisons were conducted using one-way 
ANOVA. A p value < 0.05 indicated a statistically signifi-
cant difference.

Results
PPI exerts anticancer activity in vivo and in vitro
To assess the antiproliferative function of PPI on HCC, 
the Hep3B 2.1–7 and SK-HEP-1 cell lines were treated 
with different concentrations of PPI. As shown in 
Fig.  2A–C, PPI markedly inhibited cell viability and 
colony formation ability in a concentration-dependent 
manner, especially in Hep3B cells (IC50 of Hep3B was 
2.412  μg/mL and SK-Hep-1 was 5.059  μg/mL). Further-
more, wound healing and transwell invasion assays were 
performed to assess the effects of PPI on the migration 
and invasion of Hep3B cells, respectively. The results 
showed that PPI caused a significant decline in the migra-
tion of Hep3B cells and prevented the invasion of Hep3B 
cells in a concentration-dependent way (Fig. 2D–G). The 
flow cytometry results indicated that PPI also induced 
apoptosis in a concentration-dependent way (Fig. 2H), a 
finding that was confirmed by an elevated expression of 
cleaved caspase 3 (Fig. 2I, J). Similarly, PPI treatment sup-
pressed tumor growth in the xenograft tumors of Hep3B 
cells in the zebrafish (Fig. 2K, L).

ZBTB16 was identified as a direct target of PPI
To investigate the potential action target of PPI in HCC, 
we labeled PPI with biotin and a fluorescent probe, and 
then performed a HuProt™20  K proteome microarray 
chip to detect the protein binding target to PPI. A total of 
602 proteins showed significant specific interaction with 
PPI on the chip (Fig. 3A, B) that might have contributed 
to its biological anti-cancer activity. These 602 proteins 
were significantly enriched in GO entries such as the 
cytosol (Fig.  3C) and signaling pathways such as meta-
bolic pathways (Fig. 3D).

To accurately identify potential targets of PPI, we con-
ducted a series of analytical steps. Initially, we performed 
a differential gene analysis on the LIHC cohort from the 
TCGA database to identify significant gene expression 
differences between tumor and normal tissues (Figure 

S1A). Subsequently, we compared the transcriptomic 
data of HCC cells with and without PPI treatment to 
screen for genes whose expression significantly changed 
after the action of PPI (Figure S1B). We then intersected 
these two sets of differential genes with the potential 
binding target proteins of PPI predicted by chip tech-
nology, thereby identifying 30 potential targets at the 
center of the intersection (Figure S1C). Furthermore, 
we conducted Kaplan-Meier survival analysis on these 
genes and used WB technology to test whether the pro-
tein expression levels of genes with potential prognostic 
value for HCC patients changed with the dosage of PPI 
(Figure S1D). After this series of comprehensive analyses, 
we ultimately selected ZBTB16 as a candidate for further 
research because it not only showed significant prognos-
tic relevance among all potential targets but also had a 
clear association with the action of PPI.

As show in Fig. 3E, the original signal intensity of the 
ZBTB16 protein on the PPI-chip was significantly higher 
than that on the biotin chip, indicating binding of PPI to 
ZBTB16 in HCC cells. Furthermore, the results of West-
ern blotting and the cellular immunofluorescence assays 
indicated that PPI may potentially mediate its activities 
by binding to ZBTB16 proteins (Fig. 3F–H). SPR was then 
performed with the results demonstrating a high affin-
ity between the recombinant human (rh) ZBTB16 pro-
tein and PPI, with a dissociation constant (KD) of 5.5 µM 
(Fig.  3I). This finding was consistent with the results of 
molecular docking that showed the binding energy of the 
two was -10.4  cal/mol, indicating that PPI may interact 
with THR-55 and TYR-86 of ZBTB16 (Fig. 3J).

Correlation between ZBTB16 and HCC
To validate that ZBTB16 was a potential therapeutic 
target for HCC, we first compared the expression levels 
of ZBTB16 mRNA in HCC tissue and normal tissue in 
the TCGA and GTEx datasets. This showed that com-
pared with normal tissue, the mRNA expression level of 
ZBTB16 in tumor samples was downregulated signifi-
cantly (Fig. 4A). K-M survival analysis demonstrated that 
the expression of ZBTB16 was related closely to overall 
survival (OS) of the HCC patients, with high expression 
indicating better survival (Fig. 4B), especially in patients 
with stages III- IV cancers (Fig. 4C). The area under the 

(See figure on next page.)
Fig. 2  PPI has anticancer activity in vivo and in vitro. A CCK8 assay of Hep3B2.1–7 and SK-HEP-1 cells treated with PPI (n = 3). B, C Colony formation 
assay of HCC cells treated with PPI (n = 3; L, 2.5 μg/mL PPI; H, 5 μg/mL PPI). D, E Wound healing assay of HCC cells treated with PPI (n = 3; L, 2.5 μg/
mL PPI; H, 5 μg/mL PPI). F, G Transwell assay of HCC cells treated with PPI (n = 3; L; 2.5 μg/mL PPI; H, 5 μg/mL PPI). H Annexin V–FITC dual staining 
assay of HCC cells treated with PPI (n = 3; L, 2.5 μg/mL PPI; H, 5 μg/mL PPI). I, J Change in cleaved caspase 3 in HCC cells treated with PPI (n = 3; L, 
2.5 μg/mL PPI; H, 5 μg/mL PPI). K, L PPI significantly inhibited the tumor growth of zebrafish xenograft models injected with Hep3B cells (n = 6; 
Positive control, 100 ng/mL sorafenib; L, 0.3 μg/mL PPI; H, 0.6 μg/mL PPI). (* p < 0.05, ** p < 0.01, *** p < 0.001)
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Fig. 2  (See legend on previous page.)
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curve (AUC) of the diagnostic receiver operating char-
acteristic (ROC) of ZBTB16 in HCC was 0.694 (95% 
CI, 0.648–0.741), indicating a good diagnostic value for 
HCC (Fig. 4D). Comparison of the composition of HCC 
patients in the high- and low-ZBTB16 groups showed 
that the proportion of patients with stage III-IV and 
grade 3–4 in the low group was higher than that in the 
high group (Fig. 4E, F). The correlation analysis between 
ZBTB16 and the clinical variables revealed a strong cor-
relation between its expression and histological grade, 
gender, and alpha-fetoprotein (AFP) level (Fig. 4G, I), but 
no correlation with pathological grade (Fig.  4J). To fur-
ther investigate the functional pathway of ZBTB16 regu-
lation in HCC, we conducted differential gene analysis 
(GSEA) based on logFC of ZBTB16 high and low group 
differential genes. It was found that the PPAR signaling 
pathway was activated significantly in the high group 
(Fig.  4K). The correlation scatter plot also showed that 
the expression of ZBTB16 correlated negatively with the 
expression of cell proliferation-related genes (including 
Ki67 and PCNA) and HCC diagnostic markers (including 
GPC3 [26], OPN [27], and MMP1 [28]) (Fig. 4M–Q).

ZBTB16 inhibits HCC cell metastasis and growth in vitro
To investigate the function of ZBTB16 in HCC, we 
constructed knockdown and overexpression cell lines 
(Fig.  5A–D). The wound healing results showed that 
ZBTB16 knockdown significantly increased the migra-
tion activity of Hep3B2.1–7 cells in  vitro. In con-
trast, ZBTB16 overexpression inhibited the migration 
of Hep3B2.1–7 cells (Fig.  5E, F). Similar results were 
observed in the transwell assay based on the charac-
teristics of migration and invasion ability (Fig.  5G, I) of 
Hep3B2.1–7 cells (Fig. 5J, K). In addition, the inhibitory 
effect of ZBTB16 on the proliferation of Hep3B2.1–7 
cells was confirmed by the results of the plate cloning 
experiment.

PPI inhibits HCC by targeting ZBTB16
To further confirm the important role of ZBTB16 in the 
anticancer activity of PPI, rescue experiments related to 
ZBTB16 were designed based on the inhibition of PPI in 
HCC cells. The results of the CCK8 assay showed that at 
the same dosage, the anti-proliferation effect of PPI on 

cells with ZBTB16 overexpression was enhanced signifi-
cantly, while ZBTB16 knockout improved the inhibition 
of PPI in cells (Fig. 6A). Similar results of cell apoptosis 
were observed. As shown in Fig. 6B–D, ZBTB16 knock-
down significantly abolished the effect of PPI-induced 
cell apoptosis. In contrast, cell apoptosis of the ZBTB16 
overexpressing cell line treated with PPI was signifi-
cantly higher than that of the PPI group, indicating that 
ZBTB16 had a key contribution in the anti-cancer effects 
of PPI.

Transcriptome analysis revealed the involvement 
of the PPAR signaling pathway in the anticancer activity 
of PPI
To determine the molecular mechanism associated 
with the anticancer activity of PPI, RNA sequencing 
of Hep3B cells was conducted. A principal compo-
nent analysis (PCA) was conducted to detect the clus-
tering trend in the multidimensional data, with the 
results indicating a distinct segregation between the 
low and high-PPI and control groups. Compared to 
the control group, there was a shift in principal com-
ponent 1 (PC1) and PC2 in PPI (Fig.  7A). Differential 
gene analysis identified 1032 and 3950 genes as signifi-
cantly differentially expressed genes (DEGs) in the low 
and high groups, respectively (| logFC |≥ 1, p < 0.05) 
(Fig.  7B, C). ZBTB16 was upregulated significantly 
in the high group (Fig.  7C). To obtain an insight into 
the global patterns of the effects of DEGs on biologi-
cal processes, we performed GO and KEGG analyses. 
Briefly, the results showed that DEGs in both the high 
and low groups were enriched significantly in the PPAR 
signaling pathway (p < 0.05) (Fig. 7D, E). To gain a more 
comprehensive understanding of the pathways altered 
in response to PPI, a heatmap of Gene Set Variation 
Analysis (GSVA) was generated from the transcriptome 
data. As shown in Fig. 7F, PPI may exert its anticancer 
activity by activating the PPAR signaling pathway and 
inducing apoptosis. Through the protein–protein inter-
action network, it was found that in the PPAR signal-
ing pathway, ZBTB16 only interacts with RXRα, which 
regulates cell apoptosis by forming heterodimers with 
PPARγ (Fig.  7G) [29–31]. Based on the TCGA-LIHC 
dataset, we also showed that ZBTB16 was significantly 

Fig. 3  ZBTB16 was identified as a direct target of PPI. A HuProt™20 K Proteome microarray chip indicating the protein targets binding to PPI. The 
yellow arrow points to the location of the ZBTB16 protein. B Venn diagram of the protein targets binding to biotin and PPI. C, D GO and KEGG 
enrichment analysis of the specific binding proteins of PPI. E The signal intensity of the ZBTB16 protein in the HuProt™20 K proteome microarray 
chip. F–H Changes in the expression of the ZBTB16 protein in HCC cells treated with PPI (n = 3; L, 2.5 μg/mL PPI; H, 5 μg/mL PPI). I SPR analysis 
of binding affinity between PPI and the ZBTB16 protein. J Molecular docking analysis of PPI binding to the ZBTB16 protein to predict the binding 
site. (* p < 0.05, ** p < 0.01, *** p < 0.001)

(See figure on next page.)
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Fig. 3  (See legend on previous page.)



Page 9 of 17shan et al. Chinese Medicine          (2024) 19:113 	

and positively correlated with RXRα, but not with 
PPARγ (Fig.  7H). The WB results demonstrated that 
PPI activated the PPAR signaling pathway by increasing 
RXRα and PPARγ significantly, and upregulated Bax 
but decreased Bcl-2 protein (p < 0.05), leading to apop-
tosis in Hep3B cells (Fig. 7I, J).

PPI inhibits the growth of HCC in vivo without causing 
significant host toxicity
To determine whether PPI inhibited tumor growth 
in vivo, we examined it effect on Hep3B-derived tumors 
in BALB/c mice (Fig.  8A). Following an intraperito-
neal injection of PPI (4 or 8  mg/kg) once daily for 28 
d, PPI significantly prevented body weight loss induced 
by tumors (Fig.  8B). Furthermore, consistent with 
our in  vitro findings, PPI treatment led to a substan-
tial reduction in tumor volume and tumor weight in 
the xenograft model mice compared with those of the 
control group (Fig.  8C–E). Pathological examination 
by HE staining showed that the xenograft tumor cells 
were packed loosely with small nuclei compared with 
that observed in the control group (Fig. 8F). In the IHC 
assays, PPI enhanced ZBTB16 but strongly suppressed 
the Ki-67, indicating that PPI contributed to the major 
effect on tumor cell survival (Fig.  8F–H). Meanwhile, 
PPI induced the up-regulation of TUNEL-positive cells, 
confirming PPI triggering significant apoptosis in the 
tumor cells (Fig.  8F–I). Additionally, to evaluate the 
side effects of PPI, the histology of the liver and kid-
ney were monitored and recorded. Our results showed 
no observable damage to the liver and kidney in PPI-
treated mice (Fig.  8F). This finding was confirmed by 
histological analysis of the major organs, which showed 
no observable difference between the control and 
treated groups.

We next examined the effects of PPI on signaling 
activity in the transplanted tumors. In line with the 
in  vitro results, ZBTB16 and PPARγ, RXRα protein 
levels were both increased (Fig.  8J, K), which con-
firmed that PPI effectively inhibits tumor growth by 

targeting ZBTB16 to activate the PPARγ/RXRα signal-
ing pathway.

Discussion
HCC is one of the most common malignant tumors in 
clinical practice and is associated with an extremely high 
incidence and mortality rate [3]. Therefore, the develop-
ment of effective therapeutic agents for the treatment 
of HCC has always been a promising strategy. TCM has 
demonstrated substantial clinical benefits, playing a cru-
cial role in the prevention and management of liver pre-
cancerous conditions, serving as an adjuvant therapy for 
HCC, and preventing post-surgical recurrence [32–35]. 
For example, clinical studies have confirmed the efficacy 
of Huaier Granules when used adjunctively after surgi-
cal resection and in combination with TACE, signifi-
cantly reducing HCC recurrence rates [33, 34]. Similarly, 
numerous studies have shown that PPI has promising 
potential for treating various cancers [36–39]. How-
ever, the mechanism of its role for treating and slowing 
down the progression of HCC remains elusive and there 
remains an urgent need for further in-depth research.

The present study demonstrated that PPI inhibited the 
progression of HCC in  vivo and in  vitro by inhibiting 
proliferation, inducing apoptosis, and preventing migra-
tion and invasion. Furthermore, PPI showed no appar-
ent toxicity to the liver and kidney of tumor-bearing 
mice at effective doses, preliminarily indicating its safety. 
Notably, the clinical use of PPI is currently problematic 
because of its potential adverse effects [40–43]. Although 
an 8 mg/kg dose in our in vivo experiments did not result 
in toxicity, a recent study reported that higher doses may 
produce adverse effects [43].

ZBTB16 was identified as the critical binding target 
protein of PPI against HCC in this study. It has been 
identified as a tumor suppressor gene of HCC, breast 
cancer, gastric cancer, and prostate cancer [16, 44–46], 
in which the mechanism of ZBTB16-mediated tumor 
inhibition was mainly related to cell cycle arrest, apop-
tosis induction, and EMT inhibition [14, 44, 47]. Our 
results showed that ZBTB16 knockdown promoted HCC 
cell proliferation in  vitro and ZBTB16 overexpression 

(See figure on next page.)
Fig. 4  ZBTB16 is inhibited significantly in HCC and is associated with an improved prognosis in patients with the malignancy. A ZBTB16 mRNA 
expression is downregulated in HCC tissues compared with that in the normal tissue groups of the TCGA and GTEx datasets. B Kaplan–Meier 
survival analysis on the association between ZBTB16 expression and overall survival of patients. C Kaplan–Meier survival analysis on the association 
between ZBTB16 expression and overall survival of patients with stage III-IV HCC in the TCGA-LIHC dataset. D Diagnostic receiver operating 
characteristics curves of ZBTB16 in HCC. E Composition of the pathologic stage of the ZBTB16-high (n = 173) and -low groups (n = 173) 
in the TCGA-LIHC dataset. F Composition of the histologic grade of the high-ZBTB16 (n = 173) and low-ZBTB16 groups (n = 173) in the TCGA-LIHC 
dataset. G–J Comparison of ZBTB16 mRNA expression in the different HCC clinical groups. K The GSEA results indicated that the PPAR signaling 
pathway was enriched significantly in the high-ZBTB16 group. L–P Correlation analysis of ZBTB16 and mRNA expression levels in the indicated 
genes in the TCGA-LIHC dataset. (* p < 0.05, ** p < 0.01, *** p < 0.001)
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Fig. 4  (See legend on previous page.)
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Fig. 5  ZBTB16 inhibits cancer cell metastasis and growth in vitro. A–D ZBTB16 knockdown and overexpressing cell lines were constructed (n = 3). 
E, F Wound healing assay using ZBTB16 knockdown and overexpression cell lines (n = 3). G–I Migration and invasion ability in ZBTB16 knockdown 
and overexpression cell lines (n = 3). J, K Cloning formation assay in ZBTB16 knockdown and overexpression cell lines (n = 3). (* p < 0.05 and ** 
p < 0.01)
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blocked metastasis of HCC cell, which are consistent 
with the conclusions of existing studies. In addition, 
we also found that the abnormal down-regulation of 
ZBTB16 in HCC was strongly associated with poor prog-
nosis, higher histological grade, and higher levels of APF. 
Thus, the ZBTB16 may serve as a promising biomarker 
and therapeutic target for the treatment of HCC patients 
and selective promotion of ZBTB16 remains an active 

area of drug development. PPI does represent a new lead 
compound for further design and discovery of ZBTB16 
agonists. Attempts at modifying PPI to reduce its toxicity, 
controlled release, and using PPI format or in targeted/
combinatorial therapies may help its clinical use.

To provide better insights into the full spectrum of the 
anti-HCC activity of PPI at the molecular level, a tran-
scriptome in Hep3B cells was performed to confirm the 

Fig. 6  PPI inhibits HCC by targeting ZBTB16. A CCK8 assay of ZBTB16 knockdown and overexpression cell lines with PPI (n = 3). B–D Annexin V–FITC 
dual staining assay of ZBTB16 knockdown and overexpression cell lines with PPI (n = 3). (L, 2.5 μg/mL PPI; H, 5 μg/mL PPI) (* p < 0.01, ** p < 0.001)

Fig. 7  Transcriptome analysis showing the involvement of the PPAR signaling pathway in the anticancer activity of PPI. A PCA of transcriptomes 
with or without different concentrations of PPI represented in a two-dimensional space. B, C Volcano plot of differential genes in HCC cells 
induced by low- and high-dose PPI treatment. D Bubble plots for the GO and KEGG enrichment analysis of differentially expressed genes induced 
by low-dose PPI. E Bubble plots for the GO and KEGG enrichment analysis of differentially expressed genes induced by high-dose PPI. F Heat 
map showing the GSVA enrichment score for apoptosis and the PPAR signaling pathway in the transcriptome of HCC cells treated with PPI. G PPI 
network of the ZBTB16 and PPAR signaling pathways. H Heatmap showing the correlation between the mRNA expression level of ZBTB16, PPARγ, 
and RXRα. I, J The regulatory effect of PPI on the PPAR signaling pathway in HCC cells (n = 3; L, 2.5 μg/mL PPI; H, 5 μg/mL PPI). (* p < 0.05, ** p < 0.01, 
*** p < 0.001)

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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Fig. 8  PPI inhibits the growth of HCC in vivo without causing significant host toxicity. A Photos of nude mice in each group at the end 
of the experiment. B Graph showing the change in body weight of the nude mice in each group during administration of PPI. C–E PPI significantly 
inhibited tumor growth in the mouse xenograft models injected with Hep3B (n = 8). F–I Immunohistochemical and Tunel assay of tumor bodies 
and liver and kidney sections in the nude mice in each group. J, K PPI significantly activated the ZBTB16-mediated PPAR signaling pathway (n = 3). 
(C, control; Sora, 30 mg/kg sorafenib; L, 4 mg/kg PPI; H, 8 mg/kg PPI) (* p < 0.05, ** p < 0.01, *** p < 0.001)
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key pathways involved in the response to the direct bind-
ing between the PPI and ZBTB16. The in-depth tran-
scriptome analysis revealed that the inhibitory effects 
of ZBTB16 and PPI on HCC were involved in activat-
ing the PPAR signaling pathway. Besides, ZBTB16 was 
closely related to RXRα in the PPAR signaling pathway. It 
is reported that Peroxisome proliferator-activated recep-
tor gamma (PPARγ) is mainly involved in the occurrence, 
progression and resistance development of HCC through 
regulating lipid metabolism [48–53], but its precise role 
remains controversial [54–56]. According to the experi-
mental results in  vivo and in  vitro, we speculated that 
PPI promotes the combination of RXRα and PPARγ by 
targeting ZBTB16, leading to the inhibitory effect on the 
malignant phenotype of tumor cells. Moreover, combin-
ing ZBTB16 and PPARγ also played an important role 
in immunotherapy. It has been reported that activating 
the combination of the two would promote lipid bio-
synthesis, thereby improving the anti-tumor function 
of invariant natural killer T (iNKT) cells in the tumor 
microenvironment [57]. Briefly, ZBTB16 and RXRα/
PPARγ pathway may be therapeutic for HCC.

It is important to note that ZBTB16 is not the only tar-
get of PPI, as PPI appears to interact with multiple tar-
get proteins. For example, our protein arrays showed that 
PPI potentially interacted with the shock transducer and 
activator of transcription 3 (STAT3) [58–60], mitogen-
activated protein kinase 3 (MAPK3) [61–63], the HECT 
domain, and the Ankyrin Repeat Containing E3 Ubiqui-
tin Protein Ligase 1 (HACE1) [64, 65], all of which are 
linked to cancer pathogenesis. Therefore, further studies 
are certainly warranted to determine the contribution of 
these potential PPI targets in HCC and other cancers.

Conclusion
Briefly, our study indicated that ZBTB16 is a promis-
ing drug target for PPI against HCC. This supports the 
development of PPI as a promising therapeutic agent for 
regulating the ZBTB16/PPARγ/RXRα signaling axis, an 
action that has great potential to provide important clini-
cal benefits.
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