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Abstract 

Background:  Herbal quality is strongly influenced by harvest time. It is therefore one of crucial factors that should be 
well respected by herbal producers when optimizing cultivation techniques, so that to obtain herbal products of high 
quality. In this work, we paid attention on one of common used Chinese herbals, Cyathula officinalis Kuan. According 
to previous studies, its quality may be related with growth years because of the variation of several main bioactive 
components in different growth years. However, information about the whole chemical composition is still scarce, 
which may jointly determine the herbal quality.

Methods:  Cyathula officinalis samples were collected in 1–4 growth years after sowing. To obtain a global insight 
on chemical profile of herbs, we applied a metabolomics approach based on gas chromatography–mass spectrum. 
Analysis of variance, principal component analysis, partial least squares discriminant analysis and hierarchical cluster 
analysis were combined to explore the significant difference in different growth years.

Results:  166 metabolites were identified by using gas chromatography–mass spectrum method. 63 metabolites 
showed significant change in different growth years in terms of analysis of variance. Those metabolites then were 
grouped into 4 classes by hierarchical cluster analysis, characterizing the samples of different growth ages. Samples 
harvested in the earliest years (1–2) were obviously differ with the latest years (3–4) as reported by principal compo‑
nent analysis. Further, partial least squares discriminant analysis revealed the detail difference in each growth year. 
Gluconic acid, xylitol, glutaric acid, pipecolinic acid, ribonic acid, mannose, oxalic acid, digalacturonic acid, lactic acid, 
2-deoxyerythritol, acetol, 3-hydroxybutyric acid, citramalic acid, N-carbamylglutamate, and cellobiose are the main 15 
discrimination metabolites between different growth years.

Conclusion:  Harvest time should be well considered when producing C. officinalis. In order to boost the consistency 
of herbal quality, C. officinalis is recommended to harvest in 4th growth year. The method of GC–MS combined with 
multivariate analysis was a powerful tool to evaluate the herbal quality.
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Background
Lots of Chinese herbs are recommended to harvest in 
fixed time period due to the variation of bioactive com-
ponents during different cultivated years or different 
sampling seasons, such as Alpinia oxyphylla [1], Hydras-
tis canadensis [2], Salvia miltiorrhizae [3], Sphallerocar-
pus gracilis [4]. Uncontrolled metabolic variation has risk 
to decrease the herbal quality, which is contributed by 
the whole specific chemical profile [5, 6]. Hence, related 
study about chemical variation in different harvest time is 
valuable to establish the good agriculture practice (GAP) 
standards of Chinese traditional herbs in China [7].

As one of the most frequently-used traditional Chi-
nese herbs [8], the roots of Cyathula officinalis Kuan 
have effects on anti inflammation [9], antioxidation [10], 
immune-enhancing [11], etc. and usually used to treat 
related diseases such as osteoarthritis [12], rheumatism 
[13] and chronic bacterial prostatitis [14] when combined 
with other herbs.

Historically, the cultivated C. officinalis is prior to har-
vest in the 3rd year after sowing by farmers in the main 
producing areas in China, like Sichuan province, China. 
However, without authoritative standards and power-
ful enforcement, herbal producers used to freely gather 
C. officinalis during 2–4 growth years in terms of herbal 
price fluctuation. Previous studies reported that several 
main bioactive compounds in C. officinalis, such as cyas-
terone, sengosterone, scoparone, daidzin and purerarin, 
varied significantly in different growth years [15]. Those 
results supported that fixed harvest year should be well 
considered on C. officinalis cultivation as one of impor-
tant quality control factors, with an attempt to boost the 
consistency of different batches herbs or to obtain herbs 
with satisfied content of target components.

Recently, many literatures have illustrated that metab-
olomics approach is an efficient tool to evaluate herbal 
quality or discriminate easy-confused samples [16, 17]. 
This “omic” technique [18] provided us more compre-
hensive insight into the metabolic profile of herbs [19, 
20]. Metabolomics approach based on LC–MS has been 
used to explore chemical difference of C. officinalis sam-
pled from different areas [21]. However, besides of sev-
eral main bioactive components, information about the 
total chemical composition of C. officinalis in differ-
ent growth years is still scarce. In this study, we investi-
gated the C. officinalis with different growth years by the 
GC–MS metabolomics platform. Analysis of variance 
(ANOVA), principal component analysis (PCA), partial 
least squares discriminant analysis (PLS-DA), hierarchi-
cal cluster analysis (HCA) data analysis methods were 
combined to measure annual metabolic variation in roots 
of C. officinalis, with the aim to finally facilitate the qual-
ity control of herbs.

Methods
Plant materials
The experimental plants were sowed among four suc-
cessive years (2011–2014) in Baoxing country, Ya’an 
city, Sichuan province, China. In March, 2015, they 
were simultaneously collected. In total, 32 batches of 
authentic roots of Cyathula officinalis Kuan were identi-
fied by prof. Meng-liang Tian at College of Agronomy, 
Sichuan Agricultural University, where we deposited 
the voucher specimens of C. officinalis. All the plant 
materials were grew in a same farm by QiXiang farmer 
professional cooperative with same cultivated tech-
niques before this study. We sorted these roots into 4 
groups in terms of their growth years. They were labeled 
group A, group B, group C, and group D, which denoted 
that they had been grown for 1, 2, 3 and 4  years until 
sampling. Each group was composed of 8 biological 
replicates and each replicate was named by a unique 
sample identifier, which combined with group label and 
random number, like A1 or D8 (details see in Additional 
file 1). After washing the roots with pure water, all sam-
ples were immediately frozen in liquid N2 and stored at 
−80 °C until processing.

Sample preparation
Samples for HPLC detection were prepared based on Ref. 
[8] with little modification. 1000  mg dried root powder 
was accurately weighted and then extract by methyl alco-
hol (20 ml) in ultrasonic for 30 min. Each sample group 
contained 8 replicates and each extraction repeated 3 
times. Before HPLC analysis, extracting solutions were 
filtrated by 0.45  μm nylon membrane filter and diluted 
with equal amount of water.

Samples for GC–MS detection were prepared as 
follow: 100  mg fresh root tissue of each sample was 
accurately weighed and mixed with 0.4  ml methanol-
chloroform (v/v; 3:1) and vortex for 10  s. 20  μl ribitol 
(0.2  mg/ml, stock in dH2O) was added in mixtures as 
internal standard. Mixtures were homogenized in ball 
mill (JXFSTPRP-24, Shanghai jinxin industrial develop-
ment Co., Ltd) for 5 min at 55 Hz, subsequently centri-
fuged at 12,000 rpm for 15 min at 4 °C. The supernatant 
(approximately 0.4 ml) was transferred to a new GC/MS 
glass vial. The extracts were dried in a vacuum concentra-
tor without heating for about 1.5 h. 80 μl methoxymethyl 
amine salt (dissolved in pyridine, final concentration of 
20 mg/ml) was added into dried metabolites, afterwards 
incubated at 80  °C for 20  min in an oven after mixing 
and sealing. After that, 100  μl BSTFA (containing 1% 
TCMS, v/v) was added into each sample and incubated 
at 70 °C for an hour. When sample cooled to room tem-
perature, 10  μl FAMEs (Standard mixture of fatty acid 
methyl esters, C8–C16:1 mg/ml; C18–C30:0.5 mg/ml in 
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chloroform) was added to it, and finally mixed well for 
GC–MS detection.

HPLC parameters
The cyasterone assaying used below parameters: Chro-
matographic column: Agilent Zorbax Eclipse XDB-C18 
(5 μm particles, 4.6 mm ×  150 mm). Flow rate: 0.8 ml/
min. Temperature: 35 °C. Determine wavelength: 243 nm. 
Mobile phase: water and acetonitrile. Isocratic elution: 
0–20 min, 18% water.

GC–MS detection
Gas chromatography–mass spectrum analysis was per-
formed using an Agilent 7890 gas chromatograph sys-
tem coupled with a Pegasus HT time-of-flight mass 
spectrometer. The system utilized a DB-5M Scapillary 
column coated with 5% diphenyl cross-linked with 95% 
dimethylpolysiloxane (30  m ×  250  μm inner diameter, 
0.25  μm film thickness; J&W Scientific, Folsom, CA, 
USA). A 1 μl aliquot of the analyte was injected in split-
less mode. Helium was used as the carrier gas, the front 
inlet purge flow was 3  ml/min, and the gas flow rate 
through the column was 20 ml/min. The initial tempera-
ture was kept at 50  °C for 1 min, then raised to 330  °C 
at a rate of 10  °C/min, then kept for 5  min at 330  °C. 
The injection, transfer line, and ion source tempera-
tures were 280, 280, and 250 °C, respectively. The energy 
was −70  eV in electron impact mode. The mass spec-
trometry data were acquired in full-scan mode with the 
m/z range of 30–600 at a rate of 20 spectra per second 
after a solvent delay of 366 s. Before statistical analysis, 
the GC–MS method was validated by internal standard 
compound (Ribitol), whose standard deviation of reten-
tion time was 0.014 (n = 32).

Statistical analysis
Chroma TOF 4.3X software of LECO Corporation and 
LECO-Fiehn Rtx5 database were used for raw peaks 
exacting, the data baselines filtering and calibration of the 
baseline, peak alignment, deconvolution analysis, peak 
identification and integration of the peak area [22]. The 
RI (retention time index) method was used in the peak 
identification, and the RI tolerance was 5000. Metabolite 
data were normalized by dividing each peak area value by 
the area of internal standard (Ribitol). After that, the data 
were log10 transformed, mean-centered and divided by 
the standard deviation of each variable before perform-
ing statistical analysis. All the statistical analyses, such 
as ANOVA, PCA, PLS-DA, HCA, were performed by 
using MetaboAnalyst 3.0 [23]. The Minimum Standards 
of Reporting Checklist contains details of the experimen-
tal design, and statistics, and resources used in this study 
(Additional file 2).

Results
HPLC detection
As the only certificated quality marker by Chinese Phar-
macopoeia (edition 2015) [8], cyasterone was detected in 
four groups by HPLC. The results showed that the con-
tent of cyasterone in each sample could meet the mini-
mum requirement (≥0.030%) of Chinese Pharmacopoeia. 
However, the 4-years growth ages plants have the high-
est content of cyasterone (0.087%), followed by 3-years 
group (0.076%), 2-year group (0.065%) and 1-year group 
(0.039%) (details see Additional file 3). These results were 
also partial proved by previous studies [15]. Therefore, 
considered the content of marker compound, herbs with 
1–4 growth years ages were all qualified and the 4th year 
was the best harvest year.

GC–MS data extraction
To obtain an overview of annual metabolic changes in 
roots of C. officinalis, we carried on the GC–MS approach 
to all samples. The representative GC–MS chromato-
grams showed obvious variation in different growth ages 
(Fig.  1a–d). In total, 752 chromatographic peaks were 
detected and then numbered 1–752 in sequence of reten-
tion time. Peak 442 was contributed by ribitol as refer-
ence substance. In order to remove the systematic noise, 
we just extracted those peaks that were successfully dis-
covered (peak area value  >0) at least 6 times in either 
groups (n =  8). In result, 341 peaks (not include peak 
442) were retained. Among them, 166 peaks were given 
identified chemical name (details see Additional files 1, 
4). It should be noted that 4 chemicals were identified 
twice. They were 3-hydroxypropionic acid (peak 99 and 
107), aspartic acid (peak 295 and 349), xylitol (peak 431 
and 432), and diglycerol (peak 446 and 457). This may 
result from the insufficient precision of methods. To the 
end, the final dataset was composed of all the 166 peaks 
of 32 samples and their peak area values, which was used 
to the following ANOVA, PCA, HCA, PLS-DA etc.

One‑way ANOVA
We firstly carried on univariate analysis method, 
ANOVA, to have an overview of all 166 metabolites 
data, attempted to simply find potentially important 
metabolites. In result, 63 metabolites showed poten-
tially significant difference about their content between 4 
groups using the standard P < 0.05 (detail see Additional 
file 5). Compared with the 1st growth year (group A), 15 
metabolites changed significantly when herbs grew for 
two years (group B), while 40 metabolites changed in 
3rd year (group C) and 32 metabolites in 4th year (group 
D). This trend was as well illustrated in Fig.  2a, which 
clearly showed us most metabolic variations happened in 
3rd year after sawing. Similar trend was also revealed in 
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Fig. 2b by comparing the number of metabolites changed 
significantly between previous year and following year. 
Therefore, we speculated that the 3rd year, when the 
most large-scale of metabolites changed, more likely a 
turning point for C. officinalis metabolism.

Top 10 typical metabolites were listed Additional file 5, 
using the standard of P < 0.0001. In Fig. 3 their changes 
in different growth years were illustrated by box plots, 
which showed that those metabolites more or less prone 
to accumulate in some certain years. For instance, xylitol 

Fig. 1  Representative GC–MS chromatogram of each group. a Sample with 1 growth age. b Sample with 2 growth ages. c Sample with 3 growth 
ages. d Sample with 4 growth ages
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and citramalic acid were hardly detected in the first 3 
growth years until grew for 4 years. While mannose and 
oxalic acid accumulated rich in fist year but decreased 
during the 2–4  years. Gluconic acid, 3-hydroxybutyric 
acid, glutaric acid and cellobiose were easily detected in 
3–4 years while little existed in 1–2 years. However, this 
trend was inverted for pipecolinic acid and ribonic acid.

Cluster analysis
To have a further visually insight on every metabolite 
content change in different growth years. We performed 
a heat-map combined with HCA, using extracted data-
set composed by 63 metabolites filtered by ANOVA 
(P < 0.05). As illustrated in Fig. 4, 32 samples trended to 
separate into 3 classes. Samples with same growth age 
had trend to cluster in same class. For instance, samples 
of group C all clustered in class III and group D all clus-
tered in class II. Seven samples from group A and 6 sam-
ples from group B were together clumped in class I and 
further separated into two subclasses. Unusually, the rest 
3 samples of group A or B, A2, B1, B5, were together put 
into class III. This means that those 3 samples were more 
similar to group C. The fact that only group D was clus-
tered in an independent class, class II, indicated that its 
metabolic profile was stabilized when herbs of 4 growth 
age. Therefore, compared with the traditional cultivation, 
more proper harvest time for C. officinalis may be the 4th 
year after sowing because of the micro-change in meta-
bolic profile between samples.

Showed in Fig.  4, 4 metabolite classes were found 
in the heat-map, each of which revealed the con-
tent distribution in different sample classes or growth 
years. Metabolites in Class (1), like glycine (peak 217), 
2-hydroxy-3-isopropylbutanedioic acid (peak 379), 
valine (peak 157), were least abundant in 3 growth years 
than any other growth ages. However, metabolites in 
class (4), like 2-deoxyerythritol (peak 199), acetol (peak 
430), citramalic acid (peak 322), were most abundant in 

4 growth years. Most of metabolites in Class (2), like rib-
onic acid (peak 424), pipecolinic acid (peak 253), N-car-
bamylglutamate (peak 537), had high content in the 
1–2 growth years compared with the next 3 or 4 growth 
years, while metabolites in class (3), like gluconic acid 
(peak 618), 3-hydroxypropionic (peak 99), glutaric acid 
(peak 277), cellobiose (peak 674), lactic acid (peak 47), 
trended to accumulate in 3–4 growth years when com-
pared with 1–2 growth years.

PCA
As one of common used unsupervised methods of mul-
tivariate analysis, we performed PCA on the 166 metab-
olites dataset. Considering only the first two principal 
components, PC1 and PC2, explained 27.8% variance. 
An obvious separation between the earliest (group A 
and group B) and latest (group C and group D) growth 
years in Fig. 5a was discovered, which exhibited the nota-
ble metabolic difference between them. The considerable 
overlap between the group A and group B indicated their 
metabolic profiles were similar. This fact as well had been 
told by Fig. 4, where group A and group B were clustered 
in two subclasses although belonged to a same upper 
class. Compared with earliest growth years, the latest 
groups, group C or group D, were better separated due 
to samples of group D gathered more closely in this PCA 
score plot. This result proved again that group D had less 
internal difference relatively.

PLS‑DA
Principal component analysis analysis demonstrated 
the presence of discriminating factors which allowed 
the separation between earliest growth years and lat-
est years. However, this kind of unsupervised method 
did not allow observing well separation of every two 
groups, such as group A/group B or group C/group D. 
To verify whether our current metabolites dataset pro-
vided enough information could detail the significant 

Fig. 2  Number of metabolites that changed significantly. a Each column shows the number of significantly changed metabolites (P < 0.05, ANOVA) 
with respect to the first growth year for the next 3 groups. b Each column shows the number of significantly changed metabolites (P < 0.05, ANOVA) 
with respect to the previous growth year for group B, group C and group D
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difference of any two groups, we decided to use a super-
vised method as PLS-DA. In result, this method dose 
exhibited the ability to discriminate each group in three 
dimensional score plot with three principle components 
(Fig.  5b), accounting for 32.1% variance. As showed 
in Fig. 5a, b, the main factor that drived the separation 
between each group was PC1. In order to summarize 
the importance of metabolites for constructing PC1, we 
listed the top 15 metabolites with high variable influence 

on projection (VIP) score (Fig.  6a). They were gluconic 
acid, xylitol, glutaric acid, pipecolinic acid, ribonic acid, 
mannose, oxalic acid, digalacturonic acid, lactic acid, 
2-deoxyerythritol, acetol, 3-hydroxybutyric acid, cit-
ramalic acid, N-carbamylglutamate, and cellobiose. 
These results were correlated with main loadings of PLS 
regression (Fig. 6b). In order to verify whether those 15 
metabolites have ability to discriminate different growth 
years as potential chemical markers, we re-performed 

Fig. 3  Typical metabolite variation in different growth years. a–j Top 10 potential biomarkers determined by ANOVA (P < 0.000 1). a–o Top 15 
potential biomarkers determined by VIP scores
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PLS-DA based on 15 metabolites. Luckily, the new score 
plot (Fig.  7) who produced by this simple dataset was 
very similar with the score plot produced by 166 metab-
olites (Fig. 5b). That means, using the 15 metabolites to 
evaluate the quality of herbs is feasible.

Discussion
Unlike LC–MS or NMR, GC–MS we used in the present 
study prefers to offer information about primary metabo-
lites, such as sugar, protein, lipid and organic acids et al. 
Generally, primary metabolites could be the precursors 
for the secondary metabolites, like various terpenoids 
including cyasterone. In the present study, a wild range 
of variation of primary metabolites that related sugar 
metabolism showed regular change in different growth 
years, like mannose, acetol and d-glyceric acid (detail 
see Additional file  3). Those metabolites related sugar 
metabolism pathway could further offer some important 
metabolic intermediates, like pyruvic acid and phos-
phoglyceraldehyde, which were used in the biosynthesis 
pathways of terpenoids [24].

In the current Chinese Pharmacopoeia, one of the most 
important methods for herb quality control is to evaluate 
the content of one or more chemical compounds. How-
ever, this method ignores the synergistic effect of mul-
tiple compounds, which is much emphasized in clinical 
application of traditional Chinese medicine [25]. There-
fore, a better method to evaluate the herbal quality is to 
characterize the metabolic profile with a wide range of 
chemical compositions, other than just simply assessing 
one or several chemical compounds. Generally, herbs 
with a similar metabolic characterization would have 
similar properties. In the present study, 166 metabolites 
were synergistically used to investigate the herbal quality 

Fig. 4  Significantly changed metabolites in each sample based on 
ANOVA

Fig. 5  Score plot of PCA and PLS-DA. a PCA score plot based on PC1 and PC2. b PLS-DA score plot with respect to the first three PCs
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and successfully revealed the unique chemical patterns 
of samples with different growth ages. Compared with 
the single chemical marker assessing, this method pro-
vided more chemical information of plants in an overall 
perspective.

Based on current analytical techniques, it is impossi-
ble to obtain the truly whole compositions of medicinal 
plants. Ideally, the represented metabolites are unique 
components that contribute to the therapeutic effects of 
herbal medicines. However, for many plants, the accurate 
pharmacological compounds are still unclear. Therefore, 

other chemical components that is of interest for qual-
ity control purposes are also used to as markers. As the 
different role on quality control, those markers could fur-
ther be classified into eight categories regardless whether 
they are active compounds [26]. In the present study, we 
selected 15 metabolites as potential chemical markers for 
quality control mainly because of their ability to evalu-
ate the herbal consistency and discriminate the different 
growth ages.

Quality control of herbal medicines aims to ensure 
their authentication, consistency, safety and efficacy. As 
the variation on quality control purpose, various chemi-
cal markers or analysis techniques should be used at dif-
ferent conditions. In this study, we established a GC–MS 
approach to reveal the variation on C. officinalis with dif-
ferent growth ages and found out several marker com-
pounds to discriminate them. However, it should be 
noted that herbal quality is affected by climate factors, 
like precipitation, sunlight, temperature et  al., which 
were not actually measured in this study. Therefore, in 
order to test the discrimination efficacy of these mark-
ers, followed multi-plot demonstration for several years 
is recommended.

Conclusions
The results mentioned above showed that the chemi-
cal profile of C. officinalis could be quite different when 
collected in different growth years. Gluconic acid, 
xylitol, glutaric acid, pipecolinic acid, ribonic acid, 
mannose, oxalic acid, digalacturonic acid, lactic acid, 

Fig. 6  Potential chemical markers. a Top 15 metabolites selected by VIP score. b Loading plot of PLS-DA regression model

Fig. 7  PLS-DA score plot built by top 15 metabolites dataset
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2-deoxyerythritol, acetol, 3-hydroxybutyric acid, citra-
malic acid, N-carbamylglutamate, and cellobiose are the 
main 15 discrimination metabolites between different 
growth years. With the aim to boost the consistency of 
herbal quality, C. officinalis is recommended to harvest 
in 4th growth year based on the information provided by 
GC–MS. The method of GC–MS combined with multi-
variate analysis is a powerful tool to discriminate the dif-
ferent herbal growth age.
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