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Abstract 

Traditional Chinese medicine (TCM) represents the crystallization of Chinese wisdom and civilization. It has been 
valued as the renewable source for the discovery of novel drugs, owing to its long‑term proved efficacy in human dis‑
eases and abundant biologically active components pools. To dissect the mystery of TCM, modern technologies such 
as omics approaches (proteomics, genomics, metabolomics) and drug screening technologies (high through‑put 
screening, high content screening and virtual screening) have been widely applied to either identify the drug target 
of TCM or identify the active component with certain bio‑activity. The advent of high content screening technology 
has absolutely contributed to a breakthrough in compounds discovery and influenced the evolution of technology 
in screening field. The review introduces the concept and principle of high content screening, lists and compares the 
currently used HCS instruments, and summarizes the examples from ours and others research work which applied 
HCS in TCM‑derived compounds screening. Meanwhile, this article also discusses the advantages and limitations of 
HSC technology in drug discovery from TCM libraries.
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Introduction
The advancement of optical instruments greatly acceler-
ated the process of modern biology and the drug discov-
ery industry [1]. Fluorescence microscopy emerged as a 
robust tool substituted for conventional optical equip-
ment, which can analyze spatiotemporal information in 
biology to uncover the mysterious veils of cellular events 
[2]. Simultaneously, the development of molecular biol-
ogy system attributes to the rapid growth of biological 
probes and fluorophores. After the image acquisition, 
thousands of figures are scanned to analyze quickly by 
computational software. Compared with manual screen-
ing technique, automatic screening platform avoided the 
assay artifacts and subjective biases on effective targets 
to achieve more accurate experiment results. Moreover, 
the automated drug screening platform saved manpower 
and resources, and increased the speed and scale of drug 

screening, which greatly accelerated the drug discovery 
process. In the early stage of the drug discovery, high 
throughput screening (HTS) system was extensively used 
in searching for hit compound for its high-efficiency, 
high-speed and quantitative characteristics. However, 
the single-target identification approach sometimes 
could not meet the need for comprehensive evaluation 
of compound activity in such a huge compound libraries 
generated by TCM or chemical synthesis [3]. HCS as a 
multiple dimension approach, displayed unique strength 
both in target-based and phenotypic-based screening for 
drug discovery.

Principle of high content screening
The concept of the high content screening was first 
proposed in 1997, when it was regarded as a power-
ful approach to break the bottlenecks in drug discovery 
[4]. Identifying a hit compound from a large number of 
compounds libraries requiring the robotic instruments 
and automatic analysis. Characteristics of high content 
screening meet the request at the following aspects. First, 
the establishment of multiple parameters and targets 
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analysis platforms can extract unbiased information on 
cellular function and morphology at the same time, such 
as cell shape, growth, differentiation, translocation, apop-
tosis and metabolism [5]. Second, investigators acquire 
spatial and temporal information on cellular events 
in vitro. In this way, researchers can mimic in vivo con-
ditions to evaluate effective treatments on intricate dis-
eases. Third, the robust approach provides more insights 
into mitochondria, lysosome and nucleus activity to 
study the subcellular biological events. Finally, lead com-
pound validation by automated imaging analysis and data 
algorithms made HCS easier to be extensively applied. 
Above mentioned characteristics of HSC make it widely 
used by researchers all over the world for the identifica-
tion the active lead compound [6].

State‑of‑the‑art progress in HCS technology
Hitherto, numerous high technologies and assays were 
established to improve the high-content imaging sys-
tem in the biological field. Diversity of instruments were 
invented for devising complete experiments and acquir-
ing multiple data analysis. Nowadays, multi-channel 
detectors have been widely used in imaging analysis 
systems, enabling the simultaneous analysis of multidi-
mensional targets and phenotypes. Accordingly, several 
software packages have been implanted to optimize the 
experiment operation for screening. Meanwhile, Open-
source image analysis software has been continuously 
developed for HCS image-analysis to acquire information 
in spatial and temporal dimensions [7], including both 
quantitative and qualitative assays [8]. These softwares 
aimed at analyzing specific imaging problems and pro-
viding user-friendly operation, can be extensively used 
in HCS equipment such as cell cognition [9], ImageJ/
Fiji [10], and EBImage [11]. 3D tissue culture model is a 
novel technology in biology that researchers acquired tri-
dimensional phenotypes of cells by confocal microscopes 
[12]. 3D culture assay is an ideal tool to explore cancers, 
specific organs from stem cells, circulatory and nervous 
system diseases between monolayer cell culture with ani-
mal experiment. Associated with a large number of con-
focal HCS platforms, the 3D model system attempted 
to act as a new approach in drug discovery pipeline. 3D 
culture instruments including the PerkinElmer Opera 
which contained a spinning disk confocal microscope, 
the ImageJ Suite combined with an R tool [13], and 3D 
Object Counter by Fabrice P. Cordelieres [14] have 
been applied in the drug screening on 3D culture-based 
models.

The application of HCS technology in biological 
field or pharmaceutical industry firmly bounded to the 
improvements of hardware, especially in microscopic 
imaging system and image-analysis software [15]. To a 

certain extent, both advanced imaging technology and 
data analysis software caused further development of 
HCS approaches. These two aspects, as a breakthrough 
in the exploration and improvement of HCS, make drug 
screening technology develop rapidly. Over the past 
20 years, tremendous changes have taken place in auto-
mated microscopes. The adequate resolution and mag-
nification are necessary to capture subcellular structures 
and phenotypes which reflect the cell events. With the 
progress of microscope technology and automated imag-
ing system, HCS technology evolved rapidly. It become 
easier for researchers to get a better overview of cellular 
phenotypes in organisms, and to identify the hit com-
pounds from the huge compounds library [16].

Currently, advancement of microscopic technology 
expanded the range of automated screening for visual 
phenotypes [17]. Improvements in stable light source 
and fast autofocus spelt the growth of microscopy tech-
niques. In addition to this, the process in fluorescent 
probes and novel fluorescent proteins also contributed to 
expanding the visual phenotypes [18]. Fluorescent labe-
ling assay can be employed to visualize the complicated 
physiological activity of cells in image-based screen-
ing. Fluorescent dyes, fluorescent probes, genetically 
encoded fluorescent proteins and antibodies allowed 
direct monitoring of cellular phenotypes under com-
plex conditions through staining cells [19]. Changes in 
image-based approaches and reliable software workflow 
facilitate to extract multiple parameters or quantita-
tive information from images. Both robotic microscopy 
imaging technique and advanced computational analy-
sis software were the rudimentary components of HCS 
technology. HCS technology combined these two aspects 
in automated experiment process and avoided of time 
consuming or uncertainty by human. Under the devel-
opment of experimental technology, the classification of 
instruments in HCS has changed with fantastic progress. 
Currently, HCS detector can be segregated into three cat-
egories: high-content of wide field fluorescence micros-
copy, high-content of confocal fluorescence microscopy, 
and integration of above two. The current HCS instru-
ments have concluded as follows (Table 1).

HCS applications in drug discovery
High content screening is a technology that combined 
automated fluorescence microscopy with automated 
image analysis to track the cellular morphology and 
intracellular parameters. As a contemporary technol-
ogy, it differs from the traditional cell-based methods, 
because it can analyze multiple cell parameters and thou-
sands of individual cells simultaneously (Fig. 1).

Drug target validation has been taken into account 
to be a pivotal procedure in drug discovery owing to 
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know target points lead the way of discovering novel 
drugs. Identifying the target point facilitate to have 
a specific pharmacological mechanism and decide 
whether the drug screening will be a success. Histori-
cally, hundreds of drug targets have been determined, 
such as a receptor, enzyme, ion channel and nucleic 
acid [20]. Although the research of drug targets made 
an enormous progress, there are still unexploited fields 
need further exploring. In the past years, scientists 
spared their efforts to study the mechanism of incur-
able disease, such as cancer or neurodegenerative dis-
eases. However, the lack of effective drug target largely 
impedes the development of efficient therapies though 
target-therapy displayed success in certain cancer 
types. Despite the technologies and approaches have 
improved a lot, the bottleneck of target identification 

still existed in such an intricate biological system 
[21]. The costly and time-consuming target validation 
required elucidating the protein how to act on specific 
signaling pathway or process of disease [22]. Over-
all, identifying the direct target of the compound with 
advanced screening technique accelerated the process 
of new drug discovery. How to apply biological assays 
to novel drug research or how to search for new effec-
tive assays on target validation is no doubt a grand 
challenge in the field of drug devised.

Application of HCS for drug discovery from traditional 
Chinese medicine
Over the past two decades, traditional Chinese medi-
cine (TCM) has been considered to be a rich source of 
hit compound for drug development against the diver-
sity of drug target validation. Hitherto, more than half 
of various drugs certified by FDA are derived from the 
natural source [23]. TCM and its derivatives had a pro-
found effect on the treatment of the disease because of 
the diversity of biological activities [24].

Along with the improvement of high techniques, there 
were countless numbers of compounds have been iso-
lated from TCM. Hence, it has become increasing dif-
ficult to identify completely new compounds with high 
bioactivity. Rediscovery is an unavoidable and neces-
sary issue but it takes time and money [25]. Therefore, 
researchers were supposed to devise more efficient 
experimental assays and simultaneously enhance the 
screening technologies to identify the valued compound 
as a novel therapeutic agent. Besides the discovery, the 
isolation or purification of TCM was similarly a difficulty 
to defeat [26]. There are a myriad of components exist in 

Table 1 Current HCS instruments

Company Name Light source Website

Confocal microscope GE Healthcare InCell Analyzer 6000 Laser http://www.biaco re.com

Lecia Microsystems TCS SP5 Laser http://www.leica ‑micro syste ms.com

Molecular Devices ImagreXpress Micro Laser http://www.molec ulard evice s.com

Perkin Elmer Opera Laser http://www.perki nelme r.com

Wide‑field microscope GE Healthcare InCell Analyzer 2000 Halide lamp http://www.biaco re.com

Intelligent Imaging Innovations 3i Marianas Arc lamp http://www.intel ligen t‑imagi ng.com

Molecular Devices ImageXpressMICRO XLS Arc lamp http://www.molec ulard evice s.com

Olympus Scan^R Arc lamp http://www.olymp us.com

TTP LabTech Acumen eX3 Laser http://www.ttpla btech .com

Confocal combined with BD biosciences BD Pathway 855 Arc lamp http://www.bdbio scien ces.com

Wide‑field BD biosciences BD Pathway 435 Arc lamp http://www.bdbio scien ces.com

Perkin Elmer Operetta Arc lamp http://www.perki nelme r.com

Thermo Scientific Cellomics ArrayScan VTI Arc lamp http://www.cello mics.com

Thermo Scientific CellInsight CX7 LED http://www.cello mics.com

Thermo Scientific CellInsight™ CX5 LED http://www.cello mics.com

Fig. 1 Key steps in high content screening. Upper flow chart 
illustrates general process of high content screening. Each step is 
required to precisely design and optimize

http://www.biacore.com
http://www.leica-microsystems.com
http://www.moleculardevices.com
http://www.perkinelmer.com
http://www.biacore.com
http://www.intelligent-imaging.com
http://www.moleculardevices.com
http://www.olympus.com
http://www.ttplabtech.com
http://www.bdbiosciences.com
http://www.bdbiosciences.com
http://www.perkinelmer.com
http://www.cellomics.com
http://www.cellomics.com
http://www.cellomics.com
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TCM, how to isolate single compound, especially with 
low concentration, from complex compound libraries by 
chemical separation is still a conundrum [27]. Another 
intractable problem was how to purify the extract, and 
it also magnified the difficulties in drug discovery from 
TCM. In order to solve above issues, effective analytical 
method should be drawn up and improved to facilitate 
the drug discovery from TCM successfully.

Traditional Chinese medicine has historically become 
a rich source of discoverying novel drugs. Since high-
content screening technology emerged as a robust tool in 
drug screening, the development of drug discovery from 
TCM has improved a lot. Efforts to search for therapeutic 
agents from TCM libraries have constantly continued in 
the past years. Researchers discovered some innovative 
drugs from large libraries with HCS approach to treat 
complex diseases. At present, more and more research 
institutions have applied HCS technology in the study of 
traditional Chinese medicines. HCS can not only clarify 
the interaction between the sieved samples and the drug 
targets, but also make it possible to understand other 
biological changes in the cell, predict the toxicity of the 
compound and investigate related metabolic pathways 
by observing the morphology of the cells, which are of 
great significance for promoting the modernization of 
traditional Chinese medicine. Recently, we have applied 
HCS technique in the discovery of autophagy regulator 
from traditional Chinese medicine for the therapeutic 
invention in the cancer and neurodegenerative disease 
models. Our studies demonstrate that the HCS tech-
nique is highly efficient and reliable for the identification 
of autophagy regulators. For example, Corynoxine B [28], 
Corynoxine [29] and curcumin analog C1 were identified 
as autophagy inducers while dauricine and daurisoline 
were identified as autophagy inhibitors [30].

There is an increasing number of studies applying HCS 
technique in the identification and pharmacological anal-
ysis of TCM-derived reagents. A comprehensive sum-
marization of these studies is list in Table 2. Among the 
studies, the HCS has been used to identify therapeutic 
compounds for a wide range of human diseases includ-
ing: cancer, neurodegenerative disease, neurotoxicity, 
osteoporosis, liver injury, liver fibrosis and inflammation. 
When analyzing the screening models, multiple cellular 
and molecular processes have been utilized in the screen-
ing as shown in Table  2. Several models mentioned in 
the table are extremely suitable for the HCS and we con-
clude here: (1) nuclear translocation of transcript factors: 
some transcript factors translocate to nuclear to initiate 
the gene transcription for down-stream cellular events 
thus the nuclear translocation of transcript factors can 
be used as a marker for transcription activation. Nuclear 
translocation of eIF4E, NFATc1, β-catenin, NF-κB and 

TEFB have been use as the readout for the identifica-
tion of anti-cancer, anti-inflammation and neuroprotec-
tive compounds; (2) Morphological change of cells: Cell 
morphology changes are important marker of cell activa-
tion status, cell viability, cell growth and cell destiny. In 
the studies, the microtubules network, the outgrowth of 
neurites of neuronal cells and nuclei morphology have 
been monitored to evaluate the anti-tumor and neuro-
protective properties of candidate compounds; (3) the 
function and distribution pattern of organelles: intracel-
lular organelles play vital role in the cell survival and pro-
liferation. The membrane potential of mitochondria and 
the distribution pattern of lysosomes have been used as 
markers for anti-cancer property evaluation of candidate 
compounds; (4) autophagosome formation: autophagy is 
a highly conserved cellular degradation process involved 
in neurodegenerative diseases and cancer. The forma-
tion of autophagosome has been widely used as marker 
for identification of autophagy regulators. In the listed 
studies, the autophagy inhibitors and inducers have been 
identified for the anti-cancer purpose and neuroprotec-
tive purpose. These successful examples strongly support 
the strength of HCS in the TCM research.

Discussion
In the past two decades, movements forward in instru-
ments and software made the HCS become the power-
ful technique in drug discovery. HCS has in fact applied 
to identify drug candidates at various stages of the drug 
discovery pipeline: target validation, primary screening, 
candidate optimization and in vitro toxicology. It is unde-
niable that applying HCS to drug discovery from TCM 
facilitated the leading compounds identification, as well 
as the pharmacological study on the TCM. The applica-
tion of the HCS elucidated the mechanisms, features and 
target points in individual cells or organisms and pro-
vided more insights into biological processes.

Although HCS technology improved a lot, scien-
tists still have challenges on copious amounts of data 
analysis [52]. Thus, HCS dataset enable researchers to 
develop automated and advanced machine to quantify 
multiple cellular events or genetic information. When 
open source software gradually became more wide-
spread, the analysis of HCS images seems to be more 
convenient and accurate. In addition, 3D tissue culture 
also has obstacles to surmount that 3D image process-
ing software had difficulties in complicated 3D animal 
models. Along with the continuous progress of bio-
technology, high-content screening will take a deeper 
optimization and become more authoritative and wide-
spread. Though the robust assay was too overwhelm-
ing to handle a lot of barriers people met before, it is 
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expected that future improvements in experimental 
approaches and computational instruments would add 
value to HCS in the future.

Traditional Chinese medicine contains thousands of 
compounds which regulate cellular function as a com-
bination of multiple pharmacological activities, thus 
making it very challenging to understand the exact mech-
anism of drug activity. HCS provides a new technical 
means for studying Chinese medicine as a whole rather 
than as the isolated compounds, which better meet the 
complex factors of traditional Chinese medicine research 
and is in according with clinic use of TCM. Specifically, 
HCS has the following advantages for traditional Chi-
nese medicine research: First, HCS can be used to study 
the function of cells as a whole, making the results more 
comprehensive and objective. Secondly, HCS can be 
used to screen multiple components of traditional Chi-
nese medicine to find active components or components. 
Thirdly, HCS can help the exploration of the mecha-
nism of traditional Chinese medicine from multiple lev-
els and multiple targets, which are easily missed during 
traditional highly specific single-target screening. How-
ever, the difficulties of the application of HCS on TCM 
comparing to the pure chemical compounds are also 
obvious: (1) different compounds in TCM may compete 
with each other on the signaling pathways (inhibition or 
activation of same signaling pathway) or targets (agonist 
or antagonist) so as to mask the potential activity; (2) 
when a desired pharmacological activity were identified, 
it is difficult to figure out which compound is responsi-
ble that activity. Recent advance in the chemical biology 
and high-resolution separation science to fish the specific 
compound from the TCM pool use purified protein as 
bait is one of the solution for these difficulties. Moreo-
ver, the rapid development of “omics” approaches and 
pharmacological network analysis tool are making the 
attempt of deciphering the mystery of TCM much easier.

Conclusion
HCS technology has been extensively invoked as a pow-
erful tool for a rapid explosion in resolution and data 
processing both in the pharmaceutical industry or bio-
logical field. Traditional Chinese medicine has been val-
ued as a rich source for drug discovery because of the 
well documented therapeutic efficacies since ancient 
time. However, lack of knowledge on the pharmacology 
mechanism and drug targets limited the further devel-
opment of TCM. Applying the HCS technique will nar-
row the gap between therapeutic potential and molecular 
mechanism, thus strengthen the process for drug discov-
ery from TCM.
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