
Liu et al. Chin Med           (2020) 15:26  
https://doi.org/10.1186/s13020-020-00309-x

RESEARCH

The potential drug for treatment 
in pancreatic adenocarcinoma: a bioinformatical 
study based on distinct drug databases
Han Liu1, Qi Zhou2, Wenjuan Wei3,4, Bing Qi5, Fen Zeng2, Nabuqi Bao2, Qian Li2, Fangyue Guo2 and Shilin Xia6,7*

Abstract 

Background:  The prediction of drug-target interaction from chemical and biological data can advance our search for 
potential drug, contributing to a therapeutic strategy for pancreatic adenocarcinoma (PAAD). We aim to identify hub 
genes of PAAD and search for potential drugs from distinct databases. The docking simulation is adopted to validate 
our findings from computable perspective.

Methods:  Differently expressed genes (DEGs) of PAAD were performed based on TCGA. With two Cytoscape plugins 
of CentiScaPe and MCODE, hub genes were analyzed and visualized by STRING analysis of Protein–protein Interaction 
(PPI). The hub genes were further selected with significant prognostic values. In addition, we examined the correlation 
between hub genes and immune infiltration in PAAD. Subsequently, we searched for the hub gene-targeted drugs in 
Connectivity map (Cmap) and cBioportal, which provided a large body of candidate drugs. The hub gene, which was 
covered in the above two databases, was estimated in Traditional Chinese Medicine Systems Pharmacology (TCMSP) 
and Herbal Ingredients’ Targets (HIT) database, which collected natural herbs and related ingredients. After obtain-
ing molecular structures, the potential ingredient from TCMSP was applied for a docking simulation. We finalized a 
network connectivity of ingredient and its targets.

Results:  A total of 2616 DEGs of PAAD were identified, then we further determined and visualized 24 hub genes by 
a connectivity analysis of PPI. Based on prognostic value, we identified 5 hub genes including AURKA (p = 0.0059), 
CCNA2 (p = 0.0047), CXCL10 (p = 0.0044), ADAM10 (p = 0.00043), and BUB1 (p = 0.0033). We then estimated tumor 
immune correlation of these 5 hub genes, because the immune effector process was one major result of GO analysis. 
Subsequently, we continued to search for candidate drugs from Cmap and cBioportal database. BUB1, not covered 
in the above two databases, was estimated in TCMSP and HIT databases. Our results revealed that genistein was a 
potential drug of BUB1. Next, we generated two docking modes to validate drug-target interaction based on their 3D 
structures. We eventually constructed a network connectivity of BUB1 and its targets.

Conclusions:  All 5 hub genes that predicted poor prognosis had their potential drugs, especially our findings 
showed that genistein was predicted to target BUB1 based on TCMSP and docking simulation. This study provided a 
reasonable approach to extensively retrieve and initially validate putative therapeutic agents for PAAD. In future, these 
drug-target results should be investigated with solid data from practical experiments.
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Background
Pancreatic adenocarcinoma (PAAD), which com-
prises > 85% of all pancreatic cancer cases [1], remains 
refractory among solid cancers, and therefore is the 
focus of the pancreatic cancer studies. The survival rate 
of PAAD remains bleak with a five-year overall survival 
of 9% [2]. Currently, the economic burden of PAAD stays 
high among the major malignancies [3, 4]. The chemi-
cal entities and natural reagents are being developed for 
decades, and most of them may be redesigned and exam-
ined so many times. Even though some of these drugs are 
approved by the Food and Drug Administration (FDA), 
majority are halted either in laboratory or in clinical trials 
after time consume and efforts cost. As a result, highly 
effective methods of initial identification for candidate 
drug become imperative for advancing targeted drug 
for cancer therapy. With technological advance and tool 
innovation, many resources and databases have empow-
ered in depth studies on the mechanisms accounting for 
cancer treatment [5, 6]. The drug-target investigation has 
been ongoing to discover novel therapeutics for pancre-
atic cancer [7, 8]. However, whether these findings will 
translate to the clinical setting is not known. Given the 
complementary resources of different drug databases 
that constitute an important aspect of drug research, we 
hypothesized that multiple databases provide candidate 
drugs, especially for oncogene that is not recorded or 
predicted in any separate database.

Although drug databases are built to have a repertoire 
of pharmaceutical ingredients and therapeutic agents, it 
is difficult to cover all oncogenes [9]. It was known that 
oncogene is associated with the risk of tumorigenesis 
and the risk increases with aberrant activation of multi-
ple oncogenes [10, 11]. Therefore, a subset of high-risk 
oncogenes should be targeted by candidate drugs from 
a computational screening and a solid validation, which 
enable substantial candidate drugs to display advantages 
in meeting the demands of therapeutic agents in PAAD 
treatment.

In the present study, we initiated a screening of dif-
ferently expressed genes (DEGs) using GEPIA, which is 
based on the Cancer Genome Atlas (TCGA). According 
to an analysis of Protein–protein Interaction (PPI), we 
administrated a network connectivity of DEGs in order 
to determine hub genes. Subsequently, we examined hub 
genes for Gene Ontology (GO) analysis and pathway 
enrichment, as well as prognostic value in PAAD. The 
immune correlation analysis was additionally performed 

for hub genes that predicted poor prognosis. Next, the 
Connectivity map (Cmap) and cBioportal database were 
used to retrieve candidate drugs for the above hub genes. 
Traditional  Chinese  Medicine Systems  Pharmacology 
Database (TCMSP) and Herbal Ingredients’ Targets 
(HIT) were applied to show related ingredients for the 
hub gene that was covered neither in Cmap nor cBio-
portal. Based on RCSB PDB and PubChem, we obtained 
structures of candidate drug and its target in order to 
simulate molecular docking using a web tool of Swiss-
dock and a software of USCF Chimera. At final, we pro-
vided an analysis of drug-target network as a landscape 
to give new insights on a prospective application of 
potential drugs.

Methods
Identification of differently expressed genes in PAAD
We carried out DEGs collection of PAAD from GEPIA 
(http://gepia​.cance​r-pku.cn/index​.html), which is an 
online server for analyzing RNA sequencing expression 
data  of tumors and normal samples from TCGA [6]. In 
our study, GEPIA was applied to identify DEGs between 
PAAD and pancreas tissue. The genes with higher |log-
2fold-change (FC)| values and lower q values than a pre-
set threshold was examined and considered as DEGs. We 
set |log2FC| > 2 and q < 0.01 to identify DEGs in PAAD. 
The GEPIA was also used to generate an expression dif-
ference and prognostic value of differently expressed 
genes.

Identification and analysis of hub genes
In an attempt to determine which genes may serve as 
key roles among DEGs, we constructed a landscape of 
PPI in order to analyze complex network connectivity 
and identify hub genes in PAAD. We exhibited a net-
work connectivity of DEGs using STRING (http://strin​
g-db.org) (version 11.0). The STRING is a web-based tool 
that provides insights into protein–protein interaction 
and that reveals a stable steady-state distribution of gene 
expression [12, 13], which may predict the tumorigenic 
mechanism of PAAD in this study. The score = 0.900 
was recognized as statistically significant. Based on the 
co-expression analysis of STRING, we showed that hub 
genes were observed to be correlated in expression, 
across a large number of experiments.

After initial analysis in STRING website, we continued 
to screen and visualize network using Cytoscape software 
(version 3.7.2). Cytoscape, a bioinformatics software with 
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multiple open source modes and plugins, enables a vis-
ualization of protein–protein interaction and a cluster 
screening of complicated molecular network [14]. We 
prioritized functional assignment in DEGs network using 
two plugins of Cytoscape including CentiScaPe (version, 
3.6.0;  http://apps.cytos​cape.org/apps/centi​scape​) and 
Molecular Complex Detection (MCODE) (version 1.5.1) 
[15]. The CentiScaPe, designed by Center for Biomedical 
Computing in University of Verona, describes a network 
topology with  computing specific centrality parameters. 
All parameters in CentiScaPe were selected in the present 
study, such as Degree and Betweenness. The MCODE, 
designed by Bader Lab in University of Toronto, pro-
vides a cluster analysis in a protein–protein interaction 
network. The configuration of MCODE was as follows: 
Degree Cutoff = 2, Node score Cutoff = 0.2, K-Core = 2, 
Max. Depth = 100.

GO analysis and pathway enrichment of hub genes
Gene Ontology consisted of biological process, molecu-
lar function, and cellular component [16]. According to 
the identification of hub genes, we achieved GO enrich-
ment to collect functional annotation hub genes using 
STRING. In our study, GSCALite (http://bioin​fo.life.
hust.edu.cn/web/GSCAL​ite/), a web analysis platform 
based on TCGA, offered the enriched pathway of DEGs 
between pathway activity groups with activity/inhibition/
non-significant effect [17].

Tumor immune estimation of hub genes
Among biological processes, immune effector process 
was most significantly involved by hub genes. We fur-
ther explored the immune infiltrates correlation of 5 
hub genes with significant prognostic value in Tumor 
IMmune Estimation Resource (TIMER) (https​://cistr​
ome.shiny​apps.io/timer​/). Based on TCGA, TIMER was 
developed by Shirley Liu’s Lab in Dana-Farber Can-
cer Institute and Jun Liu’s Lab in Department of Statis-
tics at Harvard University. TIMER is an online server 
for systematical analysis of immune infiltrates across 
diverse cancer types [18]. We estimated 5 hub genes with 
six immune infiltrates, including B cells, CD4+ T cells, 
CD8+ T cells, neutrophils, macrophages and dendritic 
cells. This study revealed the correlation between 5 hub 
genes and immune infiltration in PAAD.

Potential drug for hub genes with significant prognostic 
value
We distinguished the hub gene with p < 0.05, which 
was significantly associated with survival of PAAD 
patient. The Connectivity map database (https​://
www.broad​insti​tute.org/conne​ctivi​ty-map-cmap), 
designed by Broad Institute of MIT and Harvard, uses 

gene‑expression signatures to predict small molecu-
lar compounds for a specific disease [19, 20]. Here we 
uploaded all hub genes to the “query” of Cmap, then 
obtained small molecule drugs as candidate agents/
drugs. Then, these hub genes were submitted in “query 
gene” of PAAD in cBioPortal (http://www.cbiop​ortal​
.org/). The cBioPortal, an online server based on TCGA, 
was used to construct a drug-target network [21]. As a 
result, we obtained potential drugs for hub genes with 
the concurrent use of both Cmap and cBioPortal.

The candidate drug from TCMSP and HIT
Except for both Cmap and cBioPortal, we selected 
alternate databases to guide our research in case of hub 
gene without targeted drug. The TCMSP database was 
applied to search for candidate drug when hub gene 
was covered as target neither in Cmap nor cBioPortal. 
TCMSP (version 2.3)  is a unique systems pharmacol-
ogy platform of Chinese herbal medicines that captures 
the relationships between drugs, targets and diseases 
(http://tcmsp​w.com/index​.php). Under TCMSP mode, 
we input hub gene in “Target name” and retrieved 
related ingredients as targeted drug. The result from 
TCMSP was validated in HIT database. We input the 
candidate drug from TCMSP into HIT database in 
order to verified the prediction of potential ingredi-
ent. The HIT database (http://lifec​enter​.biosi​no.org/
hit/welco​me.html) is a comprehensive and fully curated 
database for Herbal Ingredients’ targets [22]. Derived 
from more than 3250 literatures, HIT currently con-
tains 5208 entries about 1301 known protein targets.

The molecular docking simulation on BUB1 and genistein
To further understanding the docking mode of drug-
target, we obtained 3D structures of BUB1 from RCSB 
PDB (http://www.rcsb.org) and 3D structures of gen-
istein from PubChem (https​://pubch​em.ncbi.nlm.nih.
gov). Then we simulated a molecular docking using 
Swissdock (http://www.swiss​dock.ch/docki​ng). This 
web server, designed by Swiss Institute of Bioinformat-
ics, is performed to predict the molecular interactions 
[23]. We uploaded 3D structure of BUB1 as “Target 
selection” and that of genistein as “Ligand selection” 
prior to a result report.

The USCF Chimera software (version 1.15), a molec-
ular modeling system, was used to calculate possible 
binding modes and present an interactive visualization 
of data from Swissdock. The best two docking simula-
tions was sorted by FullFitness, as well as Energy by 
which a specific ligand acts on a complex protein.

http://apps.cytoscape.org/apps/centiscape
http://bioinfo.life.hust.edu.cn/web/GSCALite/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
https://www.broadinstitute.org/connectivity-map-cmap
https://www.broadinstitute.org/connectivity-map-cmap
http://www.cbioportal.org/
http://www.cbioportal.org/
http://tcmspw.com/index.php
http://lifecenter.biosino.org/hit/welcome.html
http://lifecenter.biosino.org/hit/welcome.html
http://www.rcsb.org
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
http://www.swissdock.ch/docking
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The network of genistein and its targeted proteins based 
on STITCH
For the exploration of the association between BUB1 
and genistein, we established an interaction network 
using STITCH database (version 5.0) (http://stitc​h.embl.
de). The STITCH is a database for predicted interactions 
between chemicals and proteins [24]. The interaction 
network was finally visualized with Cytoscape (version 
3.7.2) to elucidate the association between genistein and 
its targets, as well as BUB1.

Statistical analysis
We applied one‑way ANOVA method and Tukey’s test to 
compare gene expression between PAAD and non‑PAAD 
adjacent tissues. DEG expression pattern was determined 
with p < 0.05. We carried out Log-rank test, as known as 
the Mantel–Cox test to analyze overall survival. The cox 
proportional hazard ratio and the 95% confidence inter-
val information are measured in overall survival analysis. 
Gene with p < 0.01 was considered to have a significant 
prognostic value. The purity-corrected partial Spear-
man’s correlation was performed in tumor immune esti-
mation. p < 0.05 was considered statistically significant in 
tumor immune estimation.

Results
Identification of differently expressed genes in PAAD
From GEPIA database, we identified 2616 DEGs in 
PAAD, including 2458 upregulated and 158 downregu-
lated genes located on chromosomes (Additional file  1: 
Fig. S1). We used STRING to investigate a network con-
nectivity of all DEGs. Next, we continued to prioritize 
connective assignment with the concurrent use of two 
Cytoscape plugins. Our results demonstrated that 24 
upregulated hub genes had a significant network con-
nectivity (Fig.  1a), which revealed that these highly 
connected proteins had a closer response to biological 
stimuli in PAAD. An additional result of co-expression 
also gave an evidence that highly connected proteins 
were functionally associated in homo sapiens (Fig.  1b). 
We then examined the expression pattern of 24 hub 
genes to validate that these hub genes were significantly 
upregulated (Fig.  2). These results indicated that aber-
rant activation of 24 hub genes played an important role 
on tumorigenicity in pancreatic adenocarcinoma. 

GO analysis and pathway enrichment of hub genes 
in PAAD
To further understanding of biological function of 24 
hub genes, we described GO analysis in three categories, 
including biological process, molecular function, and cel-
lular component (Table  1). From the biological process, 

13 DEGs involved in immune effector process with mini-
mum false discovery rate, suggesting that the most con-
nected proteins played an important role on an immune 
response process of PAAD. Form molecular function, a 
total of 22 hub genes showed protein binding function, 
except BUB1 and C3AR1. In cellular component, most of 
DEGs were associated with granule of cell.

We investigated the pathway enrichment of 24 hub 
genes, since oncogenic protein generally involved 
multiple pathways to drive the development of PAAD. 
We found that 24 hub genes played a varying role on 

Fig. 1  The network of hub genes with degree constructed by 
Cytoscape. a Two circles represented the protein–protein interaction 
from degrees 6 to 11. The hub genes with high degree in inner circle, 
and hub genes with low degree in outer circle. b The co-expression 
of hub genes. The deeper color represented the co-expression 
between two genes

http://stitch.embl.de
http://stitch.embl.de
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distinct pathways (Fig.  3). It was apparently observed 
that cell cycle was the most active pathway involved 
by AURKA, BIRC5, BUB1, CCNA2, KIF2C, MAD2L1, 
PCNA, RAD51, and TYMS. Interestingly, almost the 

same subset of DEGs remarkedly inhibited RAS/MAPK 
pathway. The results in this chapter exhibited the bio-
logical function and signal pathway of 24 hub genes in 
PAAD (Table 1).

Fig. 2  The expression difference of hub genes in pancreatic adenocarcinoma. *p < 0.05
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Prognostic value of hub genes analysis
Regarding that hub genes highly involved in tumori-
genesis of PAAD, we carried out overall survival  anal-
ysis in order to determine prognostic value of hub 
gene (Fig.  4). Among 24 hub genes, 5 hub genes per-
formed significant prognostic value (p < 0.01) in PAAD, 
including AURKA (p = 0.0059), CCNA2 (p = 0.0047), 
CXCL10 (p = 0.0044), ADAM10 (p = 0.00043), and 
BUB1 (p = 0.0033).

Given that immune effector process was the most sig-
nificant biological process in GO analysis, we evaluated 
the tumor immune estimation of 5 hub genes that had 
significant prognostic value (Fig.  5). We observed that 
CXCL10 and ADAM10 had negative associations with 
tumor purity. During immune infiltration of PAAD, the 
most involved immunocyte was CD4+ T cell, which was 
negatively associated with AURKA, CCNA2, ADAM10 
and BUB1. Among 5 hub genes, AURKA and BUB1 had 
almost  no participation  in immune response of PAAD. 
Together these results provided the prognostic value of 
24 hub genes and the correlation between  six immune 
infiltrates and hub genes.

Identification of candidate drug for PAAD treatment
In total, 5 genes among 24 hub genes were selected by 
significant prognostic value (p < 0.01). The next question 
was to identify candidate drugs that were available to 
target hub genes. From Cmap and cBioportal, we aimed 
to search for candidate drug (after removing duplicates) 
that targeted these 5 hub genes. In Cmap database, we 
found 16 drugs targeted for these 5 hub genes (Additional 
file 2: Table S1). In a landscape of network from cBiopor-
tal, we observed that there were a total of 86 drugs for all 
24 hub genes, and all drugs comprised 14 drugs approved 
by FDA and 72 drugs not approved by FDA (Additional 
file 3: Fig. S2). For the 5 hub genes, all 49 drugs were not 
approved by FDA.

Of interest, BUB1 was covered neither in Cmap nor 
cBioportal. Besides, a drug for BUB1 is not known even 
in DrugBank database. Thus, we turned to TCMSP and 
HIT database to find whether there was any ingredi-
ent from two databases of traditional Chinese medicine. 
In TCMSP, genistein, a soy-derived isoflavone and phy-
toestrogen, was finally exhibited as a potential chemi-
cal molecular that targeted BUB1. In HIT, genistein was 
validated to target BUB1, the target ID was T0508 (http://
lifec​enter​.biosi​no.org/hit/searc​h.jsp). In the next section 

Table 1  GO terms analysis for each GO category

Categories Term ID Term description False discovery rate Matching proteins in your network (labels)

Biological 
process

GO:0002252 Immune effector process 2.01E-08 ADAM10,APP,C3,C3AR1,CXCL10,CXCL9,CYBB,DYNC1H1,ITG
AM,ITGAV,PSMD1,RAP1A,TNFRSF1B

GO:0001775 Cell activation 2.70E-08 ADAM10,APP,C3,C3AR1,CXCL10,CYBB,DYNC1H1,GNB1,ITGA
M,ITGAV,PSMD1,RAP1A,TNFRSF1B

GO:0002274 Myeloid leukocyte activation 2.70E-08 ADAM10,APP,C3,C3AR1,CYBB,DYNC1H1,ITGAM,ITGAV,PSMD
1,RAP1A,TNFRSF1B

GO:0002263 Cell activation involved in immune 
response

3.03E-08 ADAM10,APP,C3,C3AR1,CYBB,DYNC1H1,ITGAM,ITGAV,PSMD
1,RAP1A,TNFRSF1B

GO:0032940 Secretion by cell 5.54E-08 ADAM10,AGT,APP,C3,C3AR1,CYBB,DYNC1H1,ITGAM,ITGAV,P
SMD1,RAP1A,TNFRSF1B

Molecular 
function

GO:0005515 Protein binding 1.40E-06 ADAM10,AGT,APP,AURKA,BIRC5,C3,CCNA2,CXCL10,CXCL9,C
YBB,DYNC1H1,GNB1,ITGAM,ITGAV,KIF2C,MAD2L1,PCNA,P
SMD1,RAD51,RAP1A,TNFRSF1B,TYMS

GO:0001664 G protein-coupled receptor binding 0.00011 AGT,APP,C3,CXCL10,CXCL9,GNB1

GO:0019899 enzyme binding 0.00026 ADAM10,APP,AURKA,BIRC5,CCNA2,GNB1,ITGAV,PCNA,PSMD
1,RAD51,RAP1A,TNFRSF1B

GO:0048248 CXCR3 chemokine receptor binding 0.0019 CXCL10,CXCL9

GO:0004866 Endopeptidase inhibitor activity 0.0023 AGT,APP,BIRC5,C3

Cellular 
compo-
nent

GO:0035579 Specific granule membrane 5.81E -09 ADAM10,C3AR1,CYBB,ITGAM,ITGAV,RAP1A,TNFRSF1B

GO:0030141 Secretory granule 1.30E-07 ADAM10,APP,C3,C3AR1,CYBB,DYNC1H1,ITGAM,ITGAV,PSMD
1,RAP1A,TNFRSF1B

GO:0000793 Condensed chromosome 1.12E-05 AURKA,BIRC5,BUB1,KIF2C,MAD2L1,RAD51

GO:0000779 Condensed chromosome, centro-
meric region

1.46E-05 AURKA,BIRC5,BUB1,KIF2C,MAD2L1

GO:0044433 Cytoplasmic vesicle part 1.46E-05 ADAM10,APP,C3,C3AR1,CYBB,DYNC1H1,ITGAM,ITGAV,PSMD
1,RAP1A,TNFRSF1B

http://lifecenter.biosino.org/hit/search.jsp
http://lifecenter.biosino.org/hit/search.jsp
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of this study, we attempted to simulate an interaction 
mode between BUB1 and genistein.

Molecular docking simulation and network connective 
analysis
For the purpose of docking, we obtained a structure of 
Bub1 kinase domain (PDB code: 4QPM) and 3D struc-
tures of genistein (PubChem CID: 5280961). The Swiss-
dock generated a series of docking modes with Energy 
score from 16.6623 to 34.6584. The lower the energy 
stood for the more favorable docking mode. Conse-
quently, two modes were emerged as putative docking 
modes for genistein and its target BUB1 (Fig. 6).

We then explored a connectiyity underlying the net-
work between genistein’s target proteins and BUB1. Our 
results demonstrated there were 10 proteins that targeted 
by genistein (Fig.  7), including CYP1A1, PPARG, ESR2, 
AR, FOXO3, ESR1, AKT1, CYP19A1, NOS3, and CFTR. 
Among these proteins, BUB1 connected with 4 proteins: 
FOXO3, ESR1, AR, and AKT1. These results indicated 
that genistein was not only an ingredient for BUB1, but 
also a potential ligand that regulated alternative proteins, 
which had a molecular interaction with BUB1.
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Fig. 3  The pathway enrichment analysis of hub genes. a The pathway analysis of hub genes represented by the pie chart. b The regulation of hub 
genes in pathways, including activation and inhibition
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Fig. 4  Prognostic value of hub genes in pancreatic adenocarcinoma
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Discussion
In the present study, we identified DEGs of PAAD by col-
lecting data from TCGA and carried out a bioinformat-
ics approach to search for hub gene-targeted drugs from 

distinct drug databases. Among Cmap, cBioportal and 
even DrugBank, however, we had no candidate drug for 
BUB1, which presented a prognostic risk factor in PAAD. 
We finally found evidence from TCMSP, a traditional 
medicine database for predicting drug-target interac-
tion based on Random Forest (RF) and Support Vector 
Machine (SVM) [25]. The practicality of this new result 
was then tested on web of Swissdock, which exhibited 
two docking modes between BUB1 and genistein. Based 
on the prediction analysis and docking result, our find-
ings showed the available  evidence of our hypothesis 
that candidate drugs from distinct databases were pre-
dicted and simulated for oncogenes in order to provide 
more optional compatibility of drugs, contributing to 
some insight into therapeutic strategy.

Pancreatic adenocarcinoma is highly aggressive, and 
the prognosis remains dismal [26, 27]. Malignant growth 
of cancer depends on cell proliferation and division. 
BUB1, known as a mitotic checkpoint serine/threonine-
protein kinase,  is essential for spindle-assembly check-
point signaling and for correct chromosome alignment 
[28]. It obviously indicated that BUB1 may enable its use 
for a promoter of cell proliferation. The oncogenic role 
of BUB1 accords with its prognostic impact that we had 
achieved by a bioinformatics method. With BUB1, a sub-
set of proteins involves in the regulation of checkpoint 
and a complex process of mitosis, in order to render can-
cer cell to keep proliferative capacity [29]. In our study, we 
performed a drug-target network to explore that BUB1 
were connected with AR, ESR1, AKT1, and FOXO3 under 
a scenario of genistein-target network. AR and ESR1 
involved in the regulation of gene expression and affect 
cellular proliferation [30, 31]. AKT1 mediated many pro-
cesses including metabolism, proliferation, cell survival, 
growth and angiogenesis [32]. FOXO3 triggers apoptosis 
in the absence of survival factors, including neuronal cell 
death upon oxidative stress [33]. All above proteins play 
an important role on tumorigenesis and development of 
PAAD. Actually, it’s difficult to realize a medical combi-
nation for various targets. The fact that multiple proteins 
drive malignant proliferation of cancer cell pleas for a 
better understanding of the comprehensive therapeu-
tics by which medical scientists construct and utilize an 
approach for drug retrieval and combination.

It is generally known that time consume  and  eco-
nomic  costs are  enormous in drug search and develop-
ment. The rational drug selection and combination for 
cancer therapy may emerged with the concurrence use 
of different drug resources, especially the drug databases 
that have harnessed different algorithm for selecting 
ingredients and herbs, or that have collected more variety 
of drug with historical and regional characteristics. In this 
study, we first determined hub genes from DEGs based 

Fig. 6  Molecular docking simulation for genistein and BUB1. a One 
simulation mode with Energy 21.6915. b The other mode with Energy 
20.0378

CFTR
genistein

NOS3

CYP19A1

ESR2

CYP1A1

PPARG

AR

ESR1FOXO3

AKT1

BUB1

Fig. 7  The network between BUB1 and genistein’s targets. Blue edge 
represented the interaction between BUB1 and genistein’s targets. 
Red edge represented the correlation between genistein and its 
targets based on STITCH database
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on TCGA database. Second, we preferred hub genes in 
dependent on their prognostic values and searched for 
drugs from Cmap, cBioportal, and DrugBank. Then, we 
turned to TCMSP database in a final attempt to retrieve 
related ingredients for hub gene, since hub gene was not 
covered in the above three databases. Third, we validated 
the potential ingredient from TCMSP using HIT data-
base, another resource of Herbal Ingredients’ targets. 
We eventually obtained genistein in a TCMSP database. 
Besides, we had retrieved candidate ingredients in Tradi-
tional Chinese Medicines Integrated Database (TCMID) 
(http://119.3.41.228:8000/tcmid​/), yet there was no alter-
native ingredient. Genistein can extracted from a number 
of Chinese herbs, such as Iridis Tectori Rhizoma, Sojae 
Semen Praeparatum and Eucommiae Cortex. The utility 
of these herbs is recorded in traditional medical books in 
China, which is consistent with contemporary research 
[34]. Previous studies provided some evidence that gen-
istein was recognized to inhibit the uncontrolled cell 
growth of cancer [34, 35]. Extensive research has shown 
that moderate doses of genistein have inhibitory effects 
on cancers of the prostate [36, 37], cervix [38], brain [39], 
breast [40, 41] and colon [42]. Therefore, our findings 
bring some insights into the application of potential drug 
like genistein for PAAD treatment.

In this study, the results showed that immune effector 
process was the most prominent one in biological pro-
cess of GO analysis. Our findings may support an evi-
dence that immunotherapy has been proving itself as an 
effective therapeutic strategy. In 2013, immunotherapy 
was deemed as “Breakthrough of the Year” in Science 
journal. In 2015, the FDA approved PD-1/PD-L1 immu-
notherapies to treat the most common forms of advanced 
lung and kidney cancer. The American Society of Clini-
cal Oncology (ASCO) announced immunotherapy as the 
top cancer advance in two consecutive years from 2016 
to 2017. The immunotherapy, such as chimeric antigen 
receptor therapy, is extensively studied and applied in 
recent years [43, 44]. Immunotherapy plays an expand-
ing role on cancer treatment. However, the development 
curve of immunotherapy is fluctuating. Some unnerving 
side effects are observed. It is exemplified that the uncon-
trolled release of cytokines bring inflammation during 
CAR T cell therapy [45, 46], which can also induce neuro-
toxicity with symptoms like dyslexia, and dyskinesia [47, 
48]. The impediments of immunotherapy give a reason 
that chemotherapeutic agents are available to improve 
the stability of immunotherapy. On the one hand, we 
found that only two hub genes (CXCL10 and ADAM10) 
had negative associations with tumor purity. However, 
these two hub genes had extensively positive correlation 
with four immune infiltrates, including CD8+ T cell, 
macrophage, neutrophil, and dendritic cell. This finding 

reflected that there might be a subset of hub genes which 
played their roles on a wide participation  of  immune 
response. On the other hand, an additional observation 
showed that four hub genes had was negatively associ-
ated with CD4+ T cell, while they were not related with 
other immune infiltrates. It seemed that there were a sub-
set of hub genes which had an effect on single category of 
immune infiltrates. In future, integrative therapy between 
targeted chemotherapy and immunotherapy may become 
an approach to PAAD treatment.

In this study, some limitation remains to be answered. 
First, the docking simulation was to predict two interac-
tion modes of BUB1 and genistein on computer screen, 
rather than an observation on experimental table, so it 
needs to be validated whether our docking result was 
applicable to actual interaction. Second, the effect of 
potential drugs from Cmap and cBioportal for PAAD 
treatment should also be further investigated using prac-
tical evidence. Based on more than ten online tools and 
databases, we aimed to explore the potential drug for 
hub gene in PAAD. Third, the hub genes verified from 
STRING and Cytoscape should be further validated in 
solid experiments to observe their specific roles in PAAD. 
In future, our in silico analysis should be detected and 
verified from experimental data in extensive experiments.

Conclusion
In summary, the evidence from this study suggested that 
the drug which targeted for hub gene might be exploited 
as a therapeutic drug for PAAD treatment. We searched 
for DEGs from a resource of TCGA database. Based on 
identification from analysis of network connectivity, hub 
genes had been investigated by GO analysis and pathway 
enrichment. Subsequently, potential drugs were searched 
from distinct databases. Furthermore, we provided that 
genistein may have some target sites on BUB1 to support 
the hypothesis that a novel drug-target correlation served 
for comprehensive therapy may be emerged by a predic-
tion from drug database and a simulation by molecular 
docking. The investigation should be further carried out 
with practical data from a series of concrete experiments.
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Additional file 1: Fig. 1. All 2616 differently expressed genes of PAAD 
located on chromosomes. Red represented over-expressed genes in 
PAAD. Green represented under-expressed genes.
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represented the drug approved by FDA, and White hexagon represented 
the drug not approved by FDA.
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