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Abstract 

Alzheimer’s disease (AD) is a common human neurodegenerative disease, which is characterized by the progressive 
loss of memory and the cognitive impairment. Since the etiology of AD is still unknown, it is extremely difficult to 
develop the effective drugs for preventing or slowing the AD process. The major characteristics of AD such as amyloid 
β plaques, neurofibrillary tangles, mitochondrial dysfunction, and autophagy dysfunction are commonly used as 
the important indicators for evaluating the effects of potential candidate drugs. The rhizome of Salvia miltiorrhiza 
(known as ‘Danshen’ in Chinese), a famous traditional Chinese medicine, which is widely used for the treatment of 
hyperlipidemia, stroke, cardiovascular and cerebrovascular diseases. Increasing evidences suggest that the bioactive 
components of Danshen can improve cognitive deficits in mice, protect neuronal cells, reduce tau hyperphosylation, 
prevent amyloid-β fiber formation and disaggregation. Here we briefly summarize the studies regarding the effects of 
bioactive component from Danshen on those major characteristics of AD in preclinical studies, as well as explore the 
potential of these Danshen component in the treatment of AD.
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Background
Alzheimer’s disease (AD) is the most common neurode-
generative disorder, which is characterized by the symp-
toms such as the progressive loss of memory and the 
cognitive impairment. The symptoms of AD result from 
the death or functional loss of neurons in the brain [1]. 
The incidence of AD increases as age over 65 years old; 
thus aging is commonly considered as the main risk fac-
tor. However, due to the poor understanding of etiology 
and pathogenic mechanisms in AD, the development of 
effective drugs still remains stagnant. At present, only 
four U.S. Food and Drug Administration (FDA)-approved 
drugs, including cholinesterase inhibitors (Aricept, 
Exelon, Razadyne) and memantine (Namenda) are able to 

temporarily reduce AD symptoms [2] (Fig. 1). The com-
bination of Namenda and Aricept (Namzaric) is recently 
approved to improve the memory and the cognitive in 
patients with moderate to severe AD. Tacrine is the first 
cholinesterase inhibitor approved for the treatment of 
AD in 1993, but it is discontinued due to its strong hepa-
totoxicity [3]. It should note that these approved medi-
cines cannot cure AD or slow AD process, they just help 
some symptoms for a limited time.

In addition to aging, genetic factors also involve in 
the pathogenesis of AD. Rare autosomal-dominant 
gene mutations cause familial AD (FAD) which exhib-
its the similar pathological and clinical features of AD 
except some cases are early-onset. Other risk factors 
such as smoking, air pollution and infection have been 
reported to involve in the pathogenesis of AD [4–6]. 
However, the crosstalk among these factors make 
the understanding of pathogenic mechanisms of AD 
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become more difficult. Up to now, most AD studies 
propose the possible pathogenesis mechanisms based 
on the clinical characteristics of AD such as amyloid β 
(Aβ) plaques, neurofibrillary tangles (NFTs), mitochon-
drial dysfunction and autophagy dysfunction. These 
characteristics have been demonstrated to affect the 
functions and survival of neurons. Thus, these char-
acteristics of AD are commonly used as the important 
indicators for evaluating the effects of potential candi-
date drugs.

The rhizome of Salvia miltiorrhiza (known as ‘Dan-
shen’ in Chinese), a well-known traditional Chinese 
medicine, which is widely used for the treatment of 
hyperlipidemia, stroke, cardiovascular and cerebrovas-
cular diseases [7–10]. Increasing studies suggest that the 
extraction from Danshen displayed the neuroprotectvie 
effects in various AD models. Total salvianolic acid from 
Danshen was found to reduce the learning and memory 
impairments in APPswe/PS1dE9 mice [11]. The aqueous 
extraction of Danshen could reduce Aβ-induced neuro-
toxicity in human neuroblastoma SH-SY5Y cells [12]. In 
addition, the extraction from Danshen was reported to 
enhance the differentiation of induced pluripotent stem 
cells (iPSCs)-derived neural stem cells (NSCs) into neu-
rons in vitro, and improve the recovery function of trans-
planted NSCs in the rat ischemic brain in vivo [13]. The 
major components of Danshen such as salvianolic acid A, 
salvianolic acid B, danshensu, tanshinone I, tanshinone 
IIA, and cryptotanshinone exhibit the neuroprotective 
effects, which are attracting strong attention for the treat-
ment of AD [14–17]. In this review, we briefly summarize 
the studies regarding the effects of Danshen components 
on the major characteristics of AD, and explore their pos-
sibility for the treatment of AD.

The characteristics of AD
Aβ plaques
The most well-known characteristic of AD is Aβ plaques 
[18–21]. Accumulation of Aβ plaques is positively corre-
lated with the cognitive impairment in AD [22, 23]. Aβ 
is a polypeptide containing 37 to 49 amino acid residues, 
generated from its precursor amyloid precursor pro-
tein (APP) processing via cleavage by β-secretase and 
γ-secretase. In Aβ hypothesis, Aβ toxicity is considered 
as the primary cause of AD. Thus, anti-Aβ strategies to 
reduce Aβ toxicity or generation have been the major 
focus for the development of AD drugs. It is well known 
that γ-secretase inhibitors show a significant reduction 
of plasma Aβ levels in AD patients, but eventually fail 
in previous clinical trials [24]. Furthermore, in 2018, 14 
Aβ-related candidate drugs still are in the phase 3 clini-
cal trials [25]. However, up to now, over a half of them 
include anti-Aβ antibodies (Aducanumab, Solanezumab, 
Gantenerumab, and Crenezumab), β-secretase inhibitors 
(MK-8931, AZD3293, JNJ54861911), are known to fail in 
the phase 3 (Fig. 1), revealing that Aβ may be the conse-
quence, not the pathogenic cause.

Aβ plaques is caused by the accumulation of extracel-
lular Aβ, however why secreted Aβ accumulates in AD 
brain remains unknown. Increasing studies indicate that 
abnormal APP processing involves in the development of 
AD [26, 27]. The metabolism of APP is very rapid in neu-
rons [28], APP or its metabolites such as the carboxyl-
terminal fragment of APP (APP-CTF) and Aβ may be 
easy to accumulate once the APP processing is disrupted. 
Abnormal intracellular levels of APP or APP-CTF has 
been reported to cause tau pathology and autophagy 
dysfunction [27]. Thus, modulating or enhancing APP 
metabolism may be a potential strategy for anti-AD.

NFTs
In addition to Aβ plaques, NFTs are commonly known 
as a major characteristic of AD [29]. NFTs are insoluble 
twisted fibers comprised of the accumulation of hyper-
phosphorylated tau protein, which are found inside AD 
neurons. Tau is a microtubule-associated protein that 
mediates the stability of tubulin assemblies. The phos-
phorylation of tau negatively regulates its activity in 
enhancing microtubule assembly [30]. Tau is phosphoryl-
ated by several kinases such as glycogen synthase kinase 
3β (GSK3β), c-Jun N-terminal kinase (JNK), cyclin-
dependent kinase 5 (Cdk5), extracellular signal-regulated 
kinase (ERK), and microtubule-associated regulatory 
kinase [31]. Increasing evidence supports the hyperphos-
phorylation caused by these tau-related kinases is a criti-
cal step in the accumulation of tau [32]. Thus, reducing 
the activities of tau-related upstream kinases to prevent 

Fig. 1  Phase 3 and 4 clinical trials in 2018. Asterisk, completed; 
Underline, failed
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the accumulation of hyperphosphorylated tau may be a 
therapeutic strategy for the treatment of AD.

Mitochondrial dysfunction
Mitochondria is an important organelle for energy gener-
ation via mitochondrial respiratory chain. The damage in 
mitochondria triggers the loss of ATP and the increase of 
ROS, further resulting in apoptotic cell death. Mitochon-
drial dysfunctions such as the decreased mitochondrial 
membrane potential, the increased permeability, and the 
generation of excess reactive oxygen species (ROS) are 
found in the early stage of AD brain [33, 34], suggesting 
that mitochondrial dysfunction may involve in the loss of 
neurons in AD. Recently, the accumulation of APP and 
Aβ are found in the mitochondria of human AD brain, 
providing the clinical evidence to support that abnormal 
APP metabolism may be associated mitochondrial dys-
function and impaired energy metabolism [35, 36]. Since 
the critical role of mitochondria in neurodegeneration 
and neuronal death, how to prevent the mitochondrial 
dysfunction has been concerned in AD studies.

Autophagy dysfunction
Autophagy is a catabolic process that delivers cytoplasmic 
organelles and substrates to lysosomes for degradation. 
It plays an important role in the turnover of organelles 
and proteins, the cellular energy balance as well as the 
cell survival [37–39]. Autophagy is a key regulator for Aβ 
generation and clearance, as well as mitochondria turno-
ver [40]. Abnormal accumulation of autophagic vacu-
oles is found in AD brain. Autophagy defect phenotypes 
such as the lysosomal dysfunction, the impairment of 
autophagy degradation and the defect of mitophagy are 
found in neurons as well as non-neuronal cells from FAD 
patients [41–45]. Aβ secretion and plaque formation are 
reported to associate with autophagy dysfunction [46]. 
Thus, autophagy dysfunction is commonly considered 
as one of AD characteristics. Increasing studies indicate 
that the using of small molecular compounds to promote 
autophagy exhibits the promising effects on reducing Aβ, 
APP and tau pathology, even improving cognitive defi-
cits [47–53], suggesting enhancing autophagy may be a 
potential strategy to reduce AD-related protein accumu-
lation and mitochondrial dysfunction in the AD process.

The effects of Danshen components on AD 
characteristics
Salvianolic acid A
Salvianolic acid A is one of the most active components 
in Danshen, which displays the strong free radical scav-
enging ability due to its polyphenolic structure, as well 
as anti-apoptosis, and anti-inflammation [54, 55]. Aβ 
plaques comprise both Aβ40 and Aβ42. Compared with 

Aβ40, the longer Aβ42 is more easy to aggregate, and 
leads to more serious cognitive loss in animals [56]. In 
the study of Cao et  al. [57], they found that salvianolic 
acid A (1, 4, 10, and 40 μM) could block the self aggre-
gation of Aβ42. It (50 and 100  μM) also almost com-
pletely disaggregated Aβ42 pre-formed fibers. They used 
circular dichroism and molecular dynamic simulations 
to demonstrate that salvianolic acid A directly bind to 
the C-terminal of Aβ42 and stabilize α-helical confor-
mations of Aβ42, contributing to its ability to prevent 
the aggregation of Aβ42. In addition, they found that 
salvianolic acid A (5, 10, 20, and 40  μM) was able to 
decrease Aβ42-induced neurotoxicity in SH-SY5Y cells. 
They also evaluated the anti-Aβ effect of salvianolic 
acid A using transgenic C. elegans strain CL4176 which 
over-expressed human Aβ42 in muscles for assaying 
Aβ-induced paralysis. They found that salvianolic acid A 
(50 and 200 μM) reduced total Aβ and Aβ-induced paral-
ysis in these transgenic worms. These results suggest that 
salvianolic acid A may prevent Aβ-induced damage via 
reducing Aβ aggregation.

Total salvianolic acid extracted from Danshen is 
reported to reduce the learning and memory impair-
ments in APPswe/PS1dE9 mice via decreasing Aβ42 and 
Aβ40 [11], hinting that salvianolic acid A may have the 
capability to regulate APP processing. β-Secretase is the 
key enzyme for APP processing to generate Aβ. In the 
study of Tu et  al. [58], enzyme kinetic analysis showed 
that salvianolic acid A (IC50: 13 μM) was able to inhibit 
the activity of β-secretase. Their computer docking anal-
ysis predicted that salvianolic acid A bound tightly to the 
active site of β-secretase. However, no further cell-based 
study provides the evidence to support the ability of sal-
vianolic acid A to regulate β-secretase.

GSK3β is considered as a possible therapeutic target 
against AD because its function involves in phosphoryla-
tion of tau, mitochondria function and cell survival [59, 
60]. Through enzyme kinetic assay, Paudel et  al. found 
that salvianolic acid A (IC50: 30 μM) exhibited the inhibi-
tive effect on the activity of GSK3β [61]. However, It still 
lacks of the direct evidence to support the effects of sal-
vianolic acid A on GSK3β-related events.

Salvianolic acid B
Salvianolic acid B is the major and most active anti-
oxidant from Danshen, which can prevent cells from 
Aβ-induced cytotoxicity. He et al. reported that salvia-
nolic acid B (50 μM) reduced mitochondrial stress and 
preserved synaptic density in Aβ42-treated primary 
cultured mouse neurons [62]. In addition, salvianolic 
acid B (10, 100, and 200 μg/ml) could protect PC12 cells 
against Aβ (25–35)-induced increase of Ca2+-intake 
and LDH release [63]. In addition to anti-Aβ toxicity, 
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salvianolic acid B also shows the ability to regulate APP 
processing. Tang et al. reported that salvianolic acid B 
(50 and 100 μM) was able to reduce the levels of Aβ40, 
Aβ42 and ROS in the culture media of SH-SY5Y cells 
with overexpression of SwedAPP [64]. They found that 
salvianolic acid B was able to affect the metabolism of 
APP in these cells. Salvianolic acid B reduced the level 
of secreted APPβ via down-regulating the expression of 
β-secretase, whereas the level of sAPPα was increased 
by treatment of salvianolic acid B to up-regulate the 
expression of α-secretase. In the study of Durairajan 
et al. they found that salvianolic acid B could decrease 
the generation of Aβ in N2a-mouse and H4-human 
neuroglioma cell lines expressing SwedAPP [65]. They 
got the identical results with Tang et  al, but did not 
observe that salvianolic acid B affected the activities of 
α-secretase and γ-secretase. They used computer dock-
ing analysis to predict salvianolic acid B may interact 
with β-secretase [65], suggesting that salvianolic acid 
B may directly modulate β-secretase activity. However, 
in the study of Tu et  al. [58], enzyme kinetic analysis 
showed that salvianolic acid B could not inhibit the 
activity of β-secretase. These results provide strong evi-
dence to demonstrate that salvianolic acid B is able to 
reduce amyloidogenic pathways via down-regulating 
the expression of β-secretase, and increases the activity 
of α-secretase which cleave APP in non-amyloidogenic 
pathways. This activity of salvianolic acid B promote 
APP processing toward the non-amyloidogenic genera-
tion, may provide an alternative way for reducing Aβ 
generation.

In Paudel et  al. study, salvianolic acid B (IC50: 7  μM) 
could block GSK3β activity in enzyme kinetic assay [61]. 
Their computer docking analysis predicted that salvia-
nolic acid B could bind to the catalytic domain of GSK3β, 
suggesting it might be an ATP-competitive inhibitor 
of GSK3β. In addition, salvianolic acid B (25, 50, and 
100 μM) also was found to reduce the activity of GSK3β 
in SH-SY5Y cells with overexpression of APP mutant 
[64]. The ability of salvianolic acid B to blocking the 
activity of GSK3β in  vitro may prevent tau from hyper-
phosphorylation, but further investigation is needed.

NFE2 p45-related factor 2 (Nrf2) plays a regulatory 
role in the expression of genes involved in mitochon-
dria biogenesis and intracellular ROS scavenging, which 
may confer the protection of mitochondria. Zhou et  al. 
found that salvianolic acid B (10, 50, and 100 μM) could 
enhance the intracellular antioxidant defense mecha-
nism involving Nrf2-induced antioxidant enzymes in 
mouse midbrain neuron-glia cultures [66]. In addition, 
salvianolic acid B was able to decrease Aβ-induced mito-
chondrial stress in primary cultured mouse neurons [62]. 

These results suggest the salvianolic acid B may provide 
the protection to mitochondria.

Salvianolic acid B could work as a novel autophagy 
inducer in non-neuronal cells [67, 68]. However, in brain, 
only Jiang et al. reported that the intraperitoneally injec-
tion with 20 mg/kg salvianolic acid B reduced lipopoly-
saccharide (LPS)-induced the increase of autophagic 
markers and neuroinflammation, thereby resulting 
in neuroprotective in the brain of rats [69]. However, 
LPS model is not related to AD, cannot support the 
autophagy-regulating effects of salvianolic acid B in 
autophagy dysfunction in AD.

Danshensu
Danshensu is an active component of Danshen with 
wider cardiovascular effects. Danshensu was also 
reported to provide neuroprotection in the neurotoxin-
induced injury model, and could pass the blood-brain 
barrier (BBB) of rats, suggesting that danshensu has the 
potential in the treatment of brain disorders [54, 70]. 
In addition, danshensu (10, 100, and 200  μg/ml) could 
attenuate Aβ (25–35)-induced increase of Ca2+-intake 
and LDH release in PC12 cells [63]. Previous study indi-
cated that danshensu (100, 200, 400 μM) alone was able 
to enhance the intracellular antioxidant defense mecha-
nism involving Nrf2-induced antioxidant enzyme heme 
oxygenase 1, thereby provided the protection against 
6-OHDA-induced oxidative damage in PC12 cells [71]. 
These results hint that danshensu may have the positive 
effects on mitochondrial function and cell survival. How-
ever, there are no further reports regarding the effects of 
danshensu on other characteristics of AD.

Tanshinone I
Tanshinone I is a bioactive lipophilic compound iso-
lated mainly from Danshen. Tanshinones was reported 
to exhibit antioxidant and anti-inflammatory effects in 
the ischemic injury models [72, 73]. In the study of Wang 
et al, they found that tanshinone I (20 and 40 μM) could 
reduce the formation of Aβ42 fibrils and disassemble 
Aβ42 aggregation [74]. Tanshinone I (4  μM) also pro-
vided the protection against Aβ-induced cytotoxicity in 
SH-SY5Y cells. The molecular docking predicted that 
tanshinone I had the higher affinity with the structure 
of Aβ. However, the working concentration of anti-Aβ 
aggregation of tanshinone I is not consistent with its pro-
tective effects.

In the study of de Oliveira et  al., they indicated that 
tanshinone I (2.5 μM) was able to confer mitochondrial 
protection such as reducing mitochondrial toxin-induced 
impairments of complex I and mitochondrial membrane 
potential in SH-SY5Y cells [75]. Their results demon-
strated that the treatment with tanshinone I alone could 



Page 5 of 10Chong et al. Chin Med           (2019) 14:19 

up-regulate antioxidant enzymes, such as Mn-superoxide 
dismutase, glutathione peroxidase, and both catalytic 
and modifier subunits of γ-glutamate-cysteine ligase via 
enhancing the intracellular antioxidant defense mecha-
nism of Nrf2, revealing that tanshinone I has the ability 
to maintain the mitochondria functions via increasing 
the expression of Nrf2.

Tanshinone IIA
Tanshinone IIA is one kind of tanshinones extracted from 
Danshen, which exhibits the antioxidant and anti-inflam-
matory activities. The effects of tanshinone II on the 
Aβ-related events have been reported. Shi et al. indicated 
that pretreatment of tanshinone IIA (10, 20, and 40 μM) 
protected primary cortical neurons from Aβ25–35 
induced neurotoxicity [76]. They found that tanshinone 
IIA reduced Aβ-induced the cleavage of p35 into p25 and 
thus inhibited the Cdk5 pathway, suggesting that block-
ing the p35/Cdk5 pathway may contribute to the protec-
tive effects of tanshinone IIA. Liu et  al. also found that 
tanshinone IIA (0.1, 1, and 10 μM) reduced Aβ-induced 
oxidative stress and apoptosis in rat cortical neurons by 
inhibiting lipid peroxidation and ROS increase, stabiliz-
ing mitochondrial membrane potential, as well as reduc-
ing cytochrome c release from mitochondria [77]. The 
protective effects of tanshinone IIA on SH-SY5Y cells 
against Aβ42-induced cytotoxicity was reported by Wang 
et al. [74] and Yang et al. [78]. In addition to the different 
working concentrations, the main difference is that Wang 
et  al. reported the protective effects of tanshinone IIA 
likes tanshinone I resulted from the suppression of Aβ42 
fibrils formation and the disassembly Aβ42 aggregation 
via directly binding to Aβ, whereas Yang et al. found that 
reducing Aβ42-induced endoplasmic reticulum stress 
contribute to the protective effects of tanshinone IIA. In 
animal study, Maione et al. indicated that tanshinone IIA 
(10 mg/kg) reduced memory decline and the increase of 
neuroinflammatory markers in Aβ42-injected mice [79]. 
These results show that the multiple mechanisms involve 
in the protective effects of tanshinone IIA against Aβ 
toxicity.

Tanshinone IIA was reported to reduce Aβ-induced the 
activation of tau-related kinase Cdk5, thereby attenuate 
the expression of phosphorylated tau in primary cortical 
neurons [76]. Tanshinone IIA also plays as a Nrf2 inducer 
in various cells [80, 81]. In SH-SY5Y cells, tanshinone 
IIA (5, 10, and 20 μg/ml) could induce the expression of 
NRF2 binding site-regulated genes, thereby provided the 
neuroprotection against neurotoxin 6-OHDA [82]. Zhu 
et  al. reported that tanshinone IIA (0.2, 1, 2 and 5  μg/
ml) also protects hippocampal neuronal cells HT-22 
from ischemic damages such ROS increase, abnormal 
autophagy induction, and mitochondrial impairment via 

enhancing PI3K/Akt/mTOR signals [83]. These abilities 
of tanshinone IIA may bring the benefit to reduce the 
characteristics in AD brain.

Cryptotanshinone
Cryptotanshinone also is one kind of tanshinones. Sev-
eral studies suggest that the activities of cryptotan-
shinone involved in reducing the Aβ aggregation and 
toxicity, as well as up-regulating α-secretase. Mei et  al. 
reported that cryptotanshinone (1, 2.5, and 5 μM) could 
inhibit Aβ42 spontaneous aggregation and (5 and 10 μM) 
dramatically reduced Aβ42-induced cell apoptosis and 
ROS increase in SH-SY5Y cells [84]. In addition, cryp-
totanshinone (3 and 10  mg/kg)  has been reported to 
reduce memory decline and neuroinflammation in Aβ42-
injected mice [79], supporting the anti-Aβ ability of cryp-
totanshinone. The abnormal processing of APP is one of 
Aβ-related events in AD patients [85]. Met et al. reported 
that cryptotanshinone (15  mg/kg) strongly attenuated 
amyloid plaque deposition and the decease of cognitive 
ability in APP/PS1 transgenic mice [86]. Interesting, their 
further study found that cryptotanshinone was able to 
enhance PI3K-mediated the expression of α-secretase 
which cleave APP in non-amyloidogenic pathways [87]. 
This effect of cryptotanshinone on promoting APP pro-
cessing toward the non-amyloidogenic generation, may 
provide an alternative way for reducing Aβ generation.

Discussion
Aβ plaques, NFTs, mitochondrial dysfunction, and 
autophagy dysfunction are the characteristics of AD, 
which may be crucial indicators for evaluating the phar-
maceutical effects of promising AD drugs. In this review, 
we evaluate the effects of six components from Danshen 
on these major characteristics of AD (Table 1). In these 
preclinical studies, each components are able to reduce 
Aβ toxicity (Table  2). Salvianolic acid A, tanshinone I, 
tanshinone IIA, and cryptotanshinone show the protec-
tive activities against Aβ-induced cell damage as well as 
reduced Aβ aggregation. Compared their working con-
centration in anti-Aβ-induced cytotoxicity and anti-Aβ 
aggregation, the working concentrations of salvianolic 
acid A and cryptotanshinone in both activities are similar, 
suggesting that the protective effects of salvianolic acid A 
and cryptotanshinone against Aβ-induced cytotoxicity 
mainly result from its ability to reduce Aβ aggregation. 
However, due to the failure of most anti-Aβ therapies in 
clinical trials, anti-Aβ toxicity is not considered as one of 
the indicators. On the other hand, the ability of salvia-
nolic acid B and cryptotanshinone affects APP processing 
via regulating the expression of secretases, may bring the 
benefit in reducing the Aβ formation.
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Table 1  The effects of bioactive components from Danshen on major characteristics of AD

Compounds from Danshen The effects on the characteristics of AD

Salvianolic acid A

Inhibit Aβ aggregation and disaggregates Aβ fibrils [47]
Anti-Aβ-induced cytotoxicity [47]
Inhibit the activity of β-secretase in enzyme kinetic assay [48]
Inhibit the activity of GSK3β in enzyme kinetic assay [51]

Salvianolic acid B

Anti-Aβ-induced cytotoxicity [52, 53]
Reduce Aβ generation in cells [54, 55]
Down-regulate the expression of β-secretase in cells [54]
Up-regulate the expression of α-secretase in cells [54]
Inhibit the activity of GSK3β in enzyme kinetic assay [51]
Reduce the activity of GSK3β in cells [54]
Activate NRF2-mediated intracellular antioxidant defense 

mechanism [56]
Reduce abnormal increase of autophagy in in vivo [59]

Danshensu

Anti-Aβ-induced cytotoxicity [53]
Activate NRF2-mediated intracellular antioxidant defense 

mechanism [61]

Tanshinone I

Inhibit Aβ aggregation and disaggregates Aβ fibrils [64]
Anti-Aβ-induced cytotoxicity [64]
Activate NRF2-mediated intracellular antioxidant defense 

mechanism [65]

Tanshinone IIA

Inhibits Aβ aggregation and disaggregates Aβ fibrils [64]
Anti-Aβ-induced cytotoxicity [64, 66–68]
Reduce Aβ-induced memory decline and neuroinflammation 

in in vivo [69]
Reduce Aβ-induced p35/Cdk5 pathway [66]
Activate NRF2-mediated intracellular antioxidant defense 

mechanism [72]
Reduce abnormal increase of autophagy in in vitro [73]

Crytotanshinone

Inhibits Aβ aggregation [74]
Anti-Aβ-induced cytotoxicity [74]
Reduce Aβ-induced memory decline and neuroinflammation 

in in vivo [69]
Attenuate amyloid plaque deposition and the decrease of 

cognitive ability in APP/PS1 transgenic mice [76]
Up-regulate the expression of α-secretase in cells [77]



Page 7 of 10Chong et al. Chin Med           (2019) 14:19 

Salvianolic acid B is able to directly inhibit the activity 
of tau-related kinase GSK3β, may confer the decrease in 
hyperphosphorylation of tau in AD. Tanshinone IIA and 
cryptotanshinone affect Aβ-induced upstream kinases 
such as Cdk5 and p38, thereby reduce the expression of 
hyperphosphorylated Tau. It is still unknown whether 
exogenous Aβ is the cause for tau pathology in the AD 
process. Most studies based on Aβ hypothesis may not 
accurately recapitulate the key aspects of AD. Thus, the 
further studies are needed to demonstrate their positive 
effects on tau pathology in suitable models.

Salvianolic acid B, danshensu, tanshinone I, and tan-
shinone IIA, are able to activate Nrf2 defense mechanism 
or reduce mitochondria-dependent apoptosis pathway 
which is critical to maintain mitochondrial functions 
under cell damage. Striking, salvianolic acid B and tanshi-
none IIA are reported to reduce abnormal autophagy in 
non AD model. Compared with other components, sal-
vianolic acid B reduces four characteristics of AD, which 
shows more potential for the treatment of AD.

Conclusion
Up to now, since the exact pathogenic mechanisms of AD 
are still poorly understood, thereby no any effective cures 
for slowing or preventing AD process. The bioactive com-
ponents of Danshen confer the different positive effects 
on APP processing, tau hyper-phosphorylation, mito-
chondria dysfunction, as well as abnormal autophagy, 
further suggesting their potential in the treatment of AD. 
Among them, salvianolic acid B shows more potential 
because it appears to reduce four characteristics of AD 
in preclinical studies, supporting that the further devel-
opment of salvianolic acid B is warranted, as a potential 
neuroprotectant with the multiple effects to reduce neu-
ronal death in AD development.
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