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Abstract 

Depression is the most disastrous mood disorder affecting the health of individuals. Conventional treatments with 
chemical compounds for depression have limitations, while herbal medicine has unique therapeutic effects. This 
paper introduces the pharmacological basis and biological mechanisms underlying the botanical antidepressants 
over the past 5 years. Based upon the specific therapeutic targets or mechanisms, we analyzed the pathological roles 
of monoamine neurotransmitters, the hypothalamic–pituitary–adrenal axis, inflammation, oxidative stress, synaptic 
plasticity performed in antidepressant of the botanicals. In addition, gut flora and neurogenesis were also prefer-
entially discussed as treatment approaches. Based on the complex pathogenesis of depression, we suggested that 
mixed use of botanicals, namely prescription would be more suitable for treatment of depression. In addition, neural 
circuit affected by botanicals or active components should also attract attention as the botanicals have potential to 
be developed into fast-acting antidepressants. Finally, gut flora might be a new systemic target for the treatment of 
depression by botanicals. This review would strength botanical medicine as the antidepressant and also provides an 
overview of the potential mechanisms involved.
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Background
Depression is a devastating psychiatric disorder, gen-
erally characterized by loss of interest, anxiety, sleep 
disturbance, lack of energy, and suicidal thoughts. Epi-
demiological studies show that the global prevalence of 
depression and depression-related symptoms is increas-
ing annually [1]. The prevalence of depression is high in 
women (20% to 25%), while is relatively low in men (7% 
to 12%) [2]. Depression is one of the major causes for 
suicide. However, the cause of depression is unclear, and 
the factors causing the disease are complicated. Cur-
rent pathogenesis includes abnormal expression of neu-
rotransmitters [serotonin (5-HT), norepinephrine (NE) 
and dopamine (DA)] or receptors, the hypothalamic–
pituitary–adrenal (HPA) axis dysfunction, imbalance of 
inflammatory cytokines, oxidative stress, impairment 
of synaptic plasticity [3, 4]. In addition, abnormality 

of gut flora and epigenetic alteration of genes are also 
important determinants for the symptoms of depression 
[5, 6] (Fig.  1). However, the drugs available for depres-
sion were restricted in regulating neurotransmitters, 
including selective serotonin reuptake inhibitors, sero-
tonin-norepinephrine reuptake inhibitors, atypical anti-
depressants, tricyclic antidepressants and monoamine 
oxidase inhibitors.

Animal models were produced mainly based on the 
symptoms of depression, including cognition and emo-
tion, behavioral despair, hopelessness, anxiety-like symp-
toms, anxiety and locomotor activity, and anhedonia [7]. 
Learned helpless (LH) model, unpredictable chronic mild 
stress (UCMS) model, early life stress model, olfactory 
bulbectomy (OBX) model, social defeat model, chronic 
restraint stress (CRS) model and glucocorticoid/corticos-
terone model are typical models which are widely used 
to investigate the pathogenesis and screen therapeutic 
agents for depression [7]. Additionally, several genetic 
depression models were also utilized (Tph1−/− mice, 
Vmat2−/− mice, etc.) [8, 9].
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Herbal products are the major constitute of tradi-
tional Chinese medicine, which embodies intact theory 
to treat diseases [10]. Botanicals or their active compo-
nents have been extensively investigated in the treat-
ment of depression-like behaviors [11]. Especially, the 
mixed use of botanicals, namely prescription in Chinese 
medicine has a prior function to ameliorate symptoms 
of depression [12]. With the discovery of the pathogen-
esis of depression, therapeutic targets for botanicals have 
been gradually verified using the depressive animal mod-
els. This review comprises of a systematic 5-year update 
of research of botanicals for the treatment of depression 
based on the pathogenesis and potential therapeutic tar-
gets for depression.

Neurotransmitters and their receptors
Depression has been chemically linked to problems or 
imbalances in the brain with regard to the neurotransmit-
ters like 5-HT, NE, and DA [13]. Remedy of the depressed 
neurotransmitters has thus become the primary selection 
for treatment of depression. The active components from 
botanicals have the advantages to remedy the abnormali-
ties of neurotransmitters through regulating synthesis of 
neurotransmitters, reabsorption of neurotransmitters, 
balancing the ratio of excitatory and inhibitory neuro-
transmitters, re-uptake of neurotransmitters by neurons, 
antagonizing 5-HT2A receptor, etc.

Tian et al. [14] found that adhyperforin, a newly-iden-
tified active component of H. perforatum exerts strong 
antidepressant effects by binding to 5-HT and NE trans-
porter and inhibiting their reabsorption. Zirak et al. [15] 
showed that the anti-depressant effects of hypericin may 
be related to reduction of NE and 5-HT in the brain. Fur-
ther, Ji et al. [16, 17] demonstrated that the essential oil 
from P. frutescens (EOPF) relieved depression-like behav-
iors in UCMS rats, likely through reversing changes in 
5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concen-
trations. The antidepressant effect of saffron is attributed 

to the activities of safranal and crocin through the 
re-uptake of DA, 5-HT, and NE from neurons [18]. In 
experiments to assess the effects of safranal and crocin 
on levels of catecholamine and 5-HT in the brain, crocin 
was demonstrated to be a non-competitive inhibitor of 
monoamine oxidase (MAO)-A and MAO-B, while safra-
nal did not act on these two isomers [19]. Extract of C. 
tubulosa can modulate the concentrations of acetate, as 
well as hexanoic acid, to restore levels of 5-HT in UCMS 
rats. Oh et al. found that leaf extract from V. bracteatum 
exerted antidepressant-like effects through regulation of 
monoaminergic systems and glucocorticoids with neuro-
protective effects, alongside antagonism of the 5-HT2A 
receptor. Furthermore, V. bracteatum exerts neuropro-
tective effects by decreasing protein levels of MAO-A 
and serotonin transporter (SERT), and increasing those 
of tryptophan hydroxylase 2 (TPH2), through upregula-
tion of the extracellular-regulated kinase (ERK)/Akt sign-
aling pathway [20]. Ginsenoside Rb1 and its metabolite, 
compound K, ameliorate depression-like behaviors in 
female mice by regulating the 5-HT2A-receptor [21, 22]. 
Rhodiola has beneficial effects on learning and memory 
in neonatal rats, through modulation of acetylcholine lev-
els and MAO inhibitory activity [23, 24]. Curcumin has 
antidepressant effects, which may be related to the inhi-
bition of MAO and enhancement of monoamine neuro-
transmitters [25]. The antidepressant effects of silymarin 
may also be due to the decrease of monoamine synthesis 
(5-HT, NE, etc.) in the hippocampus and cerebral cortex 
of mice with UCMS-induced depression-like behavior 
[26, 27].

In addition to the active components, Chinese for-
mula revealed prior activities in regulating neurotrans-
mitters. Ma et  al. found that Xiao Chaihu decoction 
exerts antidepressant effects by increasing the level of 
monoamine neurotransmitters in mouse hippocam-
pus microdialysis solution, in mice subjected to social 
isolation, and inhibiting the conversion of 5-HT 

Fig. 1  Potential treatment targets for depression based on the pathogenesis. Treatments targets for depression include neurotransmitters, HPA, 
inflammation, oxidative stress, synaptic plasticity and others (gut flora, epigenetic regulation and neurogenesis)
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(5-HIAA/5-HT) [28]. In depressive mice, the expres-
sion of monoamine neurotransmitter synthase (TPH2 
and TH) is enhanced, while that of SERT is inhibited, 
and the expression of hippocampal monoamine neu-
rotransmitter synthase reduced [29]. Yang et  al. [30] 
also demonstrated that Chaihu Shugan San can effec-
tively improve the symptoms of depression by increas-
ing 5-HT1A receptor expression in the dentate gyrus 
of the hippocampus in epileptic rats with depression. 
Huang et  al. [31] focused on the expression of mono-
amine neurotransmitters and 5-HT receptor subtypes 
and found that Kaixin Jieyu San could normalize 5-HT 
and NE levels and regulate the balance of 5-HT1A and 
5-HT2A receptor expression in rat brain. Wu et  al. 
[32] showed that Danzhi Xiaoyao San can amelio-
rate depression-like behaviors in a UCMS-induced rat 
model. The mechanism underlying the effects of Dan-
zhi Xiaoyao San against depression involves regulation 
of monoamine levels and amino acid neurotransmit-
ters in the hippocampus. Zhang et al. [33] showed that 
the antidepressant action of flavonoids in Xiaobuxin 
Decoction is related to the regulation of extracellu-
lar serotonin levels the in central nervous system, and 
inactivation of the rate of limiting enzyme in the syn-
thesis of 5-HT and tryptophan hydroxylase (Fig. 2).

Hypothalamic–pituitary–adrenal axis
HPA axis is an interactive neuroendocrine unit com-
prising of the hypothalamus, the pituitary gland, and 
the adrenal glands. The HPA axis has been revealed in 
pathophysiology of a series of mood and cognitive disor-
ders [34]. Hyperactivation of HPA axis is thought to be 
a major cause of major depression [35]. Botanicals and 
their active components have been extensively investi-
gated regarding their functions in regulating HPA axis 
in depression. EGb761, catalpol, geniposide, R. glutinosa, 
Xiao Chaihu decoction, Danzhi Xiaoyao San have been 
reported to normalize the HPA axis in depression [32, 
36–39]. The anti-depressive effects of ginsenoside Rg1 
are mainly through improvement of corticosterone and 
testosterone levels, modulating protein levels of gluco-
corticoid receptor (GR) and androgen receptor (AR), and 
mediating recovery of the HPA axis [40]. Moreover, geni-
poside can also upregulate GRα expression in the hypo-
thalamic paraventricular nucleus to treat depression-like 
behaviors [41]. Therefore, GR in hypothalamic paraven-
tricular nucleus is potential target for repair of HPA in 
depression. Saikosaponin A can also have antidepressant-
like effects, by inhibiting hyperactivity of the HPA axis 
[42]. It can also possible that botanicals and their active 
components prohibit inflammation, which subsequently 
eliminates HPA axis hyperactivation [43]. In depression, 

Fig. 2  Botanicals and active components for the treatment of depression with the aspect of neurotransmitters. C. tubulosa and silymarin influence 
synthesis of neurotransmitters; hypericin and saffron affect re-uptake of neurotransmitters by neurons; adhyperforin and Danzhi Xiaoyao San effect 
on reabsorption of neurotransmitters; V. bracteatum, Kanxin Jieyu San, etc. could antagonize 5-HT receptor; Rhodiola curcumin etc. could balance 
excitatory and inhibitory neurotransmitters
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HPA axis is out of control due to a down-regulation of 
its negative feedback controls. Corticotrophin is hyper-
secreted from the hypothalamus and triggers the release 
of adrenocorticotropic hormone (ACTH) from the pitui-
tary and uncontrollable release of cortisol [44]. There-
after, cortisol receptors become desensitized leading 
to increased activity of the pro-inflammatory immune 
mediators and disturbances in neurotransmitter trans-
mission [45]. The impairment of HPA could also damage 
neuronal synaptic transmission or neurogenesis, which 
contributes to depression-like behaviors. For an example, 
Li et  al. [46] reported that Saikosaponin D can counter 
UCMS-induced depressive behaviors in rats by increas-
ing the phosphorylation of cAMP response element-
binding protein (CREB) and promoting brain-derived 
neurotrophic factor (BDNF) expression, which was medi-
ated by enhancement of HPA axis function and consoli-
dation of hippocampal neurogenesis. Nevertheless, the 
exact mechanisms underlying the recovery of the HPA 
axis by botanicals still require clarification.

Inflammation
Evidence is accumulating to show that depression and 
inflammation are closely connected and may fuel each 
other [45]. Anti-inflammation has become an important 
stratagem for treatment of depression. Varieties of botan-
icals have the potential to anti-inflammation and ame-
liorate the depression-like behaviors. Astragaloside IV 
(ASIV), ginsenosides, quercetin, naringenin, saikosapo-
nin A, EGb761, resveratrol, T. lythroides, curcumin, Rhi-
zoma Gastrodiae, Xiaobuxin decoction were well-known 
for their anti-inflammation in depressive models [21, 22, 
36, 47–57].

The antidepressant effects of ASIV are also associ-
ated with modulation of neuroinflammation via promo-
tion of peroxisome proliferators-activated receptors γ 
expression [58]. Quercetin also suppresses oxidative-
nitrosamine stress mediated neuroinflammation, via 
tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6), 
and showed neuroprotective effects through the micro-
glial inhibitory pathway [59]. Zhang et  al. reported that 
EGb761 can attenuate depression-like behaviors induced 
by long-term light avoidance treatment in mice. The 
underlying mechanism may be associated with inacti-
vation of nuclear factor-κB (NF-κB) signaling pathway-
related inflammation in the hippocampus [60]. In a 
rodent model of CRS-induced depression, P. Ginseng 
upregulated the Nrf2-heme oxygenase-1 pathway and 
down-regulates the neuroinflammatory system (MAPK 
and NF-κB pathways) in the amygdala [61]. Li et al. [62] 
suggested that Xiaoyao San can alleviate hippocampal 
neuronal injury and reverse effects measured using the 
hypertension labyrinth test, through activation of the 

TNF-α/Janus Kinase 2/Signal Transducer and Activator 
of Transcription 3 (JAK2/STAT3) pathway in a rat model 
of chronic immobilization stress-induced anxiety.

Oxidative stress
Causative factors for major depression include inflam-
mation, autoimmune tissue damage and prolonged psy-
chological stress, which lead to oxidative stress [63]. 
Inflammation and damage of mitochondria generate 
free radicals. With the accumulation of free radicals or 
consume of antioxidant system, reactive oxygen species 
(ROS) react with macromolecules (fatty acid, DNA, pro-
tein, etc.) and cause damage to these macromolecules. 
Brain is one of the most vulnerable organs to the dam-
aging effects of ROS, which may explain ROS involve-
ment in several neuropsychiatric diseases, especially 
depression [64]. To this end, anti-oxidative stress is also 
supposed as a treatment stratagem for botanicals. Zhao 
et al. [36] found that EGb761 can ameliorate lipopolysac-
charides (LPS)-induced depression-like behaviors possi-
bly through reduction of oxidative stress. With a strong 
anti-oxidative ability, ginsenoside Rg3 [65, 66], ASIV 
[47–49], geniposide [67], saikosaponin [46], resveratrol 
[68], quercetin [50, 51], naringenin [52], Thymelaea lyth-
roides [53], Polygala japonica [69], Rhizoma Gastrodiae 
[56, 70], silymarin [71–74] may also ameliorate depres-
sion-like behaviors through the anti-oxidative action.

Oxidative stress plays a crucial role in the development 
of inflammation and anti-oxidants thus could prohibit 
inflammation. Vice versa, inflammation could also initi-
ate oxidative stress [63]. The interrelationship between 
inflammation and oxidative stress explain that most 
botanicals exert anti-depressive action through inhibiting 
both inflammation and oxidative stress [50, 51, 55, 75] 
(Fig. 3).

Synaptic plasticity
Synaptic plasticity is one of the most important physi-
ological features of neurons [76]. It is not only related to 
memory, motor, etc., but also the important determinant 
of psychiatric disorders. In fact, synaptic regulation has 
been proposed as one of the most important mechanisms 
to find antidepressants [77]. Synaptic regulators, such as 
BDNF/tropomyosin receptor kinase B (TrkB), N-methyl-
d-aspartate (NMDA), glutamate, estrogen, insulin, or 
their downstream signaling pathways, like PI3K/AKT/
mTor are crucial therapeutic targets for depression [78]. 
In recent years, botanicals have attracted extensive atten-
tion regarding their functions in synaptic plasticity in 
depression models. Therefore, synaptic plasticity has 
been proposed as new insights for screening antidepres-
sants, especially rapid-acting antidepressants [79, 80].
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BDNF
Geniposide [67], saikosaponin D [46], resveratrol [81, 
82], paeonol [83, 84], ginsenosides [85–87], geniposide 
[67], naringenin [88], Perilla seed oil [89], the water 
extract of saffron [90], catalpol [37], extract of C. tubu-
losa [91], Rehmannia glutinosa [38], silymarin [92], 
Xiaoyao San [93], Chaihu Shugan San [94], Yueju [95], 
etc. could prevent depression-like behaviors through 
increasing BDNF expression. At present, our lab also 

found that curculigoside prevented depression-like 
activities through increasing hippocampal BDNF level 
[96]. Interestingly, most of botanicals and active com-
ponents facilitate BDNF expression through promoting 
cAMP/PKA/CREB signaling way. Yu et  al. revealed that 
ginsenoside Rg1 has neuroprotective and antidepressant 
roles through activation of the CREB/BDNF system in 
the basolateral amygdala and regulation of the synapse-
associated factor, miR-134, in a rat model of depression 
[97]. Botanicals and active components increase BDNF 
expression, thereafter activating BDNF/TrkB-ERK/Akt 
to regulate neuronal apoptosis [94], BDNF-Rac1-RhoA 
pathway to regulate genesis of dendritic spines [83], and 
BDNF/TrkB/NF-κB pathway to regulate inflammation 
[84] (Fig. 4).

NMDA
Accumulating evidence indicates that NMDA recep-
tors are involved in the pathophysiology of depression 
and implicated as therapeutic targets [98]. In an olfac-
tory bulbectomy model, the antidepressant effects of 
quercetin act through reinforcement of NMDA recep-
tor inhibition, synthesis of nitric oxide, and reduction of 
lipid hydroperoxide content in the hippocampus [99]. Xia 
et al. found that Yueju may confer acute and long-lasting 
antidepressant effects by favorably modulating the func-
tion of NMDA receptors in the hippocampus however, 
its antidepressant effects were different from those of 
ketamine, in that Yueju was not influenced by blockade 

Fig. 3  Interplay of oxidative stress, HPA and inflammation involved in 
the effects of botanicals and active components on depression

Fig. 4  The synthesis of BDNF and potential downstream involved in the effects of botanicals and active components on depression. In brain, 
botanicals and active components promote BDNF synthesis through cAMP-PKA-CREB signaling pathway. The downstream of BDNF/TrkB 
pathway include PI3 K/AKT/mTOR-regulated synaptic plasticity, ERK/AKT-regulated neuronal apoptosis, NF-κB-regulated inflammation and Rac1/
RhoA-regulated dendritic spine genesis
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of amino-3-hydroxy-5-methyl-4-isoxazole propionate 
receptor [100].

Others
Gut flora
Gut flora is the complex community of microorganisms 
that live in the digestive tracts of humans and animals. 
Gut flora was not only related to food digestion and gas-
trointestinal diseases, but also modulates a variety of 
diseases, including psychiatric disorders [101]. Recent 
advances point that botanicals and active components 
regulate gut flora to ameliorate depression-like behav-
iors, including Xiaoyaosan [102], berberine [103], res-
veratrol [104], Cistanche tubulosa extract [105]. The gut 
metabolites, including l-threonine, isoleucine, alanine, 
serine, tyrosine, and oxidized proline were supposed as 
the major cause for depression-like behaviors [106, 107]. 
Gut–brain-axis was also thought to one of the mecha-
nisms for depression [108, 109].

Neurogenesis
Neurogenesis is important way for the recovery of neu-
rodegenerative diseases, including Alzheimer’s disease, 
Parkinson’s disease, and stroke [110]. Nevertheless, neu-
rogenesis was also reported as a useful method to ame-
liorate depression by botanicals. Saikosaponin D can 
counter UCMS-induced depressive behaviors in rats by 
promoting hippocampal neurogenesis [46]. The aqueous 
extract of P. japonica can alleviate depression-like behav-
iors by stimulating neurogenesis in the adult dentate 
gyrus. Silymarin may also promote neurogenesis in the 
hippocampus and cerebral cortex of mice with UCMS-
induced depression-like behavior [26, 27]. Xiao Chaihu 
decoction may also promote neurogenesis in CORT-
induced depression mouse model [39]. Gao et  al. [111] 
demonstrated that Xiaoyao San reduced depression-
like behaviors in a CUMS-induced depression model by 
improving hippocampal neurogenesis and reversing cer-
ebral blood oxygen level-dependent (BOLD) activation. 
Pan et al. [112] showed that Kaixin Jieyu San functioned 
to reduce depressive behavior and improve cerebral 
hypoperfusion, which may be related to up-regulation of 
neurogenesis and balance of the fibrinolysis system.

Future prospects
This paper summarizes the therapeutic effects of botani-
cals on depression, with the aim of providing information 
about drugs for use in clinical practice. We also con-
cluded and detailed the potential therapeutic targets for 
botanicals. According to the literatures, botanicals and 
their active components could fight against depression 
from the following aspects: neurotransmitters and recep-
tor, inflammation, HPA axis, oxidative stress, synaptic 

plasticity, and others. These information provide that 
botanicals have broad therapeutic targets for depression, 
implicating valuable significance to develop anti-depres-
sants from botanicals.

Medication for depression includes selective serotonin 
reuptake inhibitors, serotonin-norepinephrine reuptake 
inhibitors, atypical antidepressants, tricyclic antide-
pressants and monoamine oxidase inhibitors. However, 
antidepressant medications also come with strong side 
effects and safety concerns, and withdrawal can be very 
difficult. Interestingly, some botanicals and active com-
ponents have the effects to regulate neurotransmitters. 
As we all know, active components or botanicals are nat-
urally- formed. Toxicity or side effects are relatively mild. 
Therefore, the active components possess the potential 
to be developed into antidepressants. Moreover, besides 
regulating neurotransmitters, some botanicals and active 
components (like curcumin) also have other pharma-
cological activities, such as antioxidative, anti-inflam-
mation, and regulating synaptic plasticity. These agents 
would be more suitable to be developed into antidepres-
sants because of the complex pathogenesis of depression 
[113]. Interestingly, some prescriptions exhibit superior 
antidepressive activity through regulating multiple path-
ways or cascades. For an example, Xiao Chaihu decoction 
is described in the book, “Treatise on Febrile and Miscel-
laneous Diseases”, by Zhang Zhongjing. It is composed of 
Bupleurum chinense, Radix Scutellariae, Ginseng, Pinel-
lia ternata, Glycyrrhiza uralensis, Ginger, and Jujube. 
The components of the prescription could balance neu-
rotransmitters, ameliorate HPA axis, regulate synaptic 
plasticity to treat depression [28, 29, 39]. Moreover, some 
active components from the prescription could also fight 
against oxidative stress. Therefore, Xiao Chaihu decoc-
tion, Xiaoyao San, Chaihu Shugan San, Kaixin Jieyu San, 
Danzhi Xiaoyao San, Xiaobuxin decoction should attract 
more attentions to treat depression [28, 32, 33, 62, 112, 
114–117]. On the one hand, the complex pathogenesis 
of depression would benefit from the multiple compo-
nents with the corresponding targets. On the other hand, 
depression is featured by different complications. The 
prescription of different botanicals would better treat 
depression based upon the theory of syndrome differen-
tiation and treatment [28].

At present, most of the studies reported BDNF/TrkB 
signaling pathway as the therapeutic target for depres-
sion by the botanicals, which points out the importance 
of this specific signaling pathway in the pathogenesis 
of depression [118]. BDNF/TrkB is a crucial synaptic 
regulator, which not only correlates with memory but 
also with mood disorders [96, 119]. Therefore, this tar-
get should be kept to screen antidepressants. BDNF is a 
good factor which could nutrition neurons, however with 
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a chronic effect. Depressive-like behaviors, especially 
depression-related suicide happen fast. Acute antide-
pressants like ketamine are also urgent or of more sig-
nificance to fight against depression-related suicide [120]. 
With the development of photogenetic technology, opti-
cal fiber recording technology, neural circuits involved in 
depression-like behaviors have gradually been discovered 
[121]. Therefore, we are required to continue seeking the 
botanicals from the traditional regulators of synaptic. 
Moreover, these novel techniques should also be applied 
to screen the potential active components from botani-
cals which could influence neural circuit involved in 
depression [122, 123].

Conclusion
As we described above, gut flora is an advanced and hot 
mechanisms for treatments of brain diseases. From the 
aspect of gut flora, the holistic view of Chinese medi-
cine could be better reflected. In addition, other changes 
including epigenetic modification should also be paid 
more attention, as depression was also supposed as a sys-
temic disease, which is not only related to brain. In the 
future, with the application of genome-wide investigation 
techniques, genomics technology, and systems biology, it 
will be helpful to identify new targets and mechanisms 
for treatment of depression by verifying different path-
ways and targets and revealing the biological basis of this 
condition.
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