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Abstract 

Background:  The concept of syndromes (zhengs) is unique to Chinese medicine (CM) and difficult to measure. 
Expert consensus is used as a gold standard to identify zhengs and evaluate the accuracy of existing diagnostic scales 
for zhengs. But, the use of expert consensus as a gold standard is problematic because the diagnosis of zhengs by 
expert consensus is not 100 % accurate. This study aimed to evaluate the accuracy of standardized diagnostic scales 
for a syndrome zhengs in the absence of a gold standard, with application to internal wind (nei feng) syndrome in 
ischemic stroke patients.

Methods:  A total of 204 participants (age 41–84 years) with ischemic stroke were assessed by the stroke syndrome 
differentiation diagnostic criterion (SSDC), ischemic stroke TCM syndrome diagnostic scale (ISDS), and expert syn‑
drome differentiation (ESD). The diagnostic tests and data collection process were conducted over a 10-month period 
(February 2008 to November 2008) in 10 hospitals across nine cities in China. The Bayesian method was used to 
estimate the accuracy of the SSDC, ISDS, and ESD.

Results:  For internal wind syndrome, the estimated sensitivities and specificities of the SSDC, ISDS, and ESD with‑
out use of a gold standard were respectively: Ŝe1 = 0.687, Ŝp1 = 0.776; Ŝe2 = 0.884, Ŝp2 = 0.875; and Ŝe3 = 0.813, 
Ŝp3 = 0.922

Conclusion:  After adjusting for imperfect gold standard bias, we found that both the sensitivity and specificity of the 
ISDS were higher than those of the SSDC for diagnosis of internal wind syndrome in ischemic stroke patients.
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Background
The concept of syndromes (zhengs) is unique to Chinese 
medicine (CM). Syndromes are identifiable from a holis-
tic understanding of a patient’s clinical presentation using 
the four CM diagnostic methods: observation, listening/
smelling, questioning, and pulse analyses [1]. Identifica-
tion of a syndrome can differ from one CM practitioner to 
another because of varying medical experience and other 
related factors. In recent years, the CM community has 

developed several standardized diagnostic scales for syn-
dromes [2–5]. The accuracies of these scales have been 
assessed by the diagnostic opinion of CM practitioners as 
the gold standard. However, an expert diagnosis is largely 
dependent on clinical experience and educational back-
ground, leading to different syndrome differentiation for 
the same patient by different expert CM practitioners. 
This results in biased estimates for the accuracy of diag-
nostic scales because the expert syndrome differentiation 
(ESD) is imperfect. Such bias is called an imperfect gold 
standard bias [6, 7]. If the diagnostic test and imperfect 
gold standard are conditionally independent of the true 
disease status, the sensitivity and specificity of the diag-
nostic test are underestimated. However, if the diagnos-
tic test and imperfect gold standard are conditionally 
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dependent, the estimated sensitivity and specificity of 
the diagnostic test can be biased in either direction. The 
direction of the bias is determined by the degree to which 
the diagnostic tests and imperfect gold standard misclas-
sify the same patients. When this tendency is slight, the 
accuracy of the diagnostic test is generally underesti-
mated; when the tendency is strong, the accuracy of the 
diagnostic test is generally overestimated [6].

In recent years, several statistical methods have been 
developed to correct imperfect gold standard bias. Hui 
and Waiter [8] developed a model for two diagnostic 
tests within two populations and introduced a maxi-
mum likelihood approach when assuming the existence 
of two populations strata with different prevalence rates. 
In that model, they also assumed that the two tests were 
conditionally independent. However, the assumption of 
conditional independence may not be realistic in some 
applications owing to some common factors that can 
influence both diagnostic tests and true disease status. 
Sinclair and Gastwirth [9] extended the Hui and Waiter 
model to allow for conditional dependence. Espeland 
and Handelman [10] and Yang and Becker [11] proposed 
latent class modeling for conditional dependence, Qu 
et al. [12], Hadgu and Qu [13] proposed random effects 
models, and Albert and Dodd [14] developed latent class 
modeling approaches for binary tests. Pepe and Janes [15] 
discussed the latent class analysis method when assess-
ing the multiple diagnostic tests without a gold standard, 
and concluded that a latent class model required careful 
justification of assumptions made about the conditional 
dependence structure. These researchers also stressed 
that a formal clinical definition of the disease should be 
given before evaluating the accuracy of diagnostic tests 
with the latent class method. Only when the disease has 
been clearly defined can the estimated parameters be 
meaningful for diagnostic tests; otherwise, the results of 
the estimators were meaningless. The above-mentioned 
methods used the frequentist approach to estimate the 
parameters in the model when the diagnostic tests were 
conditionally independent, given the true disease status 
or given the true disease status and a random effect.

Joseph et al. [16] used Bayesian methods to assess the 
accuracy of diagnostic tests under conditional independ-
ence without a gold standard. Dendukuri [17], Georgiadis 
et  al. [18], and Branscum et al. [19] developed Bayesian 
models to evaluate the accuracy of diagnostic tests with 
two conditionally dependent tests. These methods have 
been widely used for estimation of the accuracy of diag-
nostic tests without a gold standard in Western medicine 
research [20–27]. However, they have not been applied 
for estimation of the accuracy of diagnostic tests for CM 
syndromes. This study aimed to evaluate the accuracy 
of standardized diagnostic scales for a syndrome in the 

absence of a gold standard, with application to internal 
wind (nei feng) syndrome in ischemic stroke patients.

Methods
Study design and approval
In this study, we evaluated the accuracy of the stroke 
syndrome differentiation diagnostic criterion (SSDC), 
ischemic stroke TCM syndrome diagnostic scale (ISDS), 
and ESD for detecting “internal wind” in ischemic stroke 
patients, without assuming that the ESD is the gold 
standard. We mainly focused on comparing the accuracy 
of the two diagnostic scales (SSDC and ISDS).This study 
used data from the second round of a diagnostic test 
study of the ISDS. The diagnostic test and data collection 
process were performed over a 10-month period (Feb-
ruary 2008 to November 2008), after receiving approval 
(ECSL-BDY-2008-012) from the Ethics Committee of the 
Dongzhimen Hospital of Beijing University of Chinese 
Medicine (Additional files 1 and 2).

Inclusion and exclusion criteria
Individuals who had a confirmed diagnosis of acute 
ischemic stroke by computed tomography and mag-
netic resonance imaging examinations, were aged 
between 35 and 85 years, and were informed of the 
objectives and research procedures of the study (details 
of study please see Additional file  3) and provided 
signed consent forms themselves (consent forms please 
see Additional file 4) were selected as the participants 
in this study [5]. We excluded individuals with the fol-
lowing symptoms: transient ischemic attack; cerebral 
hemorrhage or subarachnoid hemorrhage; stoke caused 
by brain tumor, traumatic brain injury, or blood dis-
ease; severe heart, liver, kidney, or hematopoietic sys-
tem comorbidity and complication; mental disorder or 
severe dementia; and severe aphasia that could affect 
data collection [5].

Study subjects
The final data set comprised 204 patients from 10 hos-
pitals across nine cities in China [4, 5]. All of the partici-
pants (age 41–84 years ) were diagnosed with ischemic 
stroke. The mean age of the patients was 65 years, and 
the mode age was 74 years. The subjects were diagnosed 
as “0” or “1” by each of the SSDC, ISDS, and ESD. The 
detailed results of the cross-classification of the three 
diagnostic tests for internal wind syndrome in the 204 
ischemic stroke participants are shown in Table  1. The 
CM syndrome factor scales (SSDC and ISDS) of the 
symptoms and signs, and the ESD were separately com-
pleted on the same day. In this study, an expert was 
defined as a physician, who had the clinical title of dep-
uty director or above and also had more than 10 years of 
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clinical work experience in diagnosing and curing stroke 
disease with traditional CM.

CM syndrome factor scales and syndrome differentiation
The SSDC and ESD were used to diagnose the status of 
a patient in place of a gold standard, before the devel-
opment of the ISDS. The SSDC was the first recognized 
scale for diagnosing a CM syndrome in ischemic stroke 
patients, and has been widely used since its publication 
in 1994 [2, 3]. The development of the ISDS was based on 
the SSDC. Essentially, the ISDS is an updated version of 
the SSDC [3], and was first developed in 2007. The simple 
process for developing the ISDS has been described in 
the published literature [3, 4]. Briefly, the ISDS was devel-
oped from a two-round Delphi study, which generated a 
pool of draft items with 288 items in six syndrome fac-
tor dimensions [4]. From this pool of items, six syndrome 
factor diagnostic scales were constructed according 
to logistic regression functions and receiver-operating 
curve analysis. Each syndrome factor diagnostic scale 
consisted of 10–20 “yes” or “no” statements. The ESD was 
completed by three senior physicians with over 10 years 
of work experience [4, 5]. When the practitioners failed 
to reach a unanimous decision about a patient’s diagno-
sis, the majority opinion was used.

Statistical methods
Descriptive statistics were utilized to summarize the 
characteristics of the subjects in the data set. The latent 
class model was fitted to the results of the SSDC, ISDS, 
and ESD for the ischemic stroke patients when a gold 
standard was not available. The Bayesian method was 
used to estimate the sensitivity and specificity for every 
CM diagnostic scale. We followed the guidelines for 
reporting Bayesian analyses in biomedical journals, as 
described by Lang and Altman [28].

Using the reporting guidelines, we first described the 
general Bayesian statistical model. Next, we specified the 
pre-trial probabilities (prior distributions) for the param-
eters in the proposed model based on the data we wanted 
to analyze and also explained how the prior distribu-
tions were selected. Subsequently, we used Markov chain 
Monte Carlo (MCMC) techniques to obtain the Bayesian 

estimated parameters, based on the posterior distribu-
tion. The median and credibility interval were used as 
the posterior summary measures in this study. Finally, we 
illustrated the sensitivity of the analyses to different prior 
distributions in the Bayesian model.

IBM SPSS Statistics for Windows [version: 21.0; IBM 
Crop; NY] was utilized for the descriptive statistics. Win-
BUGS software [version: 1.4.3; BUGS project; UK] was 
used for the Bayesian data analysis (WinBUGS code for 
this study could be found in Additional file 5). A detailed 
description of the proposed Bayesian method for evalu-
ating the accuracy of the diagnostic tests without a gold 
standard is given as below.

Notation
Let T1, T2, and T3 denote the diagnostic results of the two 
CM diagnostic tests (SSDC and ISDS) and ESD for one 
syndrome factor in ischemic stroke patients, where T1, 
T2, and T3 = 0, 1, with “1” indicating the presence of the 
syndrome factor and “0” indicating the absence of the 
syndrome factor. Let D denote the true status of the syn-
drome factor in an ischemic stroke patient, which is not 
observed in the study. The parameters of interest include: 
the prevalence of the syndrome factor in the population, 
π, defined as π = P(D = 1); the sensitivity of the ith diag-
nostic test in detecting the syndrome factor, Sei, defined 
as Sei = P(Ti = 1|D = 1); and the specificity of the ith 
diagnostic test for detecting the syndrome factor, Spi, 
defined as Spi = P(Ti = 0|D = 0), where i = 1, 2, 3.

Bayesian model
Assume that there are n participants in the sample and 
three test results for every subject. We represent the 
observed data as Y = (Yt1,t2,t3), where Yt1,t2,t3 is the num-
ber of subjects with T1 = t1, T2 = t2, and T3 = t3; here 
t1, t2, t3 = 0, 1. For example, Y111 denotes the number of 
subjects whose diagnostic results for all three tests indi-
cate that the syndrome factor is present. Correspondingly, 
pt1,t2,t3 represents the joint probability of the outcome 
(T1 = t1,T2 = t2,T3 = t3), which is defined as follows:

Among the three tests in this study, the first two tests 
represent the diagnostic results of the SSDC and ISDS, 
respectively, and the last test represents the diagnos-
tic result of the expert opinion, called the ESD. Since the 

(1)

pt1,t2,t3 = P(T1 = t1,T2 = t2,T3 = t3)

= P(T1 = t1,T2 = t2,T3 = t3|D = 1)× P(D = 1)

+ P(T1 = t1,T2 = t2,T3 = t3|D = 0)× P(D = 0)

= P(T1 = t1,T2 = t2,T3 = t3|D = 1)× π

+ P(T1 = t1,T2 = t2,T3 = t3|D = 0)× (1− π).

Table 1  Cross-classified test results of  T1, T2 and  T3 for   
internal wind syndrome

T1 T2 = 1 T2 = 0

T3 = 1 T3 = 0 T3 = 1 T3 = 0

T1 = 1 69 19 7 12

T1 = 0 32 9 5 51
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two diagnostic scales consist of standardized question-
naires, while the ESD is based on the individual opinion 
of expert CM practitioners, it is reasonable to assume that 
the CM expert and the diagnostic scales err independently 
(i.e., they are conditionally independent, given the true 
CM syndrome status). Nevertheless, the two diagnostic 
scales do not err independently (i.e., they are condition-
ally dependent, given the true CM syndrome status). Such 
dependence is measured by the conditional dependence 
correlations, given the true CM syndrome status. Hence, 
we assume that T3 is independent of T1 and T2 condi-
tional on D, while we allow T1 and T2 to be conditionally 
dependent, given D. Let C+ and C− denote the covari-
ance between T1 and T2 among the CM syndrome posi-
tive and negative individuals, respectively. In other words, 
C+ = cov(T1,T2|D = 1) and C− = cov(T1,T2|D = 0) . 
Such a model has also been studied by Dendukuri and 
Joseph [17]. To present the Bayesian method, we need to 
compute the likelihood function of the observed data. Note 
that we can respectively write P(T1 = t1,T2 = t2|D = 1) 
and P(T1 = t1,T2 = t2|D = 0) as follows:

Consequently, we can rewrite the joint probability of the 
outcome (T1 = t1, T2 = t2, T3 = t3) as follows:

Let Y = (Y111,Y110,Y101,Y100,Y011,Y010,Y001,Y000) , the  
observed data, and θ = (Se1, Sp1, Se2, Sp2, Se3, Sp3,π ,C+

,

C−), which represents the set of parameters in the model. 
According to (2), the likelihood function based on the 
observed data is:

P(T1 = t1,T2 = t2|D = 1)

=

2∏

i=1

Se
ti
i (1− Sei)

(1−ti) + (−1)t1+t2C+,

P(T1 = t1,T2 = t2|D = 0)

=

2∏

i=1

Sp
(1−ti)
i (1− Spi)

ti + (−1)t1+t2C−.

(2)

pt1,t2,t3 = P(T1 = t1,T2 = t2|D = 1)

× P(T3 = t3|D = 1)× π

+ P(T1 = t1,T2 = t2|D = 0)

× P(T3 = t3|D = 0)× (1− π)

= π

[
2∏

i=1

Se
ti
i (1− Sei)

(1−ti) + (−1)t1+t2C+

]

× [Se
t3
3
(1− Se3)

(1−t3)]

+ (1− π)

[
2∏

i=1

Sp
(1−ti)
i (1− Spi)

ti + (−1)t1+t2C−

]

× [(1− Sp3)
t3Sp

(1−t3)
3

].

To use the Bayesian method to estimate the vector of 
the parameters, θ, we need to specify a prior distribu-
tion for θ. Let f (θ) denote the prior distribution of θ.  
The Bayesian method combines the prior information 
about θ with the data we have collected, and then uses 
the Bayes theorem to obtain an interpretable posterior 
distribution for θ. We can use the median of the poste-
rior distribution to estimate θ. According to the Bayes 
theorem, the joint posterior distribution f (θ |Y ) of the 
parameter θ given the observed data Y can be written as 
follows:

where

and

(3)

L(θ |Y ) =
∏

t1,t2,t3

p
Yt1,t2,t3
t1,t2,t3

=
∏

t1,t2,t3

{

π

[ 2∏

i=1

Se
ti
i (1− Sei)

(1−ti) + (−1)t1+t2C+

]

×
[

Se
t3
3
(1− Se3)

(1−t3)
]

+ (1− π)

[ 2∏

i=1

Sp
(1−ti)
i (1− Spi)

ti

+ (−1)t1+t2C−

]

×
[

(1− Sp3)
t3Sp

(1−t3)
3

]}Yt1,t2,t3

(4)f (θ |Y ) =
L(θ |Y )f (θ)

∫
L(θ |Y )f (θ)dθ

=
A

B
,

A = f (θ)
∏

t1,t2,t3

{

π

[ 2∏

i=1

Se
ti
i (1− Sei)

(1−ti) + (−1)t1+t2C+

]

×
[

Se
t3
3
(1− Se3)

(1−t3)
]

+ (1− π)

×
[ 2∏

i=1

Sp
(1−ti)
i (1− Spi)

ti + (−1)t1+t2C−

]

×
[

(1− Sp3)
t3Sp

(1−t3)
3

]}Yt1,t2,t3
,

B =

∫ ∫

· · ·

∫

︸ ︷︷ ︸

9

f (θ)
∏

t1,t2,t3

{

π

[ 2∏

i=1

Se
ti
i (1− Sei)

(1−ti)

+ (−1)t1+t2C+

][

Se
t3
3
(1− Se3)

(1−t3)
]

+ (1− π)

[ 2∏

i=1

Sp
(1−ti)
i (1− Spi)

ti + (−1)t1+t2C−

]

×
[

(1− Sp3)
t3Sp

(1−t3)
3

]}Yt1,t2,t3
dSe1dSe2 · · · dC+dC−
︸ ︷︷ ︸

9
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Consequently, the marginal posterior density function for 
any component in θ, such as Sp2, given the data, can be 
expressed as:

By estimating the median of the margin distribution 
about Sp2, denoted by Ŝp2, we obtain a Bayesian estimate, 
Ŝp2, for Sp2.

Procedure of the analysis
Here T1,T2, and T3 denote the CM diagnostic scales (SSDS 
and ISDS) and ESD for detecting internal wind syndrome, 
respectively. The observed data can be represented by 
Y = (69, 19, 7, 12, 32, 9, 5, 51), as shown in Table  1. We 
denoted the proposed model as model (I). For compari-
son purposes, we also included the results obtained by 
the commonly used naive method, which assumed the 
ESD as the gold standard, and denoted this method as 
model (II). In the Bayesian analysis, a prior distribution 
for θ, which was defined in the Bayesian model, had to be 
chosen.

Selecting the prior distribution
A prior distribution for θ consisted of three sensitivities, 
three specificities, one prevalence rate, and two condi-
tional covariances. Since the first six parameters have 
a range between 0 and 1, we chose a beta distribution 
Beta(α,β) for each of them, where α and β were hyper-
parameters. We used the method proposed by Dendukuri 
[17] and Enøe et al. [27] to choose these hyper-parameter 
values by the priori moment information. According to 
the published literature describing the three diagnostic 
tests (SSDC, ISDS, and ESD) [2–5], the most probable 
value of the sensitivities of T1 and T2 for detecting inter-
nal wind syndrome was determined as 0.7, and we were 
95 % sure that these sensitivities were less than 0.5. Thus, 
the prior distribution for the sensitivities T1, T2 was cho-
sen to be the beta distribution, Beta(13.322,  6.281). For 
the specificities of the diagnostic scales T1, T2 for detect-
ing internal wind syndrome, the most probable value 
was determined as 0.8, and we were 95 % sure that these 
specificities were less than 0.5. Therefore, the prior dis-
tribution for the specificities T1 and T2 was chosen to be 
the beta distribution, Beta(7.549,  2.637). The best guess 
value for the sensitivity of T3 was 0.8, and the experts 
were 95 % sure that the sensitivity of T3 was at least 0.7; 
hence, the prior distribution for the sensitivity of T3 was 
chosen to be the beta distribution, Beta(48.283, 12.821). 

f (Sp2|Y ) =

∫ ∫

· · ·

∫ ∫

︸ ︷︷ ︸

8

f (θ |Y )dSe1

× dSe2dSe3dSp1dSp3dπdC+dC−

The best guess value for the specificity of T3 was 0.85, 
and the experts were 95  % sure that the specificity of 
T3 was at least 0.6; thus the prior distribution for the 
specificity of T3 was chosen to be the beta distribution, 
Beta(10.657,  2.704). The uniform distribution on [0,  1] 
was used for the prior distribution of the internal wind 
prevalence rate. For the last two conditional covari-
ances, C+ and C−, which measured the dependence 
of T1 and T2 among the diseased and non-diseased sta-
tuses, respectively, we have the following constraints: 
(Se1 − 1)(1− Se2) ≤ C+ ≤ min(Se1, Se2)− Se1Se2 and 
(Sp1 − 1)(1− Sp2) ≤ C− ≤ min(Sp1, Sp2)− Sp1Sp2, res- 
pectively. Hence, we chose two uniform distributions 
for C+ and C−: U((Se1 − 1)(1− Se2), (min(Se1, Se2) 
−Se1Se2)) and U((Sp1 − 1)(1− Sp2), (min(Sp1, Sp2)

−Sp1Sp2)).

MCMC techniques for computing the posterior estimator
It was difficult to directly obtain the posterior estima-
tor of each parameter through a numerical integration 
method in the Bayesian model. Since the joint posterior 
distribution f (θ | Y ) was complicated and involved high-
dimensional integral problems, which were often impos-
sible to compute directly, we used the MCMC algorithm 
to draw a random sample from the joint posterior distri-
bution. We then computed the sample median of the ran-
domly drawn sample to estimate θ and its components of 
interest. In this study, the WinBUGS package was used to 
perform this MCMC process.

To use the MCMC technique in the Bayesian method, 
we specified the initial values of the model parameters, 
and the initial values were given as follows: π = 0.623,  
Se1 = 0.748, Se2 = 0.945, Se3 = 0.850, Sp1 = 0.844,  
Sp2 = 0.883, Sp3 = 0.935 , respectively. We also chose dif-
ferent initial values and obtained similar results. The num-
bers of iterations and burn-ins were determined by the 
convergence of the Markov chain in estimating the param-
eters by WinBUGS.

Results and discussion
The sensitivity of the SSDC for internal wind syndrome 
(Table 2) was estimated as 0.687 by the Bayesian method 
in the absence of a gold standard, while the commonly 
used naive method, which uses the ESD as a gold stand-
ard, estimated the sensitivity of the SSDC as 0.673. The 
estimated sensitivity of the ISDS showed similar results. 
The Bayesian method estimated the specificity of the 
ISDS as 0.875, while the commonly used naive method 
estimated the specificity of the ISDS as 0.692. From these 
results, we can conclude that the commonly used naive 
method in CM for estimating the accuracy of diagnos-
tic scales for this CM syndrome might be biased. Table 2 
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also shows the 95  % Bayesian confidence intervals for 
the sensitivity and specificity of the SSDC in detecting 
internal wind syndrome, which were (0.605,0.765) and 
(0.652,0.885), respectively. Similarly, the Bayesian con-
fidence intervals for the sensitivity and specificity of the 
ISDS are also shown in Table 2.

As shown in Table 2, the respective Bayesian estimated 
sensitivities of the SSDC, ISDS, and ESD for diagnosing 
internal wind syndrome without a gold standard were 
as follows: Ŝe1 = 0.687, Ŝe2 = 0.884, and Ŝe3 = 0.813. 
The respective estimated specificities of the SSDC, ISDS, 
and ESD for diagnosing internal wind syndrome in the 
absence of a gold standard were as follows: Ŝp1 = 0.776 , 
Ŝp2 = 0.875, and Ŝp3 = 0.922. From these results, we 
concluded that the ISDS was more accurate than the 
SSDC in detecting internal wind syndrome. The Bayes-
ian method also gave an estimate of π̂ = 0.648 for the 
prevalence rate of internal wind syndrome. Hence, we 
concluded that the sensitivity and specificity of the ISDS 
were both higher than those of the SSDC when diagnos-
ing internal wind syndrome in ischemic stroke patients. 
We also found that the sensitivity and specificity of the 
ESD for internal wind syndrome were also high, but not 
perfect.

To assess the sensitivity of our results to chosen prior 
distributions, we selected several different prior distribu-
tions for parameters in model (I). The posterior estimates 
under the chosen prior distributions for the parameters 
led to consistent results with the previous posterior 
estimates.

Conclusion
After adjusting for imperfect gold standard bias, we 
found that both the sensitivity and specificity of the ISDS 
were higher than those of the SSDC for diagnosis of 
internal wind syndrome in ischemic stroke patients.
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