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Abstract

DNA damage response in HepG2 cells.

Background: Apigenin (4',5,7-trihydroxyflavone, AP), an active component of many medicinal Chinese herbs,
exhibits anticancer properties in vitro and in vivo. This study aims to investigate the genotoxic, cytostatic, and
cytotoxic effects of AP and time course changes in the levels of anti- and pro-apoptotic proteins involved in the

Methods: The genotoxic potential of AP was determined by sister chromatid exchanges (SCEs) and chromosomal
aberrations (CAs) analysis. The levels of cytostaticity and cytotoxicity were evaluated by the proliferation rate and
mitotic indices, respectively. MTT was used to study cytotoxicity, while the induction of apoptosis and the
expression of apoptosis-related proteins were determined by ELISA.

Results: At concentrations greater than 10 UM, AP decreased cell survival in a dose- (48 h: 10 vs. 20 uM, P < 0.001
and 20 vs. 50 uM, P=0.005; 72 h: 10 vs. 20 uM, P < 0.001 and 20 vs. 50 uM, P=0.001) and time-dependent manner
(20 uM: 24 vs. 48 h, P<0.001 and 48 vs. 72 h, P=0.003; 50 uM: 24 vs. 48 h, P < 0.001 and 48 vs. 72 h, P < 0.001; 100
UM: 24 vs. 48 h, P<0.001 and 48 vs. 72 h, P < 0.001). SCEs rates, cell proliferation, and mitotic divisions were also
affected in a dose-dependent manner (P < 0.001). There was no change in the frequency of aberrant cells (1 uM AP:
P=0.554; 10 uM AP: P=0.337; 20 uM AP: P=10.239). Bcl-2 levels were reduced 3 h after AP administration (P =0.003)
and remained reduced throughout the 48 h observation period (6 h, P=0.044; 12 h, P=0.001; 24 h, P=0.042; 48 h,
P=0.012). Bax and soluble Fas exhibited a transient upregulation 24 h after AP treatment. The Bax/Bcl-2 ratio was
also increased at 12 h and remained increased throughout the 48 h observation period.

Conclusion: AP exhibited dose-dependent genotoxic potential in HepG2 cells. The protein levels of sFas, Bcl-2, and

Bax were affected by AP to promote cell survival and cell death, respectively.

Background

Complementary and alternative medicine has potential
to provide new drugs for cancer treatment [1-3]. Plant-
derived anticancer agents have already been used in the
clinical practice, while many synthetic chemotherapeu-
tics are analogs of natural products [3]. Apigenin (AP) is
a bioflavone found in many Chinese medicinal herbs,
such as Wedelia chinensis, Ixeris chinensis, Apium
graveolens var. dulce, Scutellaria barbata, Andrographis
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paniculata, Chrysanthemum morifolium, and Ginkgo
biloba [1,4-10]. In vitro and in vivo studies have demon-
strated that AP possesses antioxidant [11,12], anti-
inflammatory [13], and anticancer [14-16] properties,
inhibiting tumor growth and inducing cell cycle arrest
and apoptosis [17-20]. The anticancer properties of AP
are associated with its pro-oxidant activity, with concen-
trations depending upon cell type [21-23]. AP promoted
oxidative stress at 15 uM in human cervical carcinoma
HeLa cells [21], at 50 pM in human promyelocytic
leukemia HL-60 cells [22], and at 25 pM in Chang liver
cells [23].

AP induced apoptosis in the hepatic parenchyma
[24-29], and exhibited antiproliferative and apoptotic
properties in HepG2, Hep3B and PLC/PRF/5 human
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liver cancer cell lines [25-28]. Its antiproliferative and
apoptotic effects might be mediated through a p53-
dependent pathway by p53 accumulation, induction of
p21 expression, and downregulation of CDK4 expression
[25,29]. Generation of reactive oxygen species (ROS)
might also play an important role in AP-induced apop-
tosis by transcriptionally downregulating catalase activity
and increasing hydrogen peroxide levels [27,28]. Cell
death induction has also been associated with Bax/Bcl-2
ratio changes, cytochrome c release, and Apaf-1 induc-
tion, leading to caspase activation and PARP-cleavage in
leukemia, prostate carcinoma, lung cancer, and cervical
carcinoma cells [19,30-33].

Although the properties of AP against various pro-
oxidant and clastogenic agents have been studied
[11,34-36], there is little information on the genotoxic
potential of this particular flavonoid. AP was highly
clastogenic in Chinese hamster V79 cells and induced
micronuclei formation in human peripheral lymphocytes
in a dose-dependent manner [37,38]. Other reports
mentioned that AP could intercalate into both calf thy-
mus DNA and RNA [39,40]. The generation of DNA
single-strand (SSBs) and double-strand breaks (DSBs) by
DNA-crosslinking agents [41,42], could lead to sister
chromatid exchanges (SCEs) or chromosomal aberra-
tions (CAs) [43]. An in vivo and in vitro study demon-
strated that AP can remodel chromatin by inhibiting
class I histone deacetylases. This affects regulation,
expression, and activation of various DNA damage
response genes, which results in cell cycle arrest, and
apoptosis. These affected genes include ATM and ATR,
which participate in DSBs repair via homologous recom-
bination [44,45].

The SCEs assay is a sensitive, simple, and rapid
method to detect DNA damage and repair at low con-
centrations of potential genotoxic or anti-genotoxic
agents [43,46-49]. SCEs represent a useful tool in moni-
toring and improving chemotherapeutic strategies
in vitro and in vivo [48,50-54]. The efficacy of potential
antitumor agents in inducing SCEs formation in vitro
and in vivo correlates positively with the in vivo tumor’s
response to these agents [55,56]. CAs analysis is another
genotoxic endpoint [43,46]. A high frequency of CAs
can lead to cell death, and it has been associated with in-
creased overall cancer risk [43,46,57,58].

AP’s ability to intercalate into DNA, remodel chromatin,
and upregulate p53 and p21 proteins [25,39,40,44,59-61]
directed us to study the genotoxic potential of this flavon-
oid in HepG2 cells. We also investigated the proliferation
rate index (PRI) and the mitotic index (MI), markers of
the cytostatic and cytotoxic properties of chemical and
physical agents, respectively [49]. The time course changes
in the levels of anti- and pro-apoptotic proteins involved
in the DNA damage response were also investigated.

Page 2 of 8

Methods

Chemicals

Apigenin (4',5,7-trihydroxyflavone) was purchased from
Calbiochem (San Diego, CA, USA). Bovine serum albumin,
Bradford reagent, dimethyl sulfoxide (DMSO), and 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl  tetrazolium bromide
(MTT) were purchased from Sigma (St. Louis, MO, USA).
5-bromodeoxyuridine and bisbenzimide H33258 were pur-
chased from AppliChem (Darmstadt, Germany). High
glucose Dulbecco’s modified Eagle’s medium (DMEM),
trypsin-EDTA  solution, colcemid, fetal bovine serum
(EBS), and penicillin/streptomycin solution (10,000:10,000)
were purchased from GIBCO (Carlsbad, CA, USA). Cell
death detection ELISA™* kit was purchased from Roche
(Mannheim, Germany). Human sFas and human sFas
ligand ELISA kits were purchased from R&D systems
(Minneapolis, MN, USA). Human Bax ELISA kit was pur-
chased from Assay Designs, Inc. (Ann Arbor, MI, USA)
and human Bcl-2 ELISA kit was purchased from Bender
Medsystems (Vienna, Austria).

Cell cultures

HepG2 cells were maintained in DMEM supplemented
with 10% FBS and 1% penicillin/streptomycin solution,
in a 37°C humidified incubator under an atmosphere of
5% CO,. On attaining 75-80% confluency the cells were
subcultured by trypsinization and then seeded in appro-
priate cell numbers depending on the type of the experi-
ments. All experiments took place 24 h after seeding.

Cytotoxicity assay

The cytotoxic potential of AP was evaluated at 24, 48, and
72 h by the MTT method. HepG2 cells were seeded in 96-
well plates at a density of 10* cells per well in 100 L of
complete culture medium. Cells were incubated with 0.1,
1, 5, 10, 20, 50, and 100 uM of AP or 0.1% DMSO (vehicle
control). AP stock solution was prepared in DMSO and di-
luted in complete culture medium to the desired concen-
trations (0.1, 1, 5, 10, 20, 50, and 100 uM). At each time
point, eight replicate cultures for each concentration were
studied in three independent experiments. At the end of
the specified incubation period (24, 48, and 72 h), the
medium was discarded and each well received 200 pL of
fresh medium containing 20 pL of MTT solution (5 mg/ml
in phosphate buffered saline) for 4 h. MTT crystals were
dissolved by adding 100 pL 0.04 M HCL/isopropanol, for
fifteen minutes at 37°C. Absorbance was determined at 570
nm by an ExpertPlus microplate reader (ASYS Hitech
GmbH, Austria). Absorbance was normalized to vehicle-
treated control cultures (equivalent to 100% cell viability).

SCEs and CAs analysis
For SCEs and CAs determination, 2x 10° cells were
treated with 1, 10, 20, and 50 uM of AP and 5 pg/mL of
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5-bromodeoxyuridine for 72 h. Colcemid was added to
all cultures 24 h before metaphase harvesting. At the
end of the incubation period, the cells were scraped
and centrifuged (Z300, Hermle Labortechnik GmbH,
Germany) at 200 x g for 10 min. Pelleted cells were
then treated with 5 mL of hypotonic KCIl solution
(0.075 M), at 37°C for 25 min. Fixative solution (3:1,
methanol:acetic acid) was added to the cell suspension
and was followed by another centrifugation at 200 x g for
10 min. The pellet was washed three times in fixative solu-
tion and stored at —20°C until further assayed. All treat-
ments were examined in three independent experiments.

Fluorescence plus Giemsa

SCEs were visualized by a modified fluorescence plus
Giemsa (FPG) technique [62]. Metaphase spreads were
incubated in bisbenzimide H33258 solution (0.1 mg/mL)
for 20 min at room temperature. A few drops of
Mcllivaine’s buffer (pH 8; 0.1 M citric acid and 0.2 M
disodium phosphate) were applied to each slide and
overlaid with a coverslip. After that, the slides were ex-
posed to UV light for 90 min and stained with 7%
Giemsa solution in Gurr buffer (pH 6.8).

Since the number of chromosomes in HepG2 cells var-
ies from 50 to 60 (modal number: 55), the SCEs/
chromosome rate was estimated. SCEs were evaluated in
more than 60 well-spread second-division metaphases
for each treatment. CAs were evaluated in 300 first div-
ision metaphases for each treatment. The criteria to
classify different types of aberrations were in accordance
with the recommendations of IPCS guidelines [43]. CAs
were classified as chromatid gaps (chtg), chromatid
breaks (chtb), chromosome gaps (chrg), chromosome
breaks (chrb), ring (r), and dicentric chromosomes (d).
Gaps were not included in the determination of total ab-
errant cells per treatment. Scoring was performed in a
blind fashion.
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PRI and MI assessment

For PRI and MI determinations, more than 450 cells and
4,500 nuclei were scored for each treatment, respect-
ively. The proportion of cells in the first, second, third,
or subsequent mitotic division was evaluated to deter-
mine the PRI. PRI was established according to the fol-
lowing formula:

PRI = (XM, + 2 * EM, + 3 * ZM3,)/N

where XM, is the sum of cells in the first mitotic div-
ision, XM, in the second and XMsj, in the third or sub-
sequent mitotic divisions, while N is the total number of
cells scored [63]. MI was expressed as the number of
cells at metaphase per 1,000 analyzed nuclei (%o).

Assessment of apoptosis

As an index of apoptosis, cytoplasmic histone-associated
DNA fragments were photometrically determined by the
Cell Death Detection ELISA™ kit according to the
manufacturer’s instructions. Ten thousand cells per well
were seeded in 96-well plates and treated with AP (20 uM)
for 24 h (six replicate cultures). Cells were lysed and
centrifuged at 130 x g. Supernatants were transferred
into a streptavidin-coated microplate and simultan-
eously incubated with a monoclonal mouse biotinylated
anti-histone antibody (clone H11-4) and a monoclonal
mouse peroxidase-conjugated anti-DNA antibody (clone
MCA-33) at room temperature for 2 h. DNA-histone com-
plex was used as a positive control. Absorbance was deter-
mined at 405 nm by an ExpertPlus microplate reader.
Background values were subtracted from the measurements.

Determination of sFas, mFasL, sFasL, Bcl-2, and Bax
protein levels

Protein levels of soluble Fas (sFas), membrane-bound Fas-
Ligand (mFasL), soluble Fas-Ligand (sFasL), Bcl-2, and
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Figure 1 The effect of apigenin on cell viability and induction of apoptosis. A. The cytotoxic and antiproliferative effect of apigenin in
HepG2 cells. B. The apoptotic potential of apigenin (20 uM) after 24 h of treatment. The star (*) indicates statistical significance compared with
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Table 1 The effect of apigenin on the frequency of chromosomal aberrations

No. cells % of aberrant cells Chromosomal aberrations/cell
scored (& SD) chtg chtb/f chrg chrb/f r d
Untreated control 300 558+ 1427 0.16+0.03 051+0.15 0.10+£007  020+0.15 0.035+0.03 0.010+0.01
Vehicle control 300 60.5 £+ 5.05 0.15+0.09 063£0.19 0.05+0.03 0.32£0.06 0.003 +0.01 0.003 +£0.01
AP (1 uM) 303 562+1257 0.08+0.01 049+009  005%003 027+£0.18  0013+£002 0.003+0.01
AP (10 um) 300 682+ 1388 0.13+£0.07 063+0.12  006+0.02 033+£016  0022+003 0.000 + 0.00
AP (20 uM) 300 66.0 £6.60 0.16£0.06 0.56 £0.05 0.07 £0.03 041 £0.03 0.024+0.02 0.010£0.01

chtg: chromatid gap; chtb: chromatid break; f: fragment; chrg: chromosome gap; chrb: chromosome break; r: ring; d: dicentric.

Bax were determined by ELISA according to the manufac-
turers’ instructions. HepG2 cells were treated with 20 uM
of AP for 1, 3, 6, 12, 24, and 48 h. Soluble Fas, sFasL, and
mPFasL protein levels were evaluated in the supernatant or
cell lysate of 1 x 10° cells/mL. Bcl-2 and Bax protein levels
were determined in 5 x 10° cells/mL and 62,500 cells/mL
cell lysates, respectively. Bradford protein assay was used
for total protein determination. Protein levels were inter-
polated from the corresponding standard reference cali-
bration curves. Three independent experiments took
place at all time points.

Statistical analysis

Data were expressed as mean + standard deviation (SD).
SCEs and CAs values were logarithmically transformed
before further analysis because data were not normally
distributed. Statistical analysis was performed by Stu-
dent’s t-test for individual comparisons between control
and apigenin-treated cultures. Multiple comparisons
among various AP treatments were carried out by one-
way ANOVA followed by Bonferroni’s post hoc test.
Linear regression analysis was used to determine dose—
response relationships. Pearson’s correlation coefficient
was also determined. All statistical analyses were
performed by SPPS version 16 (IBM, USA). All tests
were two-tailed and P values less than 0.05 were consid-
ered statistically significant. For Student’s z-test, signifi-
cance levels were adjusted to 0.01 to reduce the overall
Type I error.

Results and discussion

AP concentrations ranging from 10 to 50 uM at 48 and
72 h showed a dose-response relationship of cell
survival (48 h: 10 vs. 20 pM, P <0.001 and 20 vs. 50 pM,
P=0.005; 72 h: 10 vs. 20 uM, P <0.001 and 20 vs. 50 puM,
P=0.001), while AP concentrations ranging from 20—
100 uM showed a time-dependent decrease (20 uM: 24
vs. 48 h, P<0.001 and 48 vs. 72 h, P=0.003; 50 uM: 24
vs. 48 h, P<0.001 and 48 vs. 72 h, P<0.001; 100 puM:
24 vs. 48 h, P<0.001 and 48 vs. 72 h, P<0.001) (48 h:
IC50=34.58 pM; 72 h: IC50=18.80 uM) (Figure 1A).
Similar results were reported by Chiang et al. [25] and
Choi et al. [27], who studied the antiproliferative effect

of AP in HepG2 cells. In agreement with Khan et al.
[26], AP induced apoptosis at 24 h, eliciting an 11-fold
increase in cytoplasmic histone-associated DNA frag-
ments (P <0.001) (Figure 1B).

AP (100 uM) induced DNA damage in Chinese hamster
V79 cells and increased the frequency of micronuclei and
CAs (concentrations higher than 37 pM) in human per-
ipheral lymphocytes [34,36-38,64,65]. In our study, we
observed no effect on the frequency of aberrant cells
(Table 1) but we noticed an increase in the frequency of
SCEs at much lower concentrations (10 and 20 puM).
However, 50 uM of AP was highly cytotoxic, making SCEs
evaluation impossible (Table 2). This could be attributed
to the high sensitivity of the SCEs method for detecting
DNA damage and repair at doses that have little or no ef-
fect on CAs frequency [46-49,66]. Moreover, the inde-
pendent mechanisms leading to SCEs and CAs formation
[46,67-69] and the use of different cell systems could ac-
count for the differences. HepG2 cells have a polymorphic
genetic profile with a variety of structural and numerical
chromosomal abnormalities [70-72]. Sixty-seven breakpoints
were identified in liver cancer cell lines including HepG2
cells [72]. Zimonyjic et al. [71] performed comparative gen-
omic hybridization analysis in 18 liver cancer cell lines and
reported that regions exhibiting gain or loss, ranged from
whole chromosome arms to a medium band of a 400-band

Table 2 The genotoxic, cytostatic, and cytotoxic potential
of apigenin

Agents SCEs/chromosome * SD PRI MI (%o0)
(range of values)
Untreated 0.17 £ 0.08 (0.04-0.42) 264+003  763+950
control
Vehicle control 0.15£0.08 (0.03-0.33) 265+006 873+2020
AP (1 uM) 0.15£0.09 (0.04-0.42) 261+0.10  63.0+1952
AP (10 uM) 0.22 +0.14*% (0.03-0.69) 252013  570+2284
AP (20 pM) 026 +£0.12°€ (007-064) 209+0.12*¢ 327 +796*
AP (50 pM) ND ND 93+757*

*P <0.01 vs. vehicle control; °P < 0.01 vs. 1 uM; 5P <0.001 vs. 1 uM; P < 0.05 vs.
10 uM; 9P <0.001 vs. 1 and 10 pM; °P<0.01 vs. 1, 10 and 20 uM. ND: values
could not be determined.
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Table 3 The effect of apigenin on cell cycle kinetics

Mean (+ SD) number of cells in the 1%, 2", 374,

Agents and subsequent mitotic divisions
15t ond grd+
Untreated control 43+1.15 39.0+954 89.7 £20.55
Vehicle control 50+£265 420+1044 103.0£9.17
AP (1 uM) 40+265 50.0£9.54 973+ 14.05
AP (10 uM) 74+ 365 572+1657 852+17.34
AP (20 pM) 202+540%°F  894+2038* 342+ 1645%*9

*P <0.01 vs. vehicle control; °P < 0.01 vs. 1 uM; bp < 0.05 vs. 10 pM; P < 0.05
vs. 1 and 10 pM; 9P <0.01 vs. 10 uM.

ideogram. These previous findings could justify the high fre-
quency of aberrant cells found in the control groups in the
present study.

Linear regression analysis revealed a dose—response
relationship between AP and SCEs frequencies, cell
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proliferation, and mitotic divisions (R = 0.798, R* = 0.636,
P<0.001; R=-0.883, R*=0.781, P<0.001; R=-0.820,
R?=0.672, P<0.001, respectively). AP concentration
was positively correlated with the first and second mitotic
division metaphases (R =0.837, R*=0.700, P <0.001;
R=0.768, R* = 0.589, P < 0.001, respectively), while the
third and subsequent mitotic division metaphases were
negatively correlated (R=-0.867, R*=0.751, P <0.001)
with AP (Table 3). The flavonoid’s genotoxic potential
was correlated with increased cytostaticity (SCEs vs.
PRI: R =-0.582, R*=0.339, P=0.018) and cytotoxicity
(SCEs vs. ML: R = -0.573, R* = 0.329, P = 0.032).

DSBs are repaired by homologous recombination, in
which SCEs play an important role [73-75]. lijima et al.
[76] reported that NBS1, a protein involved in cellular
responses to DSBs [77], regulated Bax activation in DNA
damage-induced apoptosis. Furthermore, pro-apoptotic
BAX could comprise a p53 downstream target gene
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through the direct binding of p53 to cofactors ASPP1
and ASPP2 [78,79]. Bcl-2 could protect cells against cell
death induced by ionizing radiation, alkylating agents,
and various chemotherapeutic drugs [80-83]. Formation
of DSBs by severe DNA damage triggered Bcl-2 decline
and activated caspase-9 and caspase-3 [84]. In our study,
AP treatment affected both Bcl-2 and Bax protein levels.
Bcl-2 expression was downregulated at 3—48 h (Figure 2B).
Bax levels were significantly lower in apigenin-treated cells
at 1 and 3 h (P=0.003 and P<0.001, respectively)
(Figure 2C). At 24 h, Bax expression was significantly
upregulated compared with the corresponding vehicle-
treated cultures (P =0.005) and the respective 12 h of
treatment (P=0.001). Bax’s upregulation was transient
and significantly reduced to the corresponding control
cultures levels after 48 h. The Bax/Bcl-2 ratio, which is in-
dicative of the mitochondrial induced apoptotic potential,
exhibited a noticeable increase from 12-48 h of treatment
(Figure 2D). Similar changes in the Bax/Bcl-2 ratio were
observed in human lung A549 cancer cells and human
prostate carcinoma DU145 cells [32,33].

Genotoxic agents could lead to cell death through the
Fas/FasL. mediated apoptotic pathway [85,86]. In the
present study, mFasL and sFasL were undetectable at all
time points in all cultures. Nevertheless, sFas increased
in a time-dependent manner in untreated and treated
cultures (Control cultures: 6 vs. 12 h, P=0.005; 12 vs.
24 h, P=0.001. Apigenin treatment: 3 vs. 6h, P =0.021;
6 vs. 12 h, P=0.001; 12 vs. 24 h, P=0.001; 24 vs. 48 h,
P=0.001) (Figure 2A). AP increased sFas levels at 1
and 24 h, compared with the corresponding control cul-
tures (P =0.002 and P =0.001, respectively). Upregulation
of sFas at 24 h, was transient and significantly reduced
at 48 h, compared with the respective 24 h treatment
(P=0.001) and the corresponding control cultures (P =
0.001). There are no previous reports on the effect of AP
on alternatively spliced FAS. Fas-mediated signaling is not
limited to inducing cell death, and its expression in vari-
ous cell types does not always correlate with susceptibility
to the Fas-mediated apoptotic pathway [86,87]. Alterna-
tively, spliced FAS variants, which encode soluble forms of
the receptor, could inhibit apoptosis [88-90]. Because of
the sharp Bcl-2 downregulation at 12 h, sFas upregulation
might represent a rescuing mechanism as a means to pre-
vail over cell death signals. Filippov et al. [91] reported
that cells in response to exogenous stress, such as the
effect of a genotoxic agent, regulated the expression of
specific splicing factors, altering the splicing profile of
target genes such as CD44 and FAS. Since ROS induce al-
ternative splicing, it is possible that free oxygen radical
generation by AP could justify the induction of sFas
expression [27,92,93]. AP’s intercalation into DNA/RNA
might have also contributed to these changes in the
expression of FAS.

Page 6 of 8

Conclusion
AP exhibited dose-dependent genotoxic potential that
led to changes in sFas, Bcl-2, and Bax protein levels in
HepG2 cells.
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