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Abstract 

Background:  Radix Paeoniae Alba (RPA) and other natural medicines have remarkable curative effects and are widely 
used in traditional Chinese Medicine (TCM). However, due to their multi-component and multi-target characteristics, 
it is difficult to study the detailed pharmacological mechanisms for those natural medicines in vivo. Therefore, their 
real effects on organisms is still uncertain.

Methods:  RPA was selected as research object, the present study was designed to study the complex mechanisms of 
RPA in vivo by integrating and interpreting the transcriptomic based RNA-seq and metabolomic based NMR spectrum 
after RPA administration in mice. A variety of dimension-reduction algorithms and classifier models were applied to 
the processing of high-throughput data.

Results:  Among serum metabolites, the contents of PC and glucose were significantly increased, while the contents 
of various amino acids, lipids and their metabolites were significantly decreased in mice after RPA administration. 
Based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, differential 
analysis showed that the liver was the site where RPA exerted a significant effect, which confirmed the rationality of 
“meridian tropism” in the theory in TCM. In addition, RPA played a role in lipid metabolism by regulating genes encod-
ing enzymes of the glycerolipid metabolism pathway, such as 1-acyl-sn-glycerol-3-phosphate acyltransferase (Agpat), 
phosphatidate phosphatase (Lpin), phospholipid phosphatase (Plpp) and endothelial lipase (Lipg). We also found 
that RPA regulates several substance addiction pathways in the brain, such as the cocaine addiction pathway, and 
the related targets were predicted based on the sequencing data from pathological model in the GEO database. The 
overall effective pattern of RPA was intuitively presented with a multidimensional radar map through a self-designed 
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Background
Radix Paeoniae Alba (RPA) is the dried root of the Chi-
nese herbaceous peony buttercup plant, which is widely 
used in the treatment of liver diseases and emotional-
related diseases in traditional Chinese medicine (TCM). 
In TCM theory, RPA is thought to have an effect of 
“nourishing blood, regulating menstruation, retain-
ing “Yin”, stopping sweat, smoothing liver and relieving 
pain” according to Pharmacopoeia of the People’s Repub-
lic of China (Commission, 2015). According to modern 
pharmacological studies, paeoniflorin (PF), the main 
active ingredient in RPA, plays a role in the nervous and 
immune systems. PF significantly attenuated inflamma-
tory pain by protecting neural progenitor cells and PC12 
cells from oxidative stress damage through the ROS/PKC 
δ/NF-κB pathway and the PI3K/Akt-1 pathway [1–3]. 
PF also decreased caspase–3 activity and downregu-
lated p–p38 MAPK expression in Alzheimer’s disease 
(AD) mice [4]. The anti-inflammatory effect also allowed 
PF to reduce cerebral infarct and neurological deficits in 
rats with ischemia–reperfusion injury, suggesting that PF 
might be used for treatment of stroke [5]. In addition, PF 
inhibited the activities and protein expression levels of 
inducible nitric oxide synthase, diminished IL-8 produc-
tion, and thus exerted cardioprotective and hepatopro-
tective effects [6, 7].

Previous studies of RPA always use monomer compo-
nents such as PF as the main research subject. However, 
changes in the organism caused by the whole herb itself 
are often different from those caused by a single com-
ponent within the herb. Therapeutic efficacy of RPA has 
been confirmed by various clinical trials. However, due 
to the complex composition of RPA and the limitation of 
research techniques, the pattern of their complex effects 
and the microscopic changes have not been well inter-
preted. An unexpected and unbiased method to analyze 
the effects of natural medicines based on high-through-
put data generated by different types of omics combi-
nations is needed. After the development of “omics” 
and relevant technologies, their systematic strategies 
were highly consistent with the “holistic view” in the 
theory system of TCM and were gradually accepted by 

researchers. In addition, network pharmacology can clar-
ify the synergistic effect of multicomponent- multitar-
get drugs, so it is also a suitable method to evaluate the 
efficacy and reveal the functional mechanisms of natural 
drugs [8].

Transcriptomics is one of the earliest omics technolo-
gies, which analyzes the changes in gene transcription 
caused by environmental or drug stimuli on an over-
all level. Metabolomics can evaluate the organisms’ 
response to conditional disturbances and yield biomark-
ers by identifying endogenous molecular metabolites 
that are quantitatively changed. Combined application 
of transcriptomics and metabolomics can systematically 
depict the complex relationship between the phenotypes 
and mechanisms. Although the mapping relationship 
between the metabolome and transcriptome is not direct 
in the information transmission sequence of the central 
principle [9], with increasing examples of their combined 
application, the analytical methods have become increas-
ingly mature and reasonable. The integration analysis 
method based on prior knowledge can intuitively gener-
ate valuable insights [10], while the integration method 
based on metabolism-transcription pathways via KEGG 
and other public database can reveal the functional rela-
tionship among the targets more conveniently [11]. In 
addition, parametric models can also be constructed 
based on rate distortion criteria [12] or weighted gene 
correlation network analysis (WGCNA) [13]. These 
methods can overcome the limitations of established 
information and make the integration of omics data more 
efficient.

In this study, our aim of this study was to clarify the 
effect of RPA as a whole medical entity, not its single 
components, on live organisms to further compare with 
and analyze the belonging of the meridian theory in 
TCMs. Through the design of an in-laboratory model, 
a method that could present the action pattern of tradi-
tional Chinese natural medicines was established, which 
aimed to interpret the theory of TCM by scientific para-
digm, and to provide a valuable research model and clini-
cal medication reference for the TCM researchers and 
doctors. In addition, this method was more aligned than 

model which found that liver and brain were mainly regulated by RPA compared with the traditional meridian tropism 
theory.

Conclusions:  Overall this study expanded the potential application of RPA and provided possible targets and direc-
tions for further mechanism study, meanwhile, it also established a multi-dimensional evaluation model to represent 
the overall effective pattern of TCM for the first time. In the future, such study based on the high-throughput data sets 
can be used to interpret the theory of TCM and to provide a valuable research model and clinical medication refer-
ence for the TCM researchers and doctors.

Keywords:  Bioinformatics, Transcriptomics, Metabolomics, Radix Paeoniae Alba, Traditional Chinese medicine
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previous studies with the development trend of modern 
biomedicine towards systematization, which expanded 
the content of TCM theory and provided a new perspec-
tive for future relevant research.

Methods and materials
Quantitative high‑performance liquid chromatography 
(HPLC) analysis of RPA
The contents of RPA in the sample preparations (180103, 
Kangqiao Traditional Chinese Medicine Co., Ltd., Shang-
hai) were determined by HPLC. The standard substance 
was PF (YZ-110736, National Institute for the Control 
of Pharmaceutical and Biological Products, Beijing). The 
chromatographic column was a QS-C18 Plus (4.6 mm × 
50 mm, Puning Analysis Technology Co., Ltd., Shanghai). 
The mobile phase was acetonitrile-0.1% H3PO4 in gradi-
ent mode at a flow rate of 1.0 mL min−1, with a split ratio 
of 14:86, and the observation wavelength was 230 nm.

Animals
Our research involved the utilization of laboratory ani-
mals under the supervision of the Fudan University 
Institutional Animal Care and Use Committee. The ani-
mals used were specific pathogen-free male C57BL/6  J 
mice (Slake Laboratory Animal Co. Ltd., Shanghai), 
which were bred for up to 8 weeks (weighted 20 ± 1.5 g) 
to adapt to the environment before the experiment. All 
animals were maintained in a room with regulated tem-
perature (20 ± 2  °C) and relative humidity (40–70%). An 
artificial 12/12-h light/dark cycle was maintained, with 
lights turned on at 08:00 a.m.

Preparation of RPA extract
RPA decoction pieces were soaked for 30  min at 50  °C 
with 6 times the volume of water, using a condensation 
reflux device to heat the mixture twice, each time for 1 h. 
The obtained decoction was made into a freeze-dried 
powder, and the powder extraction rate was calculated, 
which was 17.68% in this study. The dosage of RPA was 
calculated by the Meeh-Rubner formula coefficient k 
according to the common human adult clinical dose. The 
average dosage of administration was 3.9 crude drug (g)/
weight (kg)/day.

Transcriptome sequencing (RNA‑seq)
Experimental mice were randomly divided into the con-
trol group and the RPA group (n = 3). After 7  days of 
intragastric administration, the vital organs (heart, liver, 
spleen, lung, kidney, brain and adrenal glands) were har-
vested for total RNA extraction. Transcriptome librar-
ies were prepared by NGS Multiplex Oligos for Illumina 
(ExCell Biotech Co., Ltd.) according to the manufac-
turer’s instructions. After the libraries amplified, quality 

controlled, and then run on an Illumina HiSeqX10 plat-
form with a paired-end 150  bp sequencing strategy. 
Fragments per kilobase of exon per million mapped 
reads (FPKM) were used to compare gene expression 
differences between different samples and the software 
OmicsBean (http://www.omics​bean.com:88/) was used 
to identify and analyze the differentially expressed genes 
(DEGs), with fold change ˃  1.5 and FDR ˂ 0.05 used as 
the criteria for significant differences between the two 
groups as described in previous studies [14].

Untargeted metabolomics analysis (NMR)
Mice were grouped and treated in the same way as those 
for the transcriptome analysis (n = 7). At the end of the 
experiment, all animals were fasted except water for 12 h 
and sacrificed following isoflurane anesthesia. Serum 
samples were obtained for each group using a standard 
protocol (removed the hemolytic sample). Each serum 
sample (30 μL) was mixed with 30 μL of phosphate buffer 
(45  mM, pH 7.43) and then transferred into NMR tube 
and used directly for detection. The analysis methods of 
NMR spectroscopy referred to a previously published 
paper [15]. Data analysis was performed with the soft-
ware package SIMCA-P + (V14.0, Umetrics, Sweden) 
and a MATLAB script (MATLAB V7.1, Mathworks Inc., 
USA). Feature extraction data analysis and OPLS-DA 
were carried out. All models were further tested with a 
T-test for significance of intergroup differentiations (with 
p < 0.05 as a significant level). MetaboAnalyst 4.0 (https​
://www.metab​oanal​yst.ca) was used for pathway enrich-
ment analysis [16].

Network pharmacology
The Traditional Chinese Medicine Systems Pharmacol-
ogy Database and Analysis Platform (TCMSP http://
lsp.nwu.edu.cn/index​.ph) was used to select the active 
ingredients of RPA by combining the oral absorption 
(OB > 30%) and drug type index (DL > 0.18). Correspond-
ing targets were also identified by searching the TCMSP. 
Targets’ symbol names were obtained through a Perl 
language script, which was built in-house UniProt data-
base. The transformation between the target symbol and 
entrezID and the enrichment analysis was performed 
using R packages (“org.Hs.e.g.db” and “pathview”).

A multidimensional algorithm model was established 
based on multiorgan transcriptomics data
PCA was used to reduce the dimension of the 7 transcrip-
tomes datasets, and the first principal component (PC01) 
was selected as representative, of which the contribution 
rate was calculated. Next, the increased-magnitude was 

http://www.omicsbean.com:88/
https://www.metaboanalyst.ca
https://www.metaboanalyst.ca
http://lsp.nwu.edu.cn/index.ph
http://lsp.nwu.edu.cn/index.ph
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calculated in the RPA group relative to the CON group 
through the formula:

where yi is the amplification of RPA group, PC01iarvP 
is the average PC01 of the ist organ in the RPA group, 
PC01iarvC is the average PC01 of the ist organ in the 
CON group, PC01imax . is the maximum PC01 of the two 
groups, and PC01imin is the minimum PC01 of both.

Third step, according to the number of different organs 
genes,yi was given different weights. Fuzzy set theory 
was used to design the weight, four trapezoidal member-
ship function and membership function was designed 
as following and shown in Additional file 1: Fig. S1, the 
four function to represent the “least”, “less”, “more” and 
“most” of four conditions which values were set to 0.3, 
0.5, 0.7, 0.9, then the four membership degree values of 
DEGs in different organs were calculated. The function 
serial number corresponding to the maximum member-
ship value was calculated by using the maximum opera-
tor rule and converted to the corresponding weight value. 
The weight values corresponding of seven transcriptome 
genes were shown in Additional file 2: Table S1.

yi = (PC01iarvP − PC01iarvC)/(PC01imax − PC01imin)
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Results
RPA caused changes in serum metabolites in mice
To ensure the safety and effectiveness of RPA, quality 
control by HPLC was carried out for the drug used in 
the experiment, and the test results were in line with the 
descriptions in Pharmacopoeia of the People’s Republic of 
China [17]. Reports and typical fingerprints of standard 
and test samples are displayed in the Additional file  3: 
Fig. S2 and Additional file 4: Table S2. Next, the experi-
ment was carried out according to the flow design shown 
in Fig. 1. After NMR serum metabolomics experiments, 
of which the representative spectra and primary signals 
are displayed in the Additional file  5: Fig. S3, feature 
extraction analyses of data were conducted to explore 
the rationality of the model through various dimension-
reduction methods. The first three panels in Fig.  2A 
revealed a surface to completely distinguish the two 
groups of data after rotation. This finding suggested that 
the choice of dimension-reduction algorithm must be 
combined with a classifier. We therefore categorized the 
data by the Back-Propagation Neural Network (BPNN), 
Support Vector Machine (SVM), Random Forest (RF), 
Naive Bayesian (NB) and k-Nearest Neighbor (kNN) 
approaches at this stage (Additional file 6: Table S3). The 
discernment accuracies of the data were calculated based 
on dimension-reduction algorithm under different classi-
fication algorithms and again calculated on classification 
algorithms under different dimension-reduction algo-
rithms (Tables 1, 2). It can be concluded from the results 
that the dimensionality reduction data obtained by the 
PCA algorithm could distinguish the samples of the con-
trol (CON) group and those of the RPA group most effec-
tively. The average recognition time of a single sample 
with the SVM classification algorithm was far less than 
that with the other algorithms. Therefore, it was feasible 
and effective to use serum metabolites to distinguish the 
samples of the CON and RPA groups. If the number of 
samples increased gradually, the recognition accuracy 
could be further improved.

Since SVM showed a good effect on the classification 
of small samples, we chose the SVM classifier to calcu-
late the receiver operating characteristic (ROC) curve 
(Fig.  2b). Metabolites with high frequency in the model 
(Fig.  2c, 20 features, AUC = 0.94), such as glycerophos-
phocholine (GPC), glucose, acetoacetate, and a vari-
ety of unsaturated fatty acids, can be selected as serum 
biomarkers to show the effect of RPA. Afterward, the 
Metscape tool [18] was used to perform a correlation 
analysis, and the results indicated that phosphorylcho-
line (PC) and N-acetylated protein (NAG) played a sig-
nificant role in the correlation network. Among them, PC 
had a significant negative correlation with various amino 
acids, including valine, isoleucine, leucine, and some 
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lipids, while NAG had a significant positive correlation 
with various small molecular fatty acids in the network 
(Fig. 2d).

To identify those significantly different metabo-
lites induced by RPA administration, OPLS-DA was 
conducted for the metabolomics data, and the model 
parameters were obtained as R2X = 0.915, R2Y = 1, and 
Q2 = 0.773, which indicated that the model was stable 
and reliable and had high predictive ability (Fig. 2e). Vari-
able importance in projection (VIP) > 1.0 was used as the 
screening standard for differential metabolites, and 16 
statistically significant differential metabolites were finally 
determined  (Table 3), including mainly choline (PC and 
GPC), amino acids (leucine and valine), lipids [CH2C=C, 
C=CCH2C=C, R-CHI, R-CH3, CH2CH2COO, CH2COO 
and triglycerides (TGs)],  ketones (acetoacetate,  glucose, 
pyruvate and lactate) and glycoproteins (NAG), which 
were the representative significantly changed metabolites 
after RPA administration in mice. Among them, the con-
tents of PC were significantly increased, while the con-
tents of various lipids and their metabolites (acetoacetic 
acid) were significantly decreased, which may be due 
to the function of choline to regulate lipid metabolism 
[19]. In addition, amino acids were significantly reduced, 
whereas glucose was significantly increased. Metabo-
lites such as pyruvate and lactic acid were also signifi-
cantly reduced in mice after RPA administration. These 
results suggested that RPA participated in regulating glu-
cose, amino acids, lipids, and other energy metabolism 

processes in the body. Based on the KEGG database, 
enrichment analysis was performed according to the 
differential metabolites to demonstrate the topological 
properties. We found that there were mainly 18 pathways 
involved (Additional file 7: Table S4), and the results were 
largely consistent with an analysis based on the Small 
Molecule Pathway Database (SMPDB) (Additional file 8: 
Fig. S4A). Integrating the p values between different 
pathways, the results showed that valine, leucine and iso-
leucine biosynthesis and degradation; butanoate metabo-
lism; pyruvate metabolism; glycolysis or gluconeogenesis; 
glycerolipid metabolism; glycerophospholipid metabo-
lism; and the synthesis and degradation of ketone bodies 
changed significantly (Fig. 2f ). These results showed that 
RPA administration significantly affect the above metab-
olism pathways.

Liver is the major organ that affected by RPA 
administration
To study the regulation of gene expression by RPA, 
a comprehensive transcriptomics analysis was con-
ducted on several vital organs, and the results showed 
that RPA could cause different degrees of changes in 
the transcripts of each organ (Fig.  3a). RPA is consid-
ered as a main medicine for regulating the liver merid-
ian in TCM theory. Extensive RPA clinical application 
evidences in liver function regulation and liver diseases 
treatment were also constantly observed. Our transcrip-
tomics analysis results indeed confirmed the traditional 

Fig. 1  Overview of the experimental design. a Referring to Pharmacopoeia of the People’s Republic of China for quality control by HPLC, RPA was 
prepared as a freeze-dried powder for in vivo administration in mice. b Vital organs were harvested for transcriptomics analyses, and serum was 
collected for metabolomics analyses (n = 3 samples, intragastric administration of RPA for 1 week)
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medical experiences. Compared with that of other organ 
tissues, the liver’s response to RPA administration was 
the most significant regardless of the number of DEGs 
or the significantly enriched pathways (Fig. 3b). The liver 

is also the main place of energy metabolism, which was 
reflected in the metabolomics results obtained in this 
study. We next systematically analyzed the liver tran-
scriptome. The PCA result suggested that there was a 
good separation between the groups (Fig.  3c), with 456 
genes were upregulated and 464 genes were downregu-
lated (Fig.  3d). Next, pathway enrichment analysis was 
carried out for DEGs. According to the KEGG database, 
pathways were clustered into classes (subcategories) such 
as metabolism (carbohydrate metabolism, lipid metabo-
lism, and nucleotide metabolism), environmental infor-
mation processing (signal transduction and signaling 
molecules and interaction), cellular processes (transport 

Fig. 2  RPA administration induced changes in the serum metabolism profile in mice. a Feature extraction analyses based on six data 
dimension-reduction algorithms (n = 7 CON group and 6 RPA group samples). b ROC curves based on the CV performance by the SVM classifier, the 
default is the ROC curves from all models averaged from all CV runs, and the 95% confidence interval can be computed in this case. c Model of 20 
features that were selected as screening criteria, AUC = 0.94. d Correlation analysis network among all identified serum metabolites. e Differential 
metabolite analysis model between groups based on OPLS-DA. f Pathways enriched by differential metabolites-based KEGG; the redder the color 
is, the more significant the result. p < 0.05. PCA principal component analysis, t-SNE T-distributed stochastic neighbor embedding, ISOMAP isometric 
mapping, LLE locally linear embedding, WT wavelet transform, ROC receiver operating characteristic, CV cross-validation, AUC​ area under the curve

Table 1  The average recognition accuracy of  each dimension reduction algorithm under  different classification 
algorithms

PCA TSNE LAP ISO LLE WT

Mean recognition (%) 88 80 72 84 72 72

Table 2  The average recognition accuracy of  each 
classification algorithm under  different dimensionality 
reduction algorithms

NB RF BPNN kNN SVM

Mean recognition (%) 86.7 76.7 53.3 86.7 86.7

Meantime (ms) 18.0016 310.1741 55.0986 49.5707 0.6827
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and catabolism, cell growth and death, and cellular com-
munity), organismal systems (immune system, endocrine 
system, development, and environmental adaptation) 
and human diseases (cancer, neurodegenerative diseases, 
substance dependence, and infectious diseases: bacterial, 
viral and parasitic) (Additional file 9: Table S5).

RPA plays a series of roles in TCM theory, including 
collecting “yin” in liver, nourishing the liver blood, sof-
tening the liver body, and relieving acute liver diseases. 
However, these descriptions are often difficult to under-
stand by modern medicine. Therefore, we conducted a 
network pharmacology analysis on RPA administration 
to interpret its in  vivo efficacy. Thirteen main ingredi-
ents of RPA were obtained from the TCMSP (Additional 
file 10: Table S6), which involved 61 targets and 84 path-
ways enriched by the R package [20]. Nineteen pathways 
overlapped with the pathways of liver transcriptomics 
enrichment caused by RPA administration (Fig.  3e and 
Additional file 8: Fig. S4B), which could be considered the 
stable part of the pharmacological effects of RPA, as well 
as proving laterally the rationality of our study.

Since the RPA induced pathway changes were most 
extensive in the liver, in order to observe the most 
representative pathways, Gene Set Enrichment Analy-
sis (GSEA) was conducted on the liver transcriptome 
(Additional file  11: Table  S7), and when the result 
of DEGs pathway enrichment overlapped with that 
of GSEA, 8 pathways, including leukocyte transen-
dothelial migration, natural killer cell mediated cyto-
toxicity, hematopoietic cell lineage, leishmaniasis, 
prion diseases, cell adhesion molecules, lysosome and 

glycerolipid metabolism had significant differences 
and consistent changes under both analysis meth-
ods (Fig. 3f, Additional file 12: Fig. S5 and Additional 
file  13: Table  S8). When combined with the metabo-
lomics results, it was found that the glycerolipid 
metabolism pathway was enriched in both results 
(Additional file  8: Fig. S4C). In this pathway, sev-
eral important genes, such as Agpat1, Agpat2, Lpin1, 
Lpin2, Plpp1 and Lipg, were regulated to varying 
extents, resulting in an overall decrease in lysophos-
pholipid acyltransferase, phosphatidate phosphatase, 
and endothelial lipase. Subsequently, TGs and other 
fatty acids among serum metabolites were reduced, 
suggesting that RPA played an important regulatory 
role in lipid metabolism (Fig. 4 and Additional file 14: 
Fig. S6).

RPA regulated the central nervous system
Among the differential metabolites after RPA admin-
istration, the contents of GPC and PC were simultane-
ously increased. Glycerophospholipid metabolism (the 
upstream pathway of glycerolipid metabolism, Fig. 4), in 
which PC and GPC were enriched, was also regulated in 
the liver transcriptomics results, further confirming the 
role of RPA in liver lipid metabolism. Interestingly, cho-
line molecules are not only important components of 
lipid metabolism in the liver [21] but also key substances 
for brain function and information transmission [22]. In 
our metabolomics results, PC, the upstream substance 
of citicoline (by choline-phosphate cytidylyltransferase 
[23], was significantly elevated (Table 3). Of note, citico-
line has been clinically used in the treatment of cerebral 
ischemic diseases such as stroke or vascular cognitive 
impairment [24–26]. PC is also a source of choline, which 
can be converted into acetylcholine by choline O-acetyl-
transferase and phosphocholine phosphatase [27]. We 
next therefore analyzed the brain transcriptome. We 
found PCA presented a similar form to the liver, suggest-
ing that RPA administration could effectively separate 
the transcriptome data of the RPA group from that of the 
CON group (Fig. 5a). There were 300 upregulated genes 
and 326 downregulated genes (Fig. 5b) in the brain after 
RPA administration, which were enriched in 18 pathways 
(Fig.  5c). Among them, the most significantly changed 
pathway was the neuroactive ligand-receptor interaction 
pathway, which is related to a variety of nerve activities 
(Additional file 15: Fig. S7, mmu04080). Genes related to 
serotonin receptor, neuropeptide receptor, neuroregu-
latory peptide receptor, and nucleotide receptor in the 
pathway were upregulated, while genes related to ace-
tylcholine receptor, dopamine receptor, and lysophos-
phatidic acid receptor were downregulated (Fig.  5d). 
Interestingly, in the enrichment results for disease class, 

Table 3  List of  significant differential metabolites 
from NMR

Metabolites VIP score P value

Glycerophosphocholine (GPC) 1.55808 0.000531147

CH2C=C, lipids 1.45282 0.002158383

Lactate 1.4504 0.002223364

Glucose 1.44983 0.00216794

N-Acetylated glycoproteins (NAG) 1.4238 0.002973999

phosphorylcholine (PC) 1.42161 0.00316847

R-CH2, lipids 1.39571 0.003988276

CH2CH2COO, lipids 1.32479 0.007758848

Acetoacetate 1.31558 0.008085364

R-CH3, lipids 1.3114 0.008461332

CH2COO, lipids 1.2774 0.011238583

C=CCH2C=C, lipids 1.27295 0.011567084

Triglycerides (TG) 1.13749 0.030249594

Leucine 1.1298 0.030957902

Pyruvate 1.06733 0.044451519

Valine 1.06733 0.044568734
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various substance addiction pathways, such as those for 
morphine, nicotine, cocaine, etc., were found. Such phar-
macological effects of RPA on substance addiction have 
never been reported previously (Additional file  16: Fig. 
S8). To explore the targets of RPA on substance addiction, 
the pathway of cocaine addiction was taken as a model 

and the transcriptome sequencing datasets (GSE108836) 
of the associated disease model were obtained by search-
ing the Gene Expression Omnibus (GEO) database. 
A Venn analysis was conducted on the DEGs of the 
model group and our RPA group. Twelve DEGs (Myct1, 
Gm21860, Ninj2, Fam183b, Lars2, Alkbh1, Fgf5, Frmd7, 

Fig. 3  Integrated analyses of the liver revealed that it was the site where RPA exerted a major effect. a RPA induced a number of upregulated genes 
(red) and downregulated genes (blue) in various vital organs (p ˂ 0.05, cutoff = 1.5). b Number of pathways enriched with DEGs in each organ, based 
on KEGG. c Three-dimensional PCA revealed the overall intergroup separation of the liver transcriptomes. d Volcano plot showing the upregulated 
genes (red) and downregulated genes (blue) in liver tissue. e Venn diagram showing the overlapping pathways enriched with DEGs from our results 
and previously identified targets of RPA in the TCMSP. f Venn diagram showing the overlapping pathways enriched with DEGs by GSEA. Detailed 
result diagrams are shown in additional files
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Tm6sf2, Wnt6, Batf3, and Clca1) were found to be regu-
lated inversely among the overlap genes, which may be 
possible targets of RPA to disrupt the cocaine addiction 
process (Fig. 5e).

A multidimensional algorithm model of the overall 
effective pattern for RPA administration in vivo
To evaluate the effect pattern of RPA from the perspec-
tive of systemic changes caused by in  vivo drug admin-
istration, a multidimensional algorithm model was 

Fig. 4  A Reconstructed pathway map of glycerolipid metabolism containing key genes and metabolites that were regulated. The level of TGs 
among serum metabolites decreased significantly which represented in the histogram. DEGs differentially expressed genes, TG triglyceride

Fig. 5  RPA had a significant effect on the transcriptome of brain tissue. a Three-dimensional PCA revealed the overall intergroup separation of the 
brain transcriptomes. b Volcano plot showing the upregulated genes (red) and downregulated genes (blue) in brain tissue. cKEGG enrichment 
bubble plot of DEGs in the brain transcriptomes (pathway p ˂ 0.05). d Target genes were significantly upregulated (red) and downregulated (blue) 
by RPA in the neuroactive ligand-receptor interaction pathway. e Venn diagram showing the potential targets of RPA on the cocaine addiction 
model based on RNA-seq data obtained from the GEO database



Page 10 of 13Wang et al. Chin Med           (2020) 15:52 

established based on multiorgan transcriptomics data 
and applied to the analysis. The higher the contribution 
rate of PC01 was, the more representative it was among 
the entire transcriptome sample of PCA (Additional 
file  17: Table  S9). The results showed that most contri-
bution rates of PCs were more than 70% and the highest 
of them was more than 95%, indicating that the PC01 of 
transcriptomes can effectively represent the whole sam-
ple. The results of each organization can be obtained 
by multiplying yi and the corresponding weight value. 
Finally, 7 values obtained were drawn into a multidi-
mensional radar map, which can intuitively present the 
overall effective pattern of RPA administration in  vivo 
(Fig. 6). As previously mentioned, the liver and brain are 
the main sites where RPA exerted an effect. In addition, 
the intensity of the adrenal transcriptome response to 
RPA was also significant in the radar map. Some studies 
have found that PF can increase serotonin (5-HT) and 
5-hydroxyindoleacetic acid in the prefrontal cortex and 
hippocampus in post-traumatic stress disorder. And, the 
levels of corticosterone, corticotropin releasing hormone, 
and adrenocorticotropic hormone in serum were also 
reversed by PF [28]. This finding suggested that RPA may 
exert an effect on mental disease by regulating the HPA 
axis.

Discussion
At present, numbers of studies have found the thera-
peutic effect of RPA and its main components on lipid 
metabolism-related diseases. Such as RPA can reverse 
the abnormal lipid profiles in serum induced by alcohol 
in conjunction with a high fat diet [29]. In addition, RPA 

can reduce the serum TG, malondialdehyde, leptin and 
TNF-α levels caused by ovariectomies, so as to improve 
the lipid metabolism disorder and inhibit obesity [30]. 
These results suggest that RPA can be used in the clinical 
treatment of steatohepatitis, as well as the obesity caused 
by the decrease of estrogen levels in women during and 
after perimenopausal period, relevant mechanism is still 
unclear.

In this study, we found that RPA played the most sig-
nificant role on the transcriptome of the liver, especially 
the glycerolipid metabolism pathway, and the effect may 
be linked to the metabolism of glucose, lipids, amino 
acids pathways of the body. The result is consistent with 
the content of “RPA to liver meridian” in the traditional 
theory to a certain extent. However, the method estab-
lished in this study cannot simply correspond to the the-
ory of meridian tropism. Since the liver and brain are the 
main sites where RPA exerted an effect, which was dif-
ferent from the traditional functional characteristics of 
RPA of “acting on the liver meridian and spleen merid-
ian”, as there is no “brain meridian” in the theory of TCM. 
In fact, a new interpretation and supplement of RPA 
medicinal content were proposed based on this modern 
research methods. The response intensity of the spleen 
transcriptome to RPA was not prominent in the whole 
model, which may be due to the functions of the spleen 
in modern medicine and those of the “spleen” in TCM 
theory being quite different.

It still needs to be noted that although organs in TCM 
theory cannot be completely equated with modern medi-
cine, they have a high degree of consistency in the func-
tion of the liver. For example, it is believed that liver has 
two main functions, namely “controlling conveyance 
and dispersion” and “storing blood” in TCM. The for-
mer is related to digestive function, fluid metabolism 
and reproductive function, etc. The latter can regulate 
blood volume and prevent abnormal haemorrhage. In 
modern medicine, the liver is also an important diges-
tive and metabolic organs with the function of excreting 
bile, storing glycogen, and participating in the regulation 
of nutrients synthesis and degradation. In addition, liver 
participate in the metabolism of water, hormone inacti-
vation, and synthesizing plasma albumin, plasma globu-
lin, and coagulation factors. RPA is generally considered 
as an herb of liver meridian with a series of effects such 
as “collect liver Yin, nourishing the liver blood, soften 
liver body “, etc. since the definition of organs in TCM is 
more based on the physiological functions.

Previous research showed that there was a negative 
correlation between mature Brain-derived neurotrophic 
factor in parietal cortex and in liver which indicated 
that there is a liver-brain axis in psychiatric disorders 
[31]. In our results, RPA seemed to have great potential 

Fig. 6  A multidimensional algorithm model was established based 
on the multiorgan transcriptomics data
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value in the treatment of mental diseases because choline 
seemed to mediate the crosslink of the liver and brain 
when analyzing combined with metabolomics, and cho-
line could regulate the production of IL-1β and IL-18 by 
macrophages and affect the acute and chronic inflamma-
tion models [32]. These findings suggested that RPA may 
influence immune activity by regulating the metabolic 
processes of choline.

In addition, immune-related activities were involved 
in transcriptomic differential gene expression analysis 
in multiple organs, such as the Toll-like receptor signal-
ing pathway (lung and adrenal gland), complement and 
coagulation cascades (heart and liver), the chemokine 
signaling pathway (liver and spleen), and hematopoietic 
cell lineage (liver, spleen, lung and brain), which may 
be the reason why RPA can effectively treat a variety of 
infectious diseases due to bacteria, viruses and parasites, 
such as Staphylococcus aureus infection, influenza A and 
leishmaniasis (Table S5). These conclusions, to a certain 
extent, also provide an interpretation of the TCM the-
ory that RPA can “clear heat and relieve pain”. The com-
bined analysis suggested that TCM have the advantage of 
multi-circuit comprehensive therapeutic action, that is, 
multiple metabolic pathways in the body are simultane-
ously regulated [33].

There are many potential mechanisms of the pharma-
cological efficacy of RPA that worth to be discussed. For 
instance, RPA has an effect of “dispersing stagnated liver 
‘qi’ and relieving depression” in TCM theory. Although it 
was not directly related to depression-related pathways in 
the results, as we’ve known before, a deficit in GABAe-
rgic transmission in neural circuits is causal for depres-
sion. Inversely, an enhancement of GABA transmission 
has antidepressant effects [34], and the genes encode 
GABA receptors, such as Gabrb1, Gabre and Gabrq, were 
significantly increased as well as the GABAergic synapse 
pathway were directly enriched. These unexplored link 
like this needs to be further explored in the future.

Conclusions
In this study, transcriptomics and metabolomics were 
integrated to provide an unexpected and unbiased 
analysis of the effective profile of in vivo administration 
of RPA, which is a frequently used natural medicine 
in TCM. First, the changes in serum metabolites were 
evaluated, and we found that RPA had certain effects on 
energy metabolism. By using high-throughput sequenc-
ing technology to detect the transcriptome of organs, 
we found that the liver is the organ with most obvious 
responses to RPA administration, which is very consist-
ent with the theory that “RPA goes to the liver merid-
ian” in TCM. Combined with serum metabolomics, we 
further found that RPA plays a role in regulating lipid 

metabolism by regulating the expression of enzymes 
in the glycerolipid metabolism pathway and inducing a 
decrease in downstream lipid metabolites. In addition, 
RPA also exerted an important influence on brain tis-
sue, and for the first time, we unexpectedly found that 
RPA is involved in regulating the processes of vari-
ous substance addiction diseases. To clearly visualize 
this collaborative regulation pattern, a computational 
model was designed, which took transcriptomics data 
as evaluation elements, and the overall function char-
acteristics of RPA were innovatively expressed in a 
radar map.

This study provided a valuable reference pattern to 
interpret the theories of TCM, expanded the potential 
application of RPA, and provided possible targets and 
directions for further mechanism study.
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