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Abstract 

Background:  Amomum compactum is one of the basic species of the traditional herbal medicine amomi fructus 
rotundus, with great pharmacology effect. The system position of A. compactum is not clear yet, and the introduction of 
this plant has been hindered by many plant diseases. However, the correlational molecular studies are relatively scarce.

Methods:  The total chloroplast (cp) DNA was extracted according to previous studies, and then sequenced by 454 
GS FLX Titanium platform. Sequence assembly was complished by Newbler. Genome annotation was preformed by 
CPGAVAS and tRNA-SCAN. Then, general characteristics of the A. compactum cp genome and genome comparsion 
with three Zingiberaceae species was analyzed by corresponding softwares. Additionally, phylogenetical trees were 
reconstructed, based on the shared protein-coding gene sequences among 15 plant taxa by maximum parsimony 
(MP) and maximum likelihood (ML) methods.

Results:  The A. compactum cp genome with a classic quadripartite structure, consisting of a pair of reverse comple‑
ment repeat regions (IRa/IRb) of 29,824 bp, a large single copy (LSC, 88,535 bp) region as well as a small single copy 
(SSC, 15,370 bp) region, is 163,553 bp in total size. The total GC content of this cp genome is 36.0%. The A. compactum 
cp genome owns 135 functional genes, that 113 genes are unique, containing eighty protein-coding genes, twenty-
nine tRNA (transfer RNA) genes and four rRNA (ribosomal RNA) genes. Codon usage of the A. compactum cp genome 
is biased toward codons ending with A/T. Total 58 SSR loci and 24 large repeats are detected in the A. compactum 
cp genome. Relative to three other Zingiberaceae cp genomes, the A. compactum cp genome exhibits an obvi‑
ous expansion in the IR regions. In A. compactum cp genome, the ycf1 pseudogene is 2969 bp away from the IRa/
SSC border, whereas in other Zingiberaceae species, it is only 4–5 bp away from the IRa/SSC border. Comparative cp 
genome sequences analysis of A. compactum with other Zingiberaceae reveals that the gene order and gene content 
differ slightly among Zingiberaceae species. The phylogenetic analysis based on 67 protein-coding gene sequences 
supports the phylogenetic position of A. compactum.

Conclusions:  The study has identified unique features of the A. compactum cp genome which would be helpful for 
us to understand the cp genome evolution and offer useful information for phylogenetics and further studies of this 
traditional medicinal plant.
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Background
Chloroplasts can provide necessary energy for plants 
growth as photosynthetic organelles, which also partici-
pate in other major life activities such as starch storage, 
sugar synthesis and many critical biological metabolic 
pathways. As circular DNA molecules, cp genomes 
mainly vary from 120 to 160  kb in size with a typi-
cal quadripartite organization in angiosperms [1]. Two 
reverse complement copies of IR region (20–28 kb) sepa-
rate the whole cp genome into a LSC region (80–90 kb) 
and a SSC region (16–27  kb) [2]. In angiosperms, cp 
genomes usually encode approximately 80 unique pro-
teins, 30 tRNAs and four rRNAs. Previous studies have 
corroborated that cp gene order, gene content, and 
genome organization are highly conserved in plants [3, 
4]. Owing to the high conservation and monolepsis, cp 
genomes are widely used in species identification, phy-
letic evolution studies and genetic engineering. The 
availability of whole cp genomes has helped to resolve 
phylogenetic relationships among major clades of angio-
sperms with greater accuracy [5, 6]. Nevertheless, with 
the number of cp genomes increasing, gene losses, struc-
tural rearrangements and IR contractions/expansions 
have been reported, which can also be exploited for the 
reconstruction of plant phylogenies [7–9].

Amomum compactum (genus Amomum, family Zingib-
eraceae) is one of the basic species of the traditional Chi-
nese medicine amomi fructus rotundus, which is mainly 
produced in Vietnam and Thailand and is cultivated as 
a medicinal plant in the Guangdong, Guangxi and Yun-
nan provinces of China with great pharmacology effect. 
However, bacterial wilt, damping-off, leaf spot and other 
major plant diseases have become a severe obstacle for 
the introduction of this plant. Many plants belonging to 
the Zingiberaceae family are used as important seasoning 
and medicinal plants, such as Zingiber officinale, Amo-
mum villosum, Curcuma longa, Zingiber mioga, Eletta-
ria cardamomum, and Alpinia officinarum. In addition, 
previous studies have shown that the efficacy, chemical 
composition and pharmacological effects among the five 
genera of Zingiberaceae are strongly correlated. It is of 
great significance and broad interest to investigate the 
genetic relationships of traditional Chinese medicinal 
plants to find alternative medicinal plants. With the num-
ber of whole cp genomes in the Zingiberaceae increasing, 
the cp genome sequences of other species in Zingiber-
aceae are becoming easier to be assembled. However, 
studies of amomi fructus rotundus are scarce both inside 
and outside China, especially molecular studies.

This study reports the assembly, annotation and struc-
tural analysis of A. compactum cp genome for the first 
time. And to reveal the structure of this cp genome, we 
compare the organization (IR expansion/contraction and 
divergent regions) of complete cp genomes between A. 
compactum and other Zingiberaceae species. We also 
provide the result of phylogenetic analyses on basis of 67 
protein-coding gene sequences from A. compactum and 
14 monocot cp genomes.

Methods
DNA extraction and sequencing
Fresh A. compactum leaves were acquired from culti-
vated bases in Guangdong Province, China. The total cp 
DNA was extracted from roughly 100 g of leaves through 
an improved method by Li et  al. [10]. The quality of cp 
DNA was checked by Nanodrop-2000 spectrometer 
(Nanodrop Technologies, Wilmington, DE, USA), and 
agarose gel electrophoresis. Pure cp DNA was used for 
shotgun library construction with 454 GS FLX Tita-
nium platform. The obtained SFF file was preprocessed 
by trimming short (L < 50 bp) and low-quality (Q < 20) 
reads. Trimmed reads were assembled using Newbler 
V2.6 (GS FLX De Novo Assembler Software). In order to 
verify the assembly, the four junctional regions were fur-
ther confirmed by Sanger sequencing.

Genome assembly and annotation
Preliminary gene annotation of this cp genome was per-
formed by CpGAVAS, a program available online (http://
www.herbalgenomics.org/0506/cpgavas) [11]. The posi-
tion of each gene was then manually corrected by Apollo 
[12] after alignment to the reference genomes by MEGA 
5.0. In addition, according to start and stop codons, 
minor revisions were performed. The tRNAs were further 
confirmed by the online tool tRNAscan-SE with default 
settings (http://lowelab.ucsc.edu/tRNAscan-SE/). [13]. 
Then, the circular map of this cp genome was accom-
plished by OrganellarGenomeDRAW program (http://
ogdraw.mpimp-golm.mpg.de/) [14]. Finally, the complete 
cp genome of A. compactum was submitted to NCBI 
GenBank database (Accession Number: MG000589).

Sequence analyses
Relative synonymous codon usage (RSCU) values, which 
were used to research the features of variations in synony-
mous and nonsynonymous codon usage by disregarding 
the composition impact of amino acid, were determined 
using MEGA 6.0 [15]. Additionally, GC content and 
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codon usage were determined by MEGA 6.0. SSRs (simple 
sequence repeats) loci were detected by MISA software 
(http://pgrc.ipk-gatersleben.de/misa/), with following 
thresholds: ten, six, five, five, five, and five repeat units 
for mono-nucleotide, di-nucleotide, tri-nucleotide, tetra-
nucleotide, penta-nucleotide, and hexa-nucleotide SSRs, 
respectively. To analyze the repeat structure, REPuter 

[16] (http://bibiserv.techfak.uni-bielefeld.de/reputer/) 
was performed to detect forward (direct) and palindromic 
(inverted) repeats in the cp genome. The minimum repeat 
unit was set to 30 bp in length, the identity of repeats was 
set to > 90%, and the Hamming distance equals three. All 
identified results were verified and redundant repeats 
were manually removed.

Fig. 1  A. compactum cp genome map. Genes drawn outside the circle are counterclockwise, whereas inside are transcribed clockwise. Genes are 
color-coded according to different functional groups. The darker gray represents GC content in the inner circle, conversely the lighter one repre‑
sents AT content

http://pgrc.ipk-gatersleben.de/misa/
http://bibiserv.techfak.uni-bielefeld.de/reputer/
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Genome comparison
Pairwise alignments of several cp genome sequences 
were conducted by MUMmer [17], and the dot plots were 
drawn using a Perl script. The complete cp genomes of A. 
compactum and three other Zingiberaceae species (Addi-
tional file  1), Curcuma flaviflora (KR967361), Curcuma 
roscoeana (KF601574), and Zingiber spectabile (JX088661), 
were used for comparative analysis by mVISTA program 
(http://genome.lbl.gov/vista/index.shtml) [18] in Shuffle-
LAGAN mode. A. compactum was set as the reference.

Phylogenomic analysis
To examine the phylogenetic position of A. compactum, 
14 complete chloroplast genomes were downloaded from 

NCBI. The 67 shared protein-coding gene sequences were 
extracted using a Python script and aligned separately 
by ClustalW2. Phylogenetical trees were reconstructed 
based on 67 concatenated protein-coding gene sequences 
by MP and ML methods. The best-fitting model was fil-
trated by jModelTest 2.1.7 through the Akaike informa-
tion criterion (AIC) [19]. The MP tree was reconstructed 
by PAUP ver. 4.0b10 [20] with a heuristic search, while 
ML analysis was calculated by RAxML-HPC 2.7.6.3 on 
XSEDE in the CIPRES Science Gateway (http://www.
phylo.org/) with default parameters. Based on APGIII, 
Fritillaria cirrhosa was set as an outgroup. Both MP and 
ML analyses used 1000 bootstrap replicates.

The Minimum Standards of Reporting Checklist 
includes details of the experimental design, statistics, and 
resources used in this study.

Results and discussion
General characteristics of the A. compactum cp genome
The complete cp genome sequence of A. compactum is 
163,553 bp in length with a obvious quadripartite struc-
ture (Fig. 1). A pair of inverted region (IR) with 29,824 bp 
in length partition the rest sequence into a LSC region 
(88,535 bp) and a SSC region (15,370 bp) (Table 1). The 
universal GC content of this cp sequence was 36.0%, 
which has been reported to act a significant role in evolu-
tion of genomic structures. Nevertheless, the overall GC 
content is unequally distributed across the cp genome, 

Table 1  Base composition in the A. compactum cp genome

CDS protein-coding regions

T(U)% C% A% G% Length (bp)

LSC 33.8 17.2 32.5 16.5 88,535

IR 28.8 19.8 30.1 21.3 29,824

SSC 34.3 15.6 35.9 14.2 15,370

Total 32.3 18.3 31.7 17.8 163,553

CDS 31.6 17.2 31.5 19.8 79,701

 1st position 24 18.2 31.3 26.7 26,567

 2nd position 32 20.2 30.0 17.4 26,567

 3rd position 39 13.1 33.1 15.3 26,567

Table 2  Gene content of the A. compactum cp genome

a  Gene with one intron
b  Gene with two introns
c  Gene with two copies

Gene category Gene group Gene name

Self-replication rRNA genes rrn16c, rrn23c, rrn5c, rrn4.5c

tRNA genes trnH-GUGc, trnK-UUUa, trnQ-UUG, trnS-GCU, trnC-GCA, trnD-GUC, trnY-GUA, trnE-
UUC, trnR-UCU, trnT-GGU, trnS-UGA, trnG-GCCc, trnfM-CAU, trnS-GGA, trnT-UGU, 
trnL-UAAa, trnF-GAA, trnV-UACa, trnW-CCA, trnP-UGG, trnI-CAUc, trnL-CAAc, trnV-
GACc, trnI-GAUa, c, trnA-UGCa, c, trnR-ACGc, trnN-GUUc, trnL-UAG, trnM-CAU

Small subunit of ribosome rps4, rps14, rps18, rps2, rps12b, c, rps11, rps8, rps3, rps19, rps7c, rps15, rps16a

Large subunit of ribosome rpl33, rpl20, rpl36, rpl14, rpl16a, rpl22, rpl2a, c, rpl23c, rpl32

DNA dependent RNA polymerase rpoB, rpoC1a, rpoC2, rpoA

Translational initiation factor infA

Genes for photosynthesis Subunits of NADH dehydrogenase ndhAa, ndhBa, c, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK

Subunits of photosystem I psaA, psaB, psaC, psaI, psaJ, ycf3b, ycf4

Subunits of photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, 
psbZ

Subunits of cytochrome b/f complex petN, petA, petL, petG, petBa, petD

Subunits of ATP synthase atpI, atpH, atpFa, atpA, atpE, atpB

Large subunit of rubisco rbcL

Genes of unknown function Open reading frames (ORF, ycf ) ycf1, ycf15c, ycf2c

Pseudogenes ycf1

http://genome.lbl.gov/vista/index.shtml
http://www.phylo.org/
http://www.phylo.org/
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which is lowest in SSC region (29.8%) but highest in IR 
regions (41.1%), followed by LSC region (33.7%). 

As shown in Fig.  1, the A. compactum cp genome 
totally encodes 135 functional genes, that 113 are unique, 
containing eighty protein-coding genes, twenty-nine 
tRNAs and four rRNAs (Table 2). Among the functional 
genes, all rRNAs, eight tRNAs and seven protein-cod-
ing genes are duplicated in IR regions. The LSC region 
includes 60 protein-coding genes and 21 tRNAs, whereas 
the SSC region includes 11 protein-coding genes and one 
tRNA gene. Among the protein-coding genes, 72 are sin-
gle-copy, whereas eight are duplicated. Among the tRNA 
genes, 20 are single-copy genes and nine are duplicated. 
Among the 113 unique genes, 13 include one intron 
(eight protein-coding and five tRNAs) and three (ycf3, 

clpP, and rps12) include two introns (Table  2). Unusu-
ally, the rps12 gene is trans-spliced, of which the 5′ end 
is situated in LSC region whereas two replicative 3′ ends 
are located in IRa and IRb regions respectively. What’s 
more, the ndhA gene contains the longest intron region 
(1033 bp).

The protein-coding gene sequences are 79,701  bp in 
length, which comprise 26,567 codons. And the usage 
frequency of codon was counted and exhibited in Table 3. 
In protein-coding sequences (CDSs), the AT content are 
55.3% at the first codon positions, 62.0% at the second 
codon positions and 72.1% at the third codon positions, 
respectively (Table 1). Most protein-coding genes in land 
plant cp genomes use the standard ATG as the initia-
tion codon. However, in the A. compactum cp genome, 

Table 3  Codon-anticodon recognition patterns and codon usage in the A. compactum cp genome

RSCU relative synonymous codon usage

Amino acid Codon No. RSCU tRNA Amino acid Codon Count RSCU tRNA

Phe UUU 971 1.31 Tyr UAU 811 1.57

Phe UUC 516 0.69 trnF-GAA Tyr UAC 221 0.43 trnY-GUA

Leu UUA 892 1.96 trnL-UAA Stop UAA 48 1.66

Leu UUG 559 1.23 trnL-CAA Stop UAG 22 0.76

Leu CUU 567 1.25 His CAU 519 1.6

Leu CUC 181 0.4 His CAC 129 0.4 trnH-GUG

Leu CUA 381 0.84 trnL-UAG Gln CAA 706 1.54 trnQ-UUG

Leu CUG 151 0.33 Gln CAG 210 0.46

Ile AUU 1146 1.47 Asn AAU 989 1.55

Ile AUC 426 0.55 trnI-GAU Asn AAC 289 0.45 trnN-GUU

Ile AUA 763 0.98 trnI-CAU Lys AAA 1114 1.49 trnK-UUU

Met AUG 614 1 trn(f )M-CAU Lys AAG 383 0.51

Val GUU 521 1.45 Asp GAU 875 1.64

Val GUC 159 0.44 trnV-GAC Asp GAC 192 0.36 trnD-GUC

Val GUA 559 1.56 trnV-UAC Glu GAA 1125 1.53 trnE-UUC

Val GUG 194 0.54 Glu GAG 350 0.47

Ser UCU 598 1.74 Cys UGU 232 1.56

Ser UCC 337 0.98 trnS-GGA Cys UGC 66 0.44 trnC-GCA

Ser UCA 412 1.2 trnS-UGA Stop UGA 17 0.59

Ser UCG 182 0.53 Trp UGG 452 1 trnW-CCA

Pro CCU 442 1.62 Arg CGU 365 1.37 trnR-ACG

Pro CCC 202 0.74 Arg CGC 86 0.32

Pro CCA 325 1.19 trnP-UGG Arg CGA 342 1.29

Pro CCG 120 0.44 Arg CGG 113 0.43

Thr ACU 537 1.57 Arg AGA 519 1.95 trnR-UCU

Thr ACC 237 0.7 trnT-GGU Arg AGG 168 0.63

Thr ACA 433 1.27 trnT-UGU Ser AGU 430 1.25

Thr ACG 157 0.46 Ser AGC 102 0.3 trnS-GCU

Ala GCU 626 1.82 Gly GGU 604 1.39

Ala GCC 203 0.59 Gly GGC 141 0.33 trnG-GCC

Ala GCA 434 1.26 trnA-UGC Gly GGA 714 1.65

Ala GCG 112 0.33 Gly GGG 276 0.64



Page 6 of 12Wu et al. Chin Med  (2018) 13:10 

Table 4  Simple sequence repeats in the A. compactum cp genome

cpSSR ID Repeat motif Length (bp) Start End Region Annotation

1 (T)10 10 3975 3984 LSC trnK-UUU

2 (A)10 10 4328 4337 LSC

3 (TA)6 12 4900 4911 LSC

4 (A)10 10 5287 5296 LSC rps16 intron

5 (A)11 11 6253 6263 LSC

6 (TA)6 12 6609 6620 LSC

7 (A)10 10 7204 7213 LSC

8 (AT)6 12 7521 7532 LSC

9 (A)10 10 7700 7709 LSC

10 (T)12 12 8633 8644 LSC

11 (A)13 13 14,885 14,897 LSC

12 (T)10 10 17,474 17,483 LSC

13 (A)10 10 19,831 19,840 LSC rpoC2

14 (T)11 11 24,121 24,131 LSC rpoC1 intron

15 (A)10 10 28,802 28,811 LSC

16 (A)15 15 29,013 29,027 LSC

17 (A)11 11 30,868 30,878 LSC

18 (T)10 10 35,129 35,138 LSC

19 (TA)7 14 38,632 38,645 LSC

20 (A)12 12 39,292 39,303 LSC

21 (A)12 12 47,481 47,492 LSC

22 (T)10 10 48,986 48,995 LSC

23 (A)10 10 50,236 50,245 LSC

24 (AT)7 14 50,395 50,408 LSC

25 (T)10 10 51,829 51,838 LSC

26 (T)11 11 52,709 52,719 LSC

27 (ATA)5 15 54,345 54,359 LSC

28 (A)11 11 54,562 54,572 LSC

29 (T)10 10 58,778 58,787 LSC

30 (T)11 11 59,269 59,279 LSC

31 (A)12 12 60,919 60,930 LSC

32 (T)10 10 61,621 61,630 LSC

33 (AT)6 12 63,489 63,500 LSC

34 (A)12 12 68,715 68,726 LSC

35 (AT)10 20 69,266 69,285 LSC

36 (T)10 10 70,716 70,725 LSC

37 (A)10 10 72,600 72,609 LSC rps18

38 (TA)7 14 74,094 74,107 LSC rps12 intron

39 (A)10 10 74,569 74,578 LSC clpP intron

40 (T)11 11 74,845 74,855 LSC clpP intron

41 (T)10 10 75,108 75,117 LSC clpP intron

42 (T)10 10 75,572 75,581 LSC clpP intron

43 (T)10 10 75,831 75,840 LSC clpP intron

44 (A)10 10 79,177 79,186 LSC

45 (AT)6 12 79,751 79,762 LSC petB intron

46 (T)10 10 86,407 86,416 LSC rpl16 intron

47 (T)11 11 88,970 88,980 IRa

48 (T)10 10 116,573 116,582 IRa ycf1

49 (A)11 11 120,872 120,882 SSC
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two genes use alternatives to ATG as start codon, as fol-
lowing: ATC for ndhD and ATA for rpl2. Relative syn-
onymous codon usage (RSCU) is a statistics of uneven 
usage of synonymous and nonsynonymous codons in 
the coding sequences. An RSCU value  <  1.00 indicates 
that the use of a codon is less frequent than expected, 
whereas a codon used more frequently will attain an 
RSCU value > 1.00. A total of 96.7% (29/30) of preferred 
synonymous codons, i.e., RSCU values > 1, end with A/U, 
whereas 90.6% (29/32) of non-preferred synonymous 

codons, i.e., RSCU values < 1, end with G/C. This codon 
usage pattern is similar with other reported cp genomes 
[21, 22], which might be driven by the high proportion of 
A/T. The usage of the start codon (ATG) and UGG (cod-
ing TRP) show no bias (RSCU value = 1).

Repeat and SSR analysis
SSRs are a class of tandemly repeated sequences that 
consists of 1–6 nucleotide repeat units. SSRs are impor-
tant in plant typing and widely developed as molecular 

Table 4  continued

cpSSR ID Repeat motif Length (bp) Start End Region Annotation

50 (T)11 11 121,055 121,065 SSC

51 (A)11 11 128,865 128,875 SSC ndhA intron

52 (T)10 10 129,188 129,197 SSC ndhA intron

53 (AT)6 12 131,778 131,789 SSC

54 (T)11 11 133,103 133,113 SSC

55 (T)12 12 133,236 133,247 SSC

56 (T)11 11 133,374 133,384 SSC ycf1

57 (A)10 10 135,507 135,516 IRb ycf1

58 (A)11 11 163,109 163,119 IRb

Table 5  Long repeat sequences in A. compactum cp genome

F forward, P palindromic, IGS intergenic space

ID Repeat start 1 Type Size (bp) Repeat start 2 Mismatch (bp) E value Gene Region

1 3990 P 34 3996 − 3 4.12E−06 trnK-UUU (intron) LSC

2 8768 P 31 48,057 − 3 1.98E−04 IGS; trnS-GGA LSC

3 10,522 F 30 39,347 − 3 7.15E−04 trnG-GCC (intron) LSC

4 31,322 P 32 31,352 − 3 5.46E−05 IGS LSC

5 32,991 F 30 33,020 − 3 7.15E−04 IGS LSC

6 39,660 P 32 39,701 0 4.08E−10 IGS LSC

7 41,551 F 58 43,775 − 3 7.54E−20 psaB; psaA LSC

8 41,595 F 37 43,819 − 2 2.39E−09 psaB; psaA LSC

9 63,481 P 31 126,101 − 3 1.98E−04 IGS LSC; SSC

10 63,481 F 31 126,106 − 3 1.98E−04 IGS LSC; SSC

11 63,487 F 32 69,264 − 3 5.46E−05 IGS LSC

12 67,809 P 31 67,864 − 2 6.83E−06 IGS LSC

13 71,632 F 30 71,659 0 6.53E−09 IGS LSC

14 72,281 F 42 72,302 − 3 1.21E−10 rps18 LSC

15 91,249 F 46 91,299 − 1 2.10E−16 trnI-CAU; IGS IRa

16 91,249 P 46 160,743 − 1 2.10E−16 trnI-CAU; IGS IRa; IRb

17 91,299 P 46 160,793 − 1 2.10E−16 IGS IRa; IRb

18 93,917 F 30 93,938 − 3 7.15E−04 ycf2 IRa

19 93,917 P 30 158,120 − 3 7.15E−04 ycf2 IRa; IRb

20 93,938 P 30 158,141 − 3 7.15E−04 ycf2 IRa; IRb

21 121,695 P 30 121,723 − 3 7.15E−04 IGS SSC

22 158,122 F 30 158,143 − 3 7.15E−04 ycf2 IRb

23 160,743 F 46 160,793 − 1 2.10E−16 IGS IRb

24 160,762 F 30 160,812 − 3 7.15E−04 IGS IRb
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genetic markers for species identification. Total 58 
SSRs loci were found in the A. compactum cp genome 
(Table 4), and 47 SSRs were only composed of A/T bases. 
Furthermore, 10 SSRs were composed of di-nucleotide 
(AT/TA) repeats, and one SSR was composed of trinu-
cleotide (ATA) repeats. Obviously, the SSRs in the A. 
compactum cp genome were rich in A/T, which has been 
reported in many plant families [23–25]. Among these 
SSRs, 17 SSRs were situated in protein-coding genes 
and one was located in a tRNA gene. Furthermore, five 
were in coding regions and 12 in intronic regions. No 
tetra-, penta- or hexa-nucleotide repeats over 15  bp 
long was detected. REPuter allowed us to identify 24 
repeats, including 13 forward and 11 palindromic repeats 
(Table 5). Almost all repeats were situated in the intronic 
and intergenic regions, although few of them were situ-
ated in protein-coding regions [26]. As reported in other 
genomes, the gene richest in repeats was ycf2, carrying 
two direct and two palindromic repeats.

IR expansion/contraction in the A. compactum cp genome
The variations of angiosperm cp genomes in length are 
mainly because of the contraction and expansion of 
boundary regions between the IR regions with single 
copy (SC) regions. A minute comparison of junctional 
regions between the IR and SC boundaries among A. 
compactum, C. flaviflora, C. roscoeana, and Z. specta-
bile is presented in Fig. 2. In addition, a size comparison 
of cp genome among the four Zingiberaceae species is 

shown in Additional file 2: Table S1. In spite of the alike 
lengths of IR regions in these four species (from 25,618 
to 29,824  bp), few IR contractions/expansions were still 
detected. rpl22, ycf1 and rps19 pseudogenes with various 
lengths were situated in IRb/LSC or IRb/SSC bounda-
ries. The borderline of the IRb/LSC junction was situated 
in left side of the rps19 gene in examined cp genomes, 
except in Z. spectabile, which resulted from the contrac-
tion of the IRa region in the Z. spectabile cp genome. 
By contrast, the ycf1 pseudogene was situated in the left 
side of the IRa-SSC border and was 4–5  bp away from 
the IRa-SSC borderline, except in the A. compactum cp 
genome. The size of the ycf1 pseudogene was 918 bp in 
A. compactum, 1068 bp in C. flaviflora and C. roscoeana, 
and 924 bp in Z. spectabile. In addition, in the A. compac-
tum cp genome, the ycf1 pseudogene was 2969 bp away 
from the IRa-SSC borderline, that indicated the expan-
sion of the IR region. The trnH gene was situated in LSC 
region, except in Z. spectabile cp genome, where it was 
situated in SSC region and was 136  bp away from the 
IRb-LSC borderline.

Comparison with other Zingiberaceae cp genomes
Three sequences representing the Zingiberaceae (C. fla-
viflora, C. roscoeana and Z. spectabile) were selected for 
comparison with A. compactum. Pairwise cp genome 
alignments between A. compactum and other three 
cp genomes regained a high degree of synteny (Addi-
tional file  3: Figure S1, Additional file  4: Figure S1 
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Fig. 2  Comparison of the border positions of the LSC, SSC, and IR regions among four complete Zingiberaceae chloroplast genomes. Gene names 
are indicated in boxes, and their lengths in the corresponding regions are displayed above the boxes
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and Additional file  5: Figure S3). To detect the diver-
gent regions in the cp genome, this study compared 
the sequence identities among four Zingiberaceae cp 
genomes by mVISTA, using the annotation of A. com-
pactum as a reference. The multiple sequences align-
ment showed the coding regions are highly conserved, 
however the non-coding regions are divergent (Fig.  3). 
As an example, the intergenic sequences between the 
trnT-GGU–psbD, rps16–trnQ-UUG, atpH–atpI, trnE-
UUC–trnT-GGU, trnT-UGU–trnL-UAA, petA–psbL and 
psaC–ndhE regions were highly divergent, parts of which 
have been also reported as divergent sequences in other 
plant. Obviously, the LSC region and SSC region were 
more divergent than IR regions.

Phylogenetic analysis
Cp genomes are widely employed in the study of evo-
lution through phylogenetics. To examine the phylo-
genetic position of A. compactum and its relationship 
within Zingiberales, MP and ML phylogenetical analy-
ses were performed based on 67 protein-coding gene 
sequences from 15 plant taxa, including A. compac-
tum, as sequenced in the study. The total alignment was 
51,452 bp in length. The results are presented in Figs. 4 
and 5. The basic topologies were similar in the MP and 
ML analyses, but there were few differences. Bootstrap 
values were all extremely high, and nine of the 12 nodes 
with bootstrap values of ≥  90% were found in MP tree, 
whereas eight of 12 nodes were found in ML tree with 
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100% bootstrap values. The Zingiberaceae species A. 
compactum, C. flaviflora, C. roscoeana and Z. spectabile 
were grouped in both MP and ML phylogenetic trees 
with 100% bootstrap values. In the MP trees, the four 
Zingiberaceae species composed a unique clade and were 
separated from the rest of Zingiberales with high boot-
strap values in every node. By contrast, the ML tree was 
mainly separated into two clades, one of which included 
Strelitziaceae, Heliconiaceae, Musaceae and Lowiaceae 
species, whereas another included Zingiberaceae, Costa-
ceae, Cannaceae and Marantaceae species. However, the 
Zingiberaceae and Costaceae species were grouped with 
a very low bootstrap value (15%) in the ML tree. These 
phylogenetic results strongly support the position of A. 

compactum and provide some helpful hints about rela-
tionships within the order Zingiberales.

Conclusion
The research assembled, annotated and analyzed the 
whole cp genome of A. compactum, which reveals that 
the cp genome of A. compactum shares a quadruple 
structure, gene order, GC content, and codon usage fea-
tures, similar to those of other land plant cp genomes. 
This Amomum cp genome was compared with three 
available Zingiberaceae cp genomes, while the genome 
structure and composition are similar. Also phyloge-
netic analysis provides new insight into phyletic evolu-
tion of this genus. Our research will contribute to species 
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identification and evolutionary mechanisms required for 
the further study of A. compactum.
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