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Abstract 

The aim of this study was to develop a machine learning-assisted rapid determination methodology for traditional 
Chinese Medicine Constitution. Based on the Constitution in Chinese Medicine Questionnaire (CCMQ), the most 
applied diagnostic instrument for assessing individuals’ constitutions, we employed automated supervised machine 
learning algorithms (i.e., Tree-based Pipeline Optimization Tool; TPOT) on all the possible item combinations for each 
subscale and an unsupervised machine learning algorithm (i.e., variable clustering; varclus) on the whole scale 
to select items that can best predict body constitution (BC) classifications or BC scores. By utilizing subsets of items 
selected based on TPOT and corresponding machine learning algorithms, the accuracies of BC classifications predic-
tion ranged from 0.819 to 0.936, with the root mean square errors of BC scores prediction stabilizing between 6.241 
and 9.877. Overall, the results suggested that the automated machine learning algorithms performed better 
than the varclus algorithm for item selection. Additionally, based on an automated machine learning item selection 
procedure, we provided the top three ranked item combinations with each possible subscale length, along with their 
corresponding algorithms for predicting BC classification and severity. This approach could accommodate the needs 
of different practitioners in traditional Chinese medicine for rapid constitution determination.

Keywords  Automated machine learning (AutoML), Unsupervised machine learning, Constitution in Chinese 
Medicine Questionnaire (CCMQ), Tree-based Pipeline Optimization Tool (TPOT), Variable clustering (varclus)

Introduction
The Yellow Emperor’s Classic of Medicine introduced the 
concept of “weibing,” which refers to the state preceding 
the onset of disease, essentially describing a condition 
of subhealth. Within conventional medicine paradigms, 
the state between health and disease is referred to as 
the “third state”. However, the scope of the “third state” 
is broad, and its mechanisms are unclear, which compli-
cates targeted intervention strategies. In traditional Chi-
nese medicine (TCM), there are systematic theories and 
intervention methods specifically designed to address 
subhealth issues. One of the common theoretical frame-
works in TCM for subhealth is described using body 
constitution (BC), which is relatively stable across an 
individual’s lifespan.
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BC arises from a combination of inherent genetic fac-
tors (e.g., race, family genetics, prenatal development, 
etc.) and acquired traits (e.g., dietary nutrition, lifestyle 
habits, mental state, disease damage, drug treatment, 
etc.). BC manifests as an individual’s physical morphol-
ogy, physiological functions, psychological conditions, 
and interactions with environmental factors [1, 2]. Wang 
systematically analyzed the theoretical origins, forma-
tion, and development of body constitution theory based 
on 108 ancient Chinese traditional classic works and 168 
modern documents. Combining current clinical research, 
Wang identified nine constitutional types: Gentleness 
Constitution (GTC: calm mentality, strong adaptability to 
the environment and resilience to illness), Qi-deficiency 
Constitution (QDC: shortness of breath and low energy), 
Yang-deficiency Constitution (YaDC: low tolerance to 
cold weather), Yin-deficiency Constitution (YiDC: insuf-
ficient body fluid), Phlegm-dampness Constitution (PDC: 
tendency to have abdominal obesity), Damp-heat Con-
stitution (DHC: tendency of excessive humidity, over-
heating, sweating of hands and feet, yellow urine, and 
loose stools), Blood-stasis Constitution (BSC: tendency 
towards increased blood viscosity), Qi-stagnation Con-
stitution (QSC: tendency to have depression, anxiety and 
chest pain), and Special-diathesis Constitution (SDC: 
tendency to have allergy) [1]. BC is determined by peo-
ple’s observed characteristics (e.g., physiological, psycho-
logical, and reactive states) and their connections with 
the nature, occurrence, development, and outcome of 
different diseases [3]. Thus, the identification of BC may 
aid in understanding the pathological mechanisms of 
certain diseases, guiding therapeutic interventions and 
prognostic evaluations [4, 5].

TCM practitioners typically assess a patient’s constitu-
tion through four examinations: observing, listening and 
smelling, questioning, and palpating. The accuracy of this 
approach largely depends on practitioners’ expertise and 
experience. To standardize the BC type identification 
procedure, Wang developed the Constitution in Chinese 
Medicine Questionnaire (CCMQ), which quantitatively 
measures the extent to which an individual exhibits a 
specific BC [6]. The CCMQ has been widely used in clini-
cal research and practice. Furthermore, it has been trans-
lated into several languages, including English, Korean, 
Japanese, and Vietnamese, enhancing its accessibility and 
applicability across different cultural contexts [7–10].

The CCMQ and its simplified versions have demon-
strated robust reliability and validity in assessing body 
constitutions within the field of TCM [11–14]. However, 
scoring methods for such questionnaires generally rely 
on linear addition of items within a subscale, a process 
that fails to capture the nonlinear relationships inherent 
in TCM [15]. Moreover, even when a linear relationship 

is assumed, these traditional scoring methods often 
overlook the need to account for the relative weights of 
different items. To further improve the efficiency of the 
determination of BC classifications and scores, this study 
introduces machine learning-assisted methods for their 
rapid determination. These methods enable automatic 
classifications of BC and calculation of BC scores using 
selected subsets of CCMQ items. Utilizing both lin-
ear and nonlinear algorithms, machine learning-based 
approaches incorporate the relative weights of items, 
thereby refining the scoring and classification processes 
for BC types.

Machine learning methodologies can be broadly cate-
gorized into two primary types: supervised and unsuper-
vised machine learning. During the process of supervised 
machine learning-assisted rapid determination, items are 
utilized as predictors, and each BC classification or score 
is used as the target to construct predictive models. A 
subset of core items that contribute most to the predicted 
outcome are chosen in the training process, and then 
they are used as predictors to obtain the outcome (i.e., 
BC classification or score) in the testing process. Com-
mon supervised machine learning algorithms for item 
selection include support vector machines, elastic net, 
extreme gradient boosting, gradient boosting, k-nearest 
neighbors, random forests, and extremely randomized 
trees. These algorithms have been proven effective in 
various studies [16, 17] and are considered potential 
supervised learning options in this study. In contrast, 
unsupervised machine learning does not involve prede-
fined targets but instead aims to discover intrinsic data 
patterns and groupings based on the relationships among 
all items, potentially transcending the limitations of 
predefined dimensions. Using unsupervised methods, 
the most representative items for inherent groupings 
were retained. These items are subsequently utilized as 
features in supervised machine learning algorithms to 
predict BC classifications and scores. The dimensional 
structure and item formulation of the CCMQ are primar-
ily designed based on the experiential insights of experts 
in TCM, lacking consistent structural validity supported 
by empirical data. As mentioned previously, supervised 
and unsupervised machine learning algorithms each 
offer distinct advantages in analyzing the relationships 
between the CCMQ dimensions and items. Supervised 
algorithms operate on the premise of acknowledging 
existing dimensions, while unsupervised algorithms do 
not. In the process of predicting BC classifications or 
scores with a limited number of items, comparing the 
selections made by these two approaches can help iden-
tify consistencies and discrepancies in item choice, which 
further reveals items that are crucial for the stability of 
the CCMQ dimensions.
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In summary, this study illustrated the application of 
various machine learning methods to rapidly determine 
BC classifications and calculate BC scores. Specifically, 
we utilized an automated machine learning algorithms 
(AutoML) known as the Tree-based Pipeline Optimi-
zation Tool (TPOT), as well as unsupervised machine 
learning through variable clustering analysis (varclus). 
Using machine learning methods (i.e., model selection 
and parameter tuning), the predicted BC classifications 
or scores from a subset of core items are expected to 
be highly correlated with the original classifications or 
scores; thus, a subset of core items can be used instead of 
the whole set to improve the test efficacy of the CCMQ.

Materials and methods
Data source and collection
Between August 26, 2015, and October 12, 2017, a sur-
vey was conducted via a web-based platform using the 
CCMQ to assess the BC of individuals aged 15–64 across 
China. A total of 94,718 questionnaires were collected. 
However, 3573 responses were discarded due to fictitious 
or inconsistent answers, yielding 91,145 valid question-
naires for analysis.

Measurement instrument
This study employed the 60-item adult version of the 
CCMQ developed by Wang et  al. (2006). The question-
naire is organized into nine subscales, each containing 
6–8 items. Questions are presented in a question format 
(e.g., “Were you energetic?”) Responses are measured 
using a five-point Likert scale ranging from “1. Not at all” 
to “5. Very much.” Specific items associated with the GTC 
subscale include the following: “(2) Did you become tired 
easily?”, “(7) Was your voice weak when talking?”, “(8) Did 
you feel in low spirits and depressed?”, “(21) Did you feel 
more vulnerable to the cold than others (winter coldness, 
air conditioners, fans, etc.)?”, “(54) Did you easily experi-
ence insomnia?”, and “(27) Did you forget things easily?” 
are reverse scored. In contrast, these items are positively 
scored in other BCs as well as the remaining items. The 
formula for calculating the converted score is as follows:

BC types were classified based on the criteria estab-
lished in the “Classification and Determination of Chi-
nese Medicine Constitution” [18]. Specifically, the 
criterion for identifying GTC requires a minimum con-
version score of 60, whereas the conversion scores for 
the remaining biased BCs are less than 30. For the eight 
biased BCs, a converted score above 40 indicates their 
presence, and scores ranging from 30 to 40 suggest a pre-
disposition toward a specific constitution.

Converted Score =

∑
Raw Score−Number of Items

Number of Items× 4
× 100

In this study, the Cronbach’s alpha coefficients for the 
subscales were as follows: GTC at 0.664, QDC at 0.742, 
YaDC at 0.778, YiDC at 0.673, PDC at 0.706, DHC at 
0.649, BSC at 0.660, QSC at 0.775, and SDC at 0.721.

Methods
Supervised machine learning
AutoML was employed to select the optimal supervised 
machine learning algorithm for BC classifications and 
scores, facilitating the implementation of traditional 
machine learning model design strategies in an auto-
mated, data-driven manner. The Tree-based Pipeline 
Optimization Tool (TPOT), a prevalent AutoML algo-
rithm, automatically designs and optimizes machine 
learning pipelines for specific problem domains with-
out human intervention [19]. TPOT primarily com-
prises two components: model construction via genetic 
programming and optimal model selection using Pareto 
efficiency. First, predictive models were built using all 
possible CCMQ item combinations as predictor vari-
ables, ranging from combinations with single item to all 
items, with the BC classifications and scores from the 
original subscales as the predicted outcomes. During 
the model construction process, new pipeline configu-
rations are generated through crossover and mutation 
operations within the genetic algorithm. However, a 
challenge arises because maximizing model predic-
tive performance (the model with the highest accu-
racy for classification and the model with the smallest 
mean squared error (MSE) for regression) often results 
in increased model complexity. By leveraging genetic 
programming in conjunction with Pareto optimal-
ity, the model selected by TPOT effectively balances 
predictive performance against complexity. Based on 
the model selected by the TPOT, the item combina-
tion that demonstrated the best performance across 
all item combinations with the same number of items 
was selected using the area under the curve (AUC) or 
R-squared (R2). Then, given the best item combinations 
for a specific number of items, we may need to further 
determine the most appropriate number of items for 
predicting BC classifications or scores. With this aim, 
we calculated the AUC or R2 improvement for the pre-
dictive performance of an item combination with at 
least two items over the item combination with one 
fewer item in predicting the original BC classifications 
or scores. In this study, the item combinations that 
show obvious improvements in AUC and R2 are rec-
ommended for rapidly assessing BC classifications and 
scores. When the improvement progresses steadily, it 
is recommended to use a threshold of 0.8 for AUC and 
R2, which are generally considered indicators of excel-
lent predictive performance [20, 21], to determine the 



Page 4 of 14Sun et al. Chinese Medicine          (2024) 19:127 

minimum number of items to be retained when pre-
dicting BC classifications or scores. Finally, the predic-
tive performance will be assessed by AUC, accuracy, 
F1 score, R2, root mean square error (RMSE) and mean 
absolute percentage error (MAPE).

Unsupervised machine learning
Variable clustering analysis (varclus) was used in this 
study as the unsupervised machine learning method, 
which groups similar items into clusters. Each cluster can 
be represented by a single item. This approach reduces 
data complexity while ensuring interpretability. Based 
on the clusters, representative items are selected, and the 
scale items are simplified accordingly.

First, the 60 items of the CCMQ were normalized to 
form a single cluster. This cluster was then iteratively seg-
mented, continuing until the second eigenvalue within 
a cluster did not exceed the threshold (shown in Fig. 1). 
In this study, the thresholds were dynamically adjusted 
to capture clusters of all possible quantities (i.e., 1–60). 
Next, representative items were selected from each clus-
ter. The selection of representative items is based on the 
following formula:

�ij represents the loading of the jth variable within the 
ith cluster on the first principal component. �max,other

j  

r =
�ij

�
max,other
j

Fig. 1  Clustering process
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represents the jth variable’s maximum loading on the 
first principal component of all other clusters, excluding 
the cluster to which it belongs. The item with the high-
est ratio is chosen as the representative item for a given 
cluster.

In other studies, the number of principal components 
is typically determined using a cumulative variance con-
tribution rate of 70–90% [22]. In this study, we adopt 
the average variance contribution rate at a median level 
within this range to determine the number of clusters. 
We selected the least number of clusters based on the cri-
terion that the average within-cluster variance explained 
by the representative item is 80%. The items selected by 
varclus were used to predict BC classifications or scores 
by selecting the appropriate supervised machine learning 
methods using the TPOT algorithms, and their predic-
tive capacities were evaluated using AUC, accuracy, and 
F1 score (or R2, RMSE, and MAPE).

Results
Distribution of scores among different BCs
Figure  2 shows that the scores for the eight biased BCs 
exhibit a pronounced left-skewed distribution. Among 
the seven biased BCs (i.e., QDC, YaDC, YiDC, PDC, 
DHC, BSC, and QSC), there was a greater number of 
individuals in the 20–50 score range.

Only 13.66% of the population exhibited GTC, 36.15% 
were classified as QDC, 30.34% as YaDC, 20.02% as 
YiDC, 25.07% as PDC, 27.83% as DHC, 22.66% as BSC, 
27.08% as QSC, and 8.51% as SDC. It should be noted 
that some individuals may exhibit multiple biased BCs 
simultaneously.

Item selection based on automated machine learning
The optimal performance of the supervised machine 
learning item selection models, utilizing BC classifica-
tions as the dependent variable across various item com-
binations, is presented in Table 1, with the corresponding 

Fig. 2  Distribution of scores for the BCs
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algorithms detailed therein. Figure  3 illustrates the 
improvement in the AUC for the optimal item combina-
tions for predicting each BC classification.

For all models except the QSC model, the AUC plots 
revealed elbow points for either two or four items: 
GTC: item 2 (i.e.,tiredness; abbreviated form through-
out; items, questions, and question abbreviations are 
provided in Table  S1), item 8 (i.e., depression), item 21 
(i.e., cold intolerance), item 27 (i.e., forgetfulness); QDC: 
item 3 (i.e., breathlessness), item 6 (i.e., quietude); YaDC: 
item 19 (i.e., cold aversion), item 52 (i.e., cold sensitiv-
ity); YiDC: item 20 (i.e., localized hotness), item 35 (i.e., 

dryness); PDC: item 49 (i.e., sticky mouth), item 50 (i.e., 
flabby abdomen); DHC: item 39 (i.e., oily skin), item 59 
(i.e., urethral heat); BSC: item 40 (i.e., hyperpigmenta-
tion), item 43 (i.e., dark circles); and SDC: item 24 (i.e., 
chronic rhinitis), item 31 (i.e., urticaria). Remarkably, 
the QSC model achieved the predefined threshold of 
AUC = 0.8 with the inclusion of only one item (item 9: 
anxiety). The selected items achieved AUC values rang-
ing from 0.857 to 0.946 (shown in Table  3). In general, 
predictive models are considered excellent when their 
AUC values fall between 0.8 and 0.9 and outstanding 
when they exceed 0.9 [21]; therefore, all these models 

Table 1  The optimal item combinations for BC classifications as the dependent variable and their corresponding algorithms

The specific meanings represented by the entries are found in the supplementary materials

GTC​ QDC YaDC YiDC PDC DHC BSC QSC SDC

1 item 2 3 19 20 49 60 40 9 30

GaussianNB MLPClassifier MLPClassifier MLPClassifier MLPClassifier MLPClassifier MLPClassifier GaussianNB GaussianNB

GaussianNB

2 items 2, 21 3, 6 19, 52 20, 35 49, 50 39, 59 40, 43 9, 14 24, 31

XGBClassifier XGBClassifier XGBClassifier XGBClassifier MLPClassifier ExtratreesClas-
sifier

MLPClassifier XGBClassifier Gradient-
BoostingClas-
sifier

3 items 2, 8, 21 3, 5, 7 18, 19, 52 20, 35, 44 15, 49, 50 39, 56, 60 37, 40, 43 9, 10, 14 24, 30, 31

Polynomal-
Features

XGBClassifier XGBClassifier MLPClassifier RobustScale StandardScaler MLPClassifier ExtratreesClas-
sifier

FectureUnion

XGBClassifier MLPClassifier MaxAbsScaler XGBClassifier

MLPClassifier

4 items 2, 8, 21, 27 3, 5, 7, 26 17, 18, 19, 52 16, 35, 38, 44 13, 28, 49, 50 39, 48, 56, 60 37, 40, 43, 45 9, 10, 12, 47 24, 30, 31, 34

RobustScaler RobustScaler XGBClassifier Standard-
Scaler

Gradient-
Boosting-
Classifier

MLPClassifier MLPClassifier GaussianNB MLPClassifier

XGBClassifier MLPClassifier MLPClassifier MLPClassifier MLPClassifier

5 items 2, 7, 8, 21, 27 3, 5, 6, 22, 26 17, 18, 21, 
22, 52

16, 38, 44, 
46, 57

13, 28, 50, 
51, 58

39, 41, 48, 
56, 60

36, 37, 40, 
43, 45

9, 10, 12, 14, 47 24, 25, 30, 
31, 34

MLPClassifier MinMax-
Scaler

RobustScaler MLPClassifier RobustScaler GaussianNB MLPClassifier RobustScaler XGBClassifier

MLPClassifier MLPClassifier MLPClassifier MLPClassifier MLPClassifier

6 items 2, 7, 8, 21, 
27, 54

3, 5, 6, 7, 22, 
26

17, 18, 21, 22, 
52, 55

16, 20, 29, 44, 
46, 57

13, 28, 49, 50, 
51, 58

39, 41, 48, 56, 
59, 60

33, 36, 37, 40, 
43, 45

9, 10, 11, 12, 
14, 47

24, 25, 30, 31, 
32, 34

MLPClassifier ZeroCount RobustScaler ZeroCount MLPClassifier MLPClassifier RobustScaler StandardScaler RobustScaler

MLPClassifier MLPClassifier MLPClassifier MLPClassifier MLPClassifier GaussianNB

MLPClassifier

7 items 2, 7, 8, 21, 27, 
53, 54

3, 4, 5, 6, 7, 
22, 26

17, 18, 19, 21, 
22, 52, 55

16, 29, 35, 38, 
44, 46, 57

13, 28, 42, 49, 
50, 51, 58

33, 36, 37, 40, 
43, 27, 45

8, 9, 10, 11, 12, 
14, 47

23, 24, 25, 30, 
31, 32, 34

MLPClassifier GaussianNB MLPClassifier RobustScale RobustScale MLPClassifier MLPClassifier LinearSVC

Standard-
Scaler

MLPClassifier MLPClassifier

MLPClassifier

8 items 1, 2, 7, 8, 21, 
27, 53, 54

2, 3, 4, 5, 6, 7, 
22, 26

16, 20, 29, 35, 
38, 44, 46, 57

13, 15, 28, 42, 
49, 50, 51, 58

ZeroCount MLPClassifier MLPClassifier LinearSVC

MLPClassifier
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demonstrated excellent predictive performance, with 
some even reaching outstanding levels. Additionally, the 
accuracy and F1 scores of these models’ predictions were 
calculated, with accuracy values ranging from 0.819 to 
0.936 and F1 scores ranging from 0.417 to 0.807.

Table 2 presents the optimal performance of the super-
vised machine learning item selection models with the 
BC score as the dependent variable. Figure  4 demon-
strates the improvement in R2 performance for these 
optimal models.

In Fig. 4, a clear elbow point is shown for the YaDC 
model with a two-item combination (item 19: cold 
aversion and item 52: cold sensitivity). Other BC 
score predictive models did not exhibit significant 
elbow points. Accordingly, the item combinations for 
the final BC scores prediction were selected from the 
models with an R2 exceeding 0.8 that used the fewest 

predictors. Specifically, the models for GTC, QDC, 
YiDC, PDC, DHC, and BSC included the first four 
items (GTC: item 2: tiredness, item 8: depression, item 
21: cold intolerance, item 53: adaptability; QTC: item 
3: breathlessness, item 5: dizziness, item 6: quietude, 
item 26: hyperhidrosis; YiDC: item 20: localized hot-
ness, item 44: dry eyes, item 46: thirstiness, item 57: 
constipation; PDC: item 15: lethargy, item 28: oily 
T-zone, item 49: sticky mouth, item 50: flabby abdo-
men; DHC: item 39: oily skin, item 48: bitter mouth, 
item 56: sticky stools, item 60: wet scrotum/yellow-
ing leukorrhea; BSC: item 27: forgetfulness, item 37: 
pain, item 40: hyperpigmentation, item 43: dark cir-
cles, respectively). Meanwhile, the QSC and SDC mod-
els incorporated the first three items (QSC: item 9: 
anxiety, item 10: vulnerability, item 14: sighing; SDC: 
item 24: chronic rhinitis, item 30: allergies, item 34: 

Fig. 3  AUC for different item combinations. Note. For the GTC, QDC, YaDC, YiDC, PDC, DHC, BSC and SDC, elbow points were selected 
where the item combination maximized the improvement in the AUC. For QSC, the curve was relatively smooth, so we selected the item 
combination with the fewest number of items when the AUC exceeded 0.8
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dermatographism, respectively), aligning with this cri-
terion. For predicting BC scores, the models yielded R2 
values ranging from 0.785 to 0.879 (shown in Table 3). 

According to general guidelines that R2 values of 0.75 
and 0.50 are considered substantial and moderate, 
respectively, of predictive performance [20], all of 

Table 2  The optimal item combinations for the BC score as the dependent variable and their corresponding algorithms

The specific meanings represented by the items are found in the supplementary materials

GTC​ QDC YaDC YiDC PDC DHC BSC QSC SDC

1 item 8 3 19 35 49 60 40 9 31

Decision-
treeRegressor

Decision-
TreeRegressor

RandomFor-
estRegressor

XGBRegressor Gradient-
BoostingRe-
gressor

RandomFor-
estRegressor

ExtraTreesRe-
gressor

Gradient-
BoostingRe-
gressor

XGBRegressor

8, 21 3, 6 19, 52 20, 35 49, 50 39, 59 37, 40 9, 10 24, 31

RandomFor-
estRegressor

RandomFor-
estRegressor

ExtraTreesRe-
gressor

RandomFor-
estRegressor

Gradient-
BoostingRe-
gressor

RandomFor-
estRegressor

Decision-
TreeRegressor

RandomFor-
estRegressor

Decision-
TreeRegressor

3 items 1, 8, 21 3, 6, 26 17, 19, 52 20, 35, 44 15, 49, 50 39, 56, 59 37, 40, 43 9, 10, 14 24, 30, 34

Decision-
TreeRegressor

ElasticNetCV ExtraTreesRe-
gressor

RidgeCV RandomFor-
estRegressor

RandomFor-
estRegressor

ExtraTreesRe-
gressor

ZeroCount ElasticNetCV

Decision-
TreeRegressor

RandomFor-
estRegressor

ExtraTreesRe-
gressor

ExtraTreesRe-
gressor

RandomFor-
estRegressor

Decision-
TreeRegressor

4 items 2, 8, 21, 53 3, 5, 6, 26 17, 18, 19, 52 20, 44, 46, 57 15, 28, 49, 50 39, 48, 56, 60 27, 37, 40, 43 9, 10, 14, 47 24, 30, 31, 34

XGBRegressor ExtraTreesRe-
gressor

LassoLarsCV XGBRegressor RobustScaler Gradient-
BoostingRe-
gressor

RidgeCV RobustScaler RidgeCV

RobustScaler RBFSampler XGBRegressor RBFSampler XGBRegressor

ElasticNetCV RidgeCV MinMaxScaler

ElasticNetCV RidgeCV

5 items 2, 8, 21, 53, 54 3, 5, 6, 22, 26 17, 18, 21, 
22, 52

16, 38, 44, 
46, 57

15, 28, 50, 
51, 58

39, 41, 48, 
56, 60

27, 37, 40, 
43, 45

9, 10, 12, 14, 
47

24, 25, 30, 
31, 34

ElasticNetCV RobustScaler MaxAbsScaler RidgeCV LinearSVR RidgeCV LinearSVR RobustScaler XGBRegressor

RandomFor-
estRegressor

RobustScaler XGBRegressor ElasticNetCV Polynominal-
Features

LinearSVR RidgeCV

RidgeCV RandomFor-
estRegressor

RidgeCV

6 items 2, 7, 21, 27, 
53, 54

2, 3, 5, 6, 22, 
26

17, 18, 21, 22, 
52, 55

16, 35, 38, 44, 
46, 57

13, 15, 28, 50, 
51, 58

39, 41, 48, 56, 
59, 60

27, 36, 37, 40, 
43, 45

9, 10, 11, 12, 
14, 47

23, 24, 25, 30, 
31, 34

MinMaxScaler ElasticNetCV AdaBoostRe-
gressor

Gradient-
BoostingRe-
gressor

RidgeCV LassoLarsCV XGBRegressor Decision-
TreeRegressor

RobustScaler

ZeroCount Gradient-
BoostingRe-
gressor

RidgeCV RidgeCV Standard-
Scaler

ElasticNetCV

Gradient-
BoostingRe-
gressor

RidgeCV RandomFor-
estRegressor

7 items 1, 7, 8, 21, 27, 
53, 54

2, 3, 5, 6, 7, 
22, 26

17, 18, 19, 21, 
22, 52, 55

16, 20, 29, 35, 
44, 46, 57

13, 15, 28, 42, 
50, 51, 58

27, 33, 36, 37, 
40, 43, 45

8, 9, 10, 11, 
12, 14, 47

23, 24, 25, 30, 
31, 32, 34

ElasticNetCV RidgeCV LassoLarsCV LinearSVR RobustScaler FunctionUn-
ion

LinearSVR SGDRegressor

RandomFor-
estRegressor

ZeroCount RidgeCV Stand-
ardSScaler

LassoLarsCV RidgeCV

8 items 1, 2, 7, 8, 21, 
27, 53, 54

2, 3, 4, 5, 6, 7, 
22, 26

16, 20, 29, 35, 
38, 44, 46, 57

13, 15, 28, 42, 
49, 50, 51, 58

RidgeCV LassoLarsCV RidgeCV SGDRegressor
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these models had excellent predictive capacities. The 
range of RMSE values for these models was between 
6.241 and 9.877, and the MAPE values ranged from 
10.868 to 39.337.

Item selection based on the unsupervised machine 
learning algorithm
For all possible numbers of clusters, the average vari-
ance contribution of all representative items within their 
respective clusters is illustrated in Fig. 5. When the num-
ber of clusters was set to 29, the representative items 
accounted for 80% of the variance within each cluster, 
on average. To further assess the predictive capability of 
these items for BC classification or score, the appropriate 
supervised machine learning models were constructed by 

TPOT, with these 29 items as independent variables and 
BC classifications or scores as dependent variables. The 
specific predictive algorithms and their corresponding 
performances are detailed in Table 4.

In terms of predicting BC classifications, the selected 
items achieved AUC values ranging from 0.847 to 0.965, 
prediction accuracies ranging from 0.820 to 0.950 and F1 
scores from 0.294 to 0.858. For predicting BC scores, the 
models yielded R2 values from 0.549 to 0.888, RMSE val-
ues from 5.602 to 12.135 and MAPE values from 14.470 
to 48.239 (shown in Table  4). According to the criteria 
mentioned above [20, 21], most models exhibited out-
standing predictive performance, while a few were con-
sidered to have moderate predictive capability.

Fig. 4  R2 for different item combinations. For YaDC, an elbow point was selected where the item combination maximized the improvement 
in the AUC. For GTC, QDC, YiDC, PDC, DHC, BSC, QSC and SDC, the curves were relatively smooth, so we selected the item combination 
with the fewest number of items when the AUC exceeded 0.8
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Comparison between automated machine learning 
and unsupervised machine learning
We conducted three types of item selection procedures 
from the CCMQ: items selected by automated machine 
learning algorithms with classifications as the target 
variables, items selected by automated machine learn-
ing algorithms with scores as the outcome variables, and 
representative items selected by unsupervised learn-
ing. Figure 6A illustrates the frequency of items selected 
based on the three types of item selection procedures. 
As shown in Fig. 6A, item 2 (i.e., tiredness), item 6 (i.e., 

quietude), item 19 (i.e., cold aversion), item 20 (i.e., local-
ized hotness), item 27 (i.e., forgetfulness), item 39 (i.e., 
oily skin), item 43 (i.e., dark circles), item 50 (i.e., flabby 
abdomen), and item 52 (i.e., cold sensitivity) were con-
sistently chosen by these three types of item selection 
procedures, indicating that they contain multiple pieces 
of information, including associations with BC classifica-
tions and scores, as well as relationships with other items. 
Additionally, the supervised machine learning algorithms 
consistently selected item 3 (i.e., breathlessness), item 8 
(i.e., depression), item 9 (i.e., anxiety), item 21 (i.e., cold 
intolerance), item 24 (i.e., chronic rhinitis), item 40 (i.e., 
hyperpigmentation), and item 49 (i.e., ticky mouth) for 
predicting BC classifications and scores. Different from 
the items selected by the supervised machine learning 
algorithms, the varclus algorithm selected item 16 (i.e., 
palmar-plantar hot), item 22 (i.e., susceptibility to colds), 
item 23 (i.e., frequent sneezing), item 25 (i.e., sensitivity 
cough), item 29 (i.e., reddened lips), item 33 (i.e., unex-
plained bruising), item 36 (i.e., facial telangiectasia), item 
51 (i.e., excess phlegm), item 55 (i.e., cold-induced diar-
rhea), and item 58 (i.e., thick tongue coating) to predict 
the BC classifications or scores.

In the prediction of classifications, the items selected 
based on TPOT and those selected by varclus, using 
the appropriate prediction models, demonstrated simi-
lar AUCs, accuracies and F1 scores (Fig.  6B). However, 
except for the GTC model, TPOT selected fewer items 
for the biased BC classifications compared to varclus.

Table 3  Evaluation of the automated machine learning results based on the appropriate supervised machine learning methods

The specific meanings represented by the items are found in the supplementary materials

Subscale The BC classification as the target variable The BC score as the target variable

Items Algorithms AUC​ Accy F1 score Items Algorithms R2 RMAE MAPE

GTC​ 4, 8, 21, 27 RobustScale
XGBClassifier

0.891 0.878 0.417 2, 8, 21, 53 XGBRegressor 0.799 7.162 10.868

QDC 3, 6 XGBClassifier 0.888 0.823 0.741 3, 5, 6, 26 ExtraTreesRegressor
RobustScaler
ElasticNetCV

0.835 6.749 21.513

YaDC 19, 52 XGBClassifier 0.946 0.884 0.804 19, 52 ExtratreesRegressor 0.785 9.877 39.337

YiDC 20, 35 XGBClassifier 0.890 0.857 0.561 20, 44, 46, 57 XGBRegressor 0.804 6.740 27.560

PDC 49, 50 MLPClassifier 0.890 0.853 0.685 15, 28, 49, 50 RobustScaler
RBFSampler
RidgeCV
ElasticNetCV

0.815 7.147 28.133

DHC 39, 59 ExtraTreesClassifier 0.894 0.835 0.693 39, 48, 56, 60 GradientboostingRegressor 0.879 6.241 22.208

BSC 40, 43 MLPClassifier 0.897 0.857 0.641 27, 37, 40, 43 RidgeCV
XGBRegressor

0.836 6.720 21.582

QSC 9 GaussianNB 0.857 0.819 0.569 9, 10, 14 ZeroCount
ExtraTreesRegressor

0.814 7.805 29.207

SDC 24, 31 GradientBoostingClassifier 0.942 0.936 0.603 24, 30, 34 ElasticNetCV
RandomForestRegressor

0.811 6.575 34.079

Fig. 5  The average variance contribution of the representative items
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In the prediction of scores for BC, such as GTC, PDC, 
DHC, QSC, and SDC, the items selected based on TPOT 
demonstrated notable advantages in comparison with 
those selected by varclus (Fig. 6C). However, in the pre-
diction of scores for BC types such as QDC and YaDC, 
selections made by varclus and its corresponding predic-
tive algorithms exhibited superior performance. For the 
YiDC and BSC score predictions, the performances of the 
items chosen by TPOT and varclus were similar. Over-
all, while the number of items selected by TPOT and var-
clus remains similar, the selections made by TPOT yield 
a higher average R2 and lower average RMSE and MAPE.

Discussion
Self-report questionnaires are recognized in clinical prac-
tice as effective tools for quantifying abstract concepts, 
aiding in assessments of disease risk [23–25]. As the use 
of questionnaires grows, there is an increased demand 
for them to possess strong predictive capabilities and to 
facilitate rapid disease determination. In this study, we 
utilized machine learning techniques for rapidly deter-
mining BCs.

The comparative analysis between AutoML and unsu-
pervised machine learning in terms of item selection for 
BC classifications and scores revealed a slight advantage 
for AutoML. The reason might be that the predictive tar-
gets were predefined dimensions of the CCMQ. Thus, 
AutoML are recommended for predicting original BC 
classifications or scores.

There was consistency among the different item selec-
tion procedures. Items 2 (i.e., tiredness), 6 (i.e., quietude), 
19 (i.e., cold aversion), 20 (i.e., localized hotness), 27 (i.e., 
forgetfulness), 39 (i.e., oily skin), 43 (i.e., dark circles), 50 
(i.e., flabby abdomen), and 52 (i.e., cold sensitivity) were 
selected by both supervised machine learning algorithms 
and varclus. These items were consistently selected 
because they may encompass information in other items 
within a given BC type. Given that constitutions are 
closely related to the development of certain diseases 
[26–29] special attention may need to be given to these 
factors for rapid disease prediction. For example, items 2 
(i.e., tiredness), 27 (i.e., forgetfulness), 19 (i.e., cold aver-
sion), 52 (i.e., cold sensitivity), and 20 (i.e., localized hot-
ness), which are related to the QDC, YaDC and YiDC, can 
be core predictors of chronic fatigue syndrome (CFS), 
generalized anxiety disorder, depression, and anemia [26, 
30–32]. Items 39 (i.e., oily skin) and 50 (i.e., flabby abdo-
men) are indicators of DHC and PDC, respectively, and 
can be used to predict the occurrence of metabolic dis-
eases and polycystic ovary syndrome [33–35].

Previous research simplified scales by calculating 
feature importance using supervised machine learning 
algorithms for predicting total scores with item scores 
and retaining items with high feature importance [16, 
17, 36]. However, this method faces the issue that dif-
ferent machine learning algorithms may assign items 
different weights [37]. We may select the appropri-
ate supervised machine learning algorithms before 

Table 4  Evaluation of varclus results based on the appropriate supervised machine learning methods

The specific meanings represented by the items are found in the supplementary materials

Subscale Items The BC classification as the target variable The BC score as the target variable

Algorithms AUC​ Accy F1 score Algorithms R2 RMAE MAPE

GTC​ 2, 27, 53 XGBClassifier 0.847 0.865 0.294 ZeroCount
RandomForestRegressor

0.676 9.143 14.470

QDC 2, 4, 6, 22, 26 RobustScaler
MLPClassifier
MLPClassifier

0.965 0.899 0.858 PolynomialFeatures
LassoLarsCV

0.888 5.602 17.021

YaDC 19, 22, 52, 55 MaxAbsScaler
RobustScaler
MLPClassifier

0.960 0.904 0.841 GradientBoostingRegressor
RidgeCV

0.866 8.608 35.056

YiDC 16, 20, 29, 44, 57 MLPClassifier 0.960 0.909 0.754 PolynomialFeatures
LassoLarsCV

0.817 6.593 29.433

PDC 50, 51, 58 MLPClassifier 0.924 0.867 0.719 RandomForestRegressor 0.694 9.188 38.755

DHC 39, 48, 60 ExtraTreesClassifier 0.934 0.874 0.765 RobustScaler
RBFSampler
LassoLarsCV

0.769 8.616 31.898

BSC 27, 33, 36, 37, 43 XGBClassifier
MLPClassifier

0.951 0.902 0.773 PolynomialFeatures
RidgeCV

0.843 6.567 23.705

QSC 10 MLPClassifier 0.855 0.820 0.611 AdaBoostRegressor 0.549 12.135 48.239

SDC 23, 25, 31 ZeroCount
MLPClassifier

0.963 0.950 0.672 XGBRegressor 0.777 7.206 42.381
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calculating feature importance, but this chosen algo-
rithm may not perform best when using the selected 
items to predict the original scores. In this study, we 
innovatively selected the best-performing model from 
those built using all possible combinations of items as 
input variables. Thus, the absolute improvement in the 
models’ predictive performance as the number of items 
used to predict the original BC classifications or scores 
increases can be calculated. For each possible number 
of items, the top three ranked item combinations in 
terms of predictive effectiveness, along with their cor-
responding algorithms, are listed in the supplemen-
tal material (Figure S1 and S2). Consequently, we can 
comprehensively understand the predictive capabilities 

of all possible item combinations and their correspond-
ing algorithms and assist practitioners in selecting item 
combinations based on their understanding of TCM 
theories and specific needs in scale development (e.g., 
required reliability and validity, test efficiency).

In summary, this study has significant implications 
for the BC identification in clinical practice. Firstly, 
the machine learning algorithms proposed in this 
study enable rapid BC identification based on a sub-
set of items. Secondly, by comparing different super-
vised and unsupervised machine learning algorithms, 
it is possible to gain deeper insights into how different 
items contribute to the various BC dimensions, thereby 
assisting clinical practitioners in achieving a more thor-
ough understanding of these dimensions.

Fig. 6  Comparison of prediction performance using the appropriate supervised machine learning for items selected based on TPOT and varclus. 
A The frequency of items selected based on TPOT and varclus. B Performance of items selected based on TPOT and varclus in predicting 
BC classifications using the appropriate supervised machine learning method. C Performance of items selected based on TPOT and varclus 
in predicting BC scores using the appropriate supervised machine learning method. In C, the RMSE measure is represented as RMSE/RMSEmax, 
and the MAPE is represented as MAPE/MAPEmax
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A major limitation of this study is the computational 
cost arising from the complexity of the algorithm com-
bined with the large volume of data. Therefore, future 
research should focus on optimizing algorithms to 
enhance their processing speed and efficiency in big 
data environments. Also, in the future, we can further 
optimize the rapid body constitution identification pro-
cess by integrating multimodal data, such as tongue 
and pulse diagnostics.

Conclusion
The items in the CCMQ were shown to have varying 
information weights. The use of highly important items 
may assist in the rapid determination of BCs. The use 
of supervised machine learning algorithms with all the 
possible item combinations for predicting BC classifi-
cations or scores achieved acceptable and stable predic-
tive performance. The top item combinations obtained 
by supervised machine learning algorithms for predict-
ing BC classifications or scores were identified so that 
other researchers can make selections according to 
their needs.
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