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Abstract 

Background:  Although molecular analysis offers a wide range of options for species identification, a universal meth-
odology for classifying and distinguishing closely related species remains elusive. This study validated the effective-
ness of utilizing the entire chloroplast (cp) genome as a super-barcode to help identify and classify closely related 
species.

Methods:  We here compared 26 complete cp genomes of ten Fritillaria species including 18 new sequences 
sequenced in this study. Each species had repeats and the cp genomes were used as a whole DNA barcode to test 
whether they can distinguish Fritillaria species.

Results:  The cp genomes of Fritillaria medicinal plants were conserved in genome structure, gene type, and gene 
content. Comparison analysis of the Fritillaria cp genomes revealed that the intergenic spacer regions were highly 
divergent compared with other regions. By constructing the phylogenetic tree by the maximum likelihood and 
maximum parsimony methods, we found that the entire cp genome showed a high discrimination power for Fritillaria 
species with individuals of each species in a monophyletic clade. These results indicate that cp genome can be used 
to effectively differentiate medicinal plants from the genus Fritillaria at the species level.

Conclusions:  This study implies that cp genome can provide distinguishing differences to help identify closely 
related Fritillaria species, and has the potential to be served as a universal super-barcode for plant identification.

Keywords:  Species identification, Closely related species, Chloroplast genome, Super-barcode, Genome comparison, 
Fritillaria
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Background
Although many biological studies depend on accurate 
species identification and delimitation, such as the imple-
ment of biodiversity conservation, therapy of disease and 
the identification of invasive species, taxonomic exper-
tise is collapsing [1, 2]. Morphology-based identification 

of plant species has remained elusive due to the scarcity 
and ambiguity of diagnostic characters. Fortunately the 
advent of molecular markers made an impact on species 
identification, and undoubtedly has made a substantial 
contribution to systematics. However, currently none 
of the available DNA loci work for all species, espe-
cially for the closely related species. Moreover, multiple 
closely related species that occupy the same area have 
always posed insurmountable barriers to the goal of cur-
rent highly accurate identification [3]. Therefore, a new 
method is required in the search for a universal marker 
for taxon recognition.
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The chloroplast (cp) genome is a versatile tool for 
phylogenetics. During the past decade, there have 
been many analyses addressing phylogenetic questions 
at deep nodes based upon the complete sequences of 
cp genomes [4–6]. As plant biologists enter the era in 
which comparative genomics promises to address in-
depth questions, the inestimable effectiveness of cp 
genome in systematic studies quickly become clear. 
The entire cp genome contains approximately as much 
information as does the COI gene used in animals and 
it has the potential to provide distinguishing differences 
that can help molecularly identify closely related spe-
cies [7]. With advances in high-throughput sequencing, 
achieving cp genome is easily acquirable at a large-scale 
with lower costs. This has promoted studies of system-
atics using cp genome in Epimedium [8], Paris [9] and 
Sanguisorba [10]. Because of the low discrimination 
power of general molecular markers in plants and their 
closely related species, researchers have proposed the 
entire cp genome as a super-barcode to discriminate 
closely related species [11].

The bulbs of Fritillaria species (called BeiMu, BM) 
have been used medicinally for more than 2000  years, 
specifically in the treatment of dry cough and blood-
stained sputum. Due to the over exploitation of natural 
resources, the availability of Chuan BeiMu continues to 
decline [12]. Currently, most Fritillaria species used as 
Chuan BeiMu are in the list of wild protected species 
(level 3) in China, and the price of high-quality Chuan 
BeiMu can be as high as ~ 500$/kg. With the decreased 
availability and high price, Chuan BeiMu is often adulter-
ated by other cheaper bulbs from other Fritillaria spe-
cies, with a market survey reporting the adulteration rate 
of Chuan BeiMu to be as high as 20% [13].

Presently, Fritillaria bulbs are identified by morpho-
logical features [14] and chemical properties [15]. Unfor-
tunately, different species can be morphologically similar 
and they always have the similar chemical constituents, 
which make the identification of Fritillaria difficult at the 
species level using traditional methods. Although DNA 
barcoding provided accurate identification for plants, 
it is insufficient in the authentication of Fritillaria spe-
cies. Luo and Xiang et  al. [16, 17] reported that ITS2 
sequence could not provide monophyletic clades for the 
genus Fritillaria at the species level. Meanwhile, Sharifi 
[18] and TÜRKTAŞ et al. [19] constructed the phyloge-
netic trees based on the trnH-psbA and trnL-trnF regions 
using 22 Iranian Fritillaria species and ten Turkey Fri-
tillaria species respectively, and the phylogenetic trees 
showed that it is impossible to distinguish these Fritil-
laria species. Rønsted et  al. [20] presented the same 
result based on matK, rpl16, trnK, and ITS sequences for 
Fritillaria. Therefore, these findings demonstrate that the 

single-locus markers have low resolution for Fritillaria 
due to high sequence similarities.

Compared with the most frequently used and predicted 
genus-specific DNA barcodes, cp genome contains 
more variations with a significantly higher resolution 
of phylogenies, which is valuable to reveal phylogenetic 
relationships between closely related species [12]. Cp 
genome has been widely applied in phylogenetic analyses 
[21–24], plant population studies [25], and plant identi-
fication [7]. The phylogenetic tree constructed based on 
complete cp genomes has a higher supporting rate and 
discrimination power [26]. Li et  al. [11] therefore pro-
posed to use the entire cp genome as a super-barcode to 
accurately identify closely related species.

Here, we compared 26 complete cp genomes, includ-
ing 18 newly sequenced genome sequences for this study, 
from ten Fritillaria species that are included in the Chi-
nese Pharmacopoeia 2020. We performed a comprehen-
sive analysis of the complete cp genomes of the Fritillaria 
species, which are difficult to be identified by morphol-
ogy and taxonomy alone. The aims of our study were 
as follows: (1) to verify the hypothesis whether super-
barcode can be used as a universal barcode to identify 
closely related species, (2) to present 18 new complete cp 
genomes from ten Fritillaria species and explore poly-
morphic regions within Fritillaria cp genomes, and (3) to 
evaluate the discrimination power of cp genomes in the 
genus Fritillaria at the species level. The results demon-
strated that the cp genome could be used to identify Fri-
tillaria at species level. The entire cp genome was found 
to be a most promising universal DNA marker in identifi-
cation of closely related species.

Methods
DNA extraction
Twenty-six cp genomes from ten Fritillaria species were 
used in this study (see Additional file 1: Table S1). Fresh 
leaves of 18 individuals from nine Fritillaria species were 
collected. The cp genomes of eight additional individuals 
were downloaded from GenBank. Total genomic DNA 
of each sample was isolated from ~ 200 mg of fresh leaf 
using the DNeasy Plant Mini Kit (QIAGEN, Germany), 
according to manufacturer’s instructions. To meet 
the quality requirements for sequencing, we assessed 
the quality and quantity of each DNA sample using a 
Qubit2.0 Fluorometer (Thermo Scientific, USA) and a 
NanoDrop 2000 Spectrophotometer (Nanodrop Tech-
nologies, Wilmington, DE, USA), respectively.

Genome sequencing, assembly and annotation
The shotgun libraries (450  bp) were constructed using 
~ 2  μg of total DNA according to the manufacturer’s 
instructions (Illumina Inc., San Diego, CA). A total 
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of 11 cp genomes from seven Fritillaria species were 
sequenced using Illumina HiSeq X platform (Illumina, 
San Diego, CA, USA), and we obtained > 2  Gb data for 
each sample. Raw reads were filtered using the Fastqc 
trim tool (http://​www.​bioin​forma​tics.​bbsrc.​ac.​uk/​
proje​cts/​fastqc). Thereafter, contigs were extracted by 
BLASTs [27], and the cp genomes of six published Fri-
tillaria species (Accession No.: KF769143, KF712486, 
KY646166, KC713823, KF769142, and KY646165) were 
set as reference sequences. The contigs were assem-
bled using SOAPdenovo [28]. Sequence extension was 
performed using SSPACE [29], and the gap fillers were 
excluded by GapCloser [30]. Other seven cp genomes 
from six Fritillaria species were sequenced using Roche 
454 titanium sequencing platform and assembled using 
Newbler sequence assembler. The four junctions between 
IRs (inverted repeats) and SC (large single-copy region, 
LSC; small single-copy region, SSC) were validated by 
PCR amplification and Sanger sequencing with specific 
primers, as listed in Additional file 2: Table S2. The initial 
gene annotation was performed using CpGAVAS [31]. 
Identified tRNA genes were confirmed by tRNAscan-
SE [32, 33]. Circular cp genome maps were drawn using 
OGDRAW software (http://​ogdraw.​mpimp-​golm.​mpg.​
de/) [34]. GC content was analyzed using MEGA5.0. 
[35]. The validated entire 18 cp genome sequences were 
deposited in NCBI (Accession No. were listed in Addi-
tional file 1: Table S1).

Genome comparison and divergent analyses
Comparison of the sequence divergence in the cp 
genomes of ten Fritillaria species was performed using 
the mVISTA [36, 37] program in the Shuffle-LAGAN 
mode, and the annotation of F. unibracteata (MN148410) 
was used as the reference. In addition, simple sequence 
repeats (SSRs) were detected using MISA (http://​pgrc.​
ipk-​gater​sleben.​de/​misa/) [38] with thresholds of repeat 
numbers of eight, four, four, three, three and three for 
mono-, di-, tri-, tetra-, penta- and hexa-nucleotides, 
respectively. Then, insertions/deletions (indels) were 
counted using LASTZ software and single nucleotide 
polymorphisms (SNPs) were analysed by MUMmer. All 
SNPs in the coding sequence were detected whether it 
affects the protein sequence and were distinguished from 
synonymous and non-synonymous SNPs. Variations 
were visualized by Circos software [39] including A-G 
layers. The discrimination ability of highly variable loci 
selected in this study was tested using 26 samples from 
10 species.

Species identification
To evaluate the effectiveness of super-barcode in identifi-
cation for closely related species, 26 complete cp genome 

sequences were aligned using the MAFFT program [40], 
and then adjusted manually in Bioedit. Phylogenetic trees 
were constructed by the maximum likelihood (ML) and 
maximum parsimony (MP) methods. Lilium brownie 
(accession no.: KY748296) and Cardiocrinum giganteum 
(Accession No.: KX528334) were set as outgroups. ML 
analyses were conducted using RAxML-HPC2 on XSEDE 
at the CIPRES Science Gateway website (https://​www.​
phylo.​org/) [41] with the GTR + I + G model as the best-
fitting model, which was selected by jModelTest 2.1.4 
[42]. MP analyses were performed using PAUP*4.0b10 
[43]. The branch support of the tree was estimated in 
1000 bootstrap replicates.

Results
Genome features
All the 26 cp genomes were similar in length, among 
which the shortest was F. unibracteata (150,764  bp) 
and the longest was F. hupehensis (152,186 bp), with the 
typical quadripartite structure of angiosperms. They 
contained a LSC (81,182–81,926 bp) and a SSC (17,114–
17,586 bp), separated by a pair of IRs (26,024–26,390 bp) 
(see Fig. 1 and Additional file 1: Table S1). The GC con-
tent was unevenly distributed throughout Fritillaria cp 
genomes. In the F. cirrhosa (MN148400) cp genome, for 
example, GC content of the IR region (42.5%) was sig-
nificantly higher than that of the LSC region (34.7%) or 
the SSC region (30.5%). This may be a reason that the 
conservation is divergent between the IR and LSC/SSC 
regions [10, 44]. The coding regions accounted for 52.5% 
of the genome, and therefore, the non-coding regions, 
such as the pseudogenes, introns, and intergenic spacers, 
accounted for 47.5%. The 26 Fritillaria cp genomes pos-
sessed 114 unique genes (Fig. 1) that included 80 protein-
coding genes, 30 tRNA genes and four rRNA genes. In 
addition, we identified two pseudogenes (infA and ycf15). 
The rps12 is a trans-spliced gene in which two 3′ end res-
idues are located within the IR region and the 5′ end is 
located within the LSC region.

Introns are critical for the regulation of alternative 
splicing in the genome [45]. Similar to other angiosperm 
[16, 46], we identified 18 intron-containing genes in each 
of the 26 Fritillaria cp genomes, which included 12 pro-
tein-coding genes and six tRNA genes. Fifteen out of the 
18 genes contained a single intron, whereas the remain-
ing three genes (ycf3, clpP, and rps12) contained two 
introns.

SSR analysis
SSRs are short (1–6 nucleotide repeat units) tandemly 
repeated sequences that are widely distributed across the 
entire cp genome, and they are important for the popula-
tion studies in plants. We here analyzed the distribution 
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of SSRs in 26 Fritillaria cp genomes. The number of SSRs 
ranged from 179 in F. cirrhosa to 195 in F. pallidiflora. 
Most of the SSRs were mononucleotide repeats rang-
ing from 113 in F. unibracteata to 122 in F. hupehensis. 
The number of di-, tri- and tetranucleotide repeats was 
57–63, 1–5 and 6–10, respectively. The number of penta- 
and hexanucleotide repeats were few, and none were 
detected in most Fritillaria cp genomes.

Comparative analysis of cp genome
Using the F. unibracteata (MN148410) as reference, cp 
genomes of ten Fritillaria species were compared and 

analyzed to show the sequence divergence, which is rel-
evant to further phylogeny and species authentication 
analyses. The genome comparison showed that there 
was a high similarity among these cp genomes. The 
sequences in LSC regions were more divergent than in 
the SSC and IR regions. The high divergences occurred 
in trnS-GCU-trnG-GCC, trnG-GCC-trnR-UCU, trnE-
UUC-trnT-GGU, trnT-GGU-psbD, atpH-atpI, trnT-
UGU-trnL-UAA​ and psbE-petL (see Additional file  3: 
Figure S1). The identification efficien of these seven 
loci were tested in this study and data showed that they 

Fig. 1  Gene map based on 26 Fritillaria cp genomes. Genes shown outside and inside the circle are transcribed counterclockwise and clockwise, 
respectively. Different functional gene groups are color-coded
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could not distinguish all 26 samples from ten Fritillaria 
species (see Additional file 4: Table S3).

In addition, sequence variability was estimated using 
SNPs and indels (Fig.  2). Based on cp genome-wide 
investigations, a total of 2449 SNPs and 565 Indels 
were detected among ten Fritillaria species (Table  1). 
Most of the variants (838 SNPs and 358 Indels) were 
located in intergenic spacers. Analysis of the distri-
bution of genetic variability revealed that the most 
variable protein-coding region was the rps19 gene. 
It is located in the Large Single Copy with a length of 

279 bp containing 10 SNP sites. Among the non-coding 
regions, the highest frequency of polymorphism was 
found in the rpl22-rps19 spacer. Within the 127  bp-
long rpl22-rps19 region, 14 SNPs and 10 indels were 
identified. Relatively high variability was also character-
istic for the rpl16-rps3 spacer.

Nowadays, cp DNA regions have been widely used 
in studies on species identification and phylogenetic 
analysis. However, none of cp markers work for Fritil-
laria species in previous studies [47, 48] as well as in 
this study.

Fig. 2  SNP and indel variation among cp genomes of Fritillaria. Track A represent nonsynonymous SNP occurrence in genes. Track B shows 
identified SNPs (cyan histogram) while track C represents identified indels (magenta histogram), with 100 bp shift per 600 bp window size. Track 
D and E represent percent of SNPs and indels per CDS length, respectively. Track F and G show percent of SNPs and indels per noncoding region 
length, respectively
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Species identification
In this study, MP and ML trees were constructed based 
on 26 complete cp genomes from ten Fritillaria spe-
cies with two species (Lilium brownie and Cardiocri-
num giganteum) from the same family as outgroup. Our 
results showed that phylogenetic trees constructed by 
the entire cp genome presented a high discrimination 
power for the Fritillaria species, and different individu-
als in each species were resolved as a monophyletic clade. 
At first, Fritillaria medicinal plants were divided into two 
large branches, and F. ussuriensis was separated out with 
an approval rate of 100%. Thereafter, F. walujewii and F. 
pallidiflora were integrated into one big branch and sepa-
rated from the other Fritillaria medicinal plants, with 
a supporting rate of 100%. These two medicinal species 
were used as Fritillariae pallidiflorae bulbus (Yi BeiMu), 
which was recorded in the Chinese Pharmacopoeia 2020. 
In addition, individuals of these two species were sepa-
rated into two monophyletic clades. Lastly, the original 
species of Fritillariae cirrhosae bulbus (Chuan BeiMu) 
were gathered into one branch and separated from the 
other two types of Fritillaria bulbs, which included Fri-
tillariae thunbergii bulbus (Zhe BeiMu) and Fritillariae 
hupehensis bulbus (Hubei BeiMu), with an approval rate 
of 100%. In addition, individuals of all species from Fri-
tillariae cirrhosae bulbus (Chuan BeiMu) were separated 
into a monophyletic clade for each species, respectively. 
For the five types of Fritillaria bulbs, Fritillariae cirrho-
sae bulbus (Chuan BeiMu) had the closest relationship 
with Fritillariae thunbergii bulbus (Zhe BeiMu) and Fri-
tillariae hupehensis bulbus (Hubei BeiMu). In total, all 
individuals of the original species from each Fritillaria 
bulbs recorded in the Chinese Pharmacopoeia 2020 were 
clustered and separated from other Fritillaria bulbs with 
a high branch supporting rate.

Ten Fritillaria species covered five different types of 
traditional medicinal materials: “PingBeiMu (PBM)” 
which original plant species is from F. ussuriensis, 
“ChuanBeiMu (CBM)” which original plant species are 
from F. unibracteata var. wabuensis, F. unibracteata, 
F. taipaiensis, F. cirrhosa and F. delavayi, “ZheBeiMu 
(ZBM)” from F. thunbergii, “HuBeiBeiMu (HBBM)” from 

F. hupehensis, “YiBeiMu (YBM)” from F. pallidiflora and 
F. walujewii. Phylogenetic trees in this study formed 
into five groups which branches were drawn in differ-
ent colors. We found that the five monophyletic clades 
were consistent with five types of BM material medica. 
Another interesting finding is that the topologies of phy-
logenetic trees also formed into five major groups: PBM, 
ZBM, HBBM, CBM, and YBM. The five groups belong 
to five different ecological and geographical regions (see 
Additional file  6: Figure S3). PBM is mainly distributed 
in the plain of Mid-temperate zone in Northeast China. 
ZBM is mainly distributed in the subtropical plain and 
close to the ocean. HBBM is mainly loacted in plain 
mountain with a subtropical climate. CBM is mainly 
located in plateau mountain of western China, and YBM 
is mainly distributed in Mid-temperate zone of western 
plateau.

Discussion
This study investigated the feasibility of developing a cp-
genome based identification method for closely related 
plants at lower taxonomic levels. Although DNA barcod-
ing provides accurate identification for plants, it remains 
a significant challenge for authentication of Fritillaria 
species. Firstly we analyzed the cp genome of Fritillaria. 
They were highly conserved in gene structure, gene order 
and gene content. The average GC content was ~ 37.0%, 
which was similar to the published cp genomes of Liliales 
species [48, 49]. We also investigated introns in 26 Fritil-
laria cp genomes. In this study, most of the protein-cod-
ing genes had the standard ATG as the initiator codon, 
but rpl2, ndhD and rps19 genes started with AUG, ATC 
and GUG, respectively. This variation, which may have 
been caused by RNA editing [50], has been reported in 
other cp genomes as well [51, 52]. As valuable molecu-
lar markers, SSRs are widely used in studies of population 
genetics, molecular breeding and species identification 
because of high polymorphisms [53, 54]. In this study, 
the distribution of SSRs in Fritillaria cp genomes was 
different but the interspecific variations were higher 
than intraspecific variations. In addition, most SSRs 
were located in the LSC. The content of polyA/T was 

Table 1  The SNP and Indels in 26 cp genomes of the ten Fritillaria species

Region Coding region Intergenic spacer Intron Summary

SNP InDel SNP InDel SNP InDel SNP InDel

LSC 600 14 838 358 254 87 1692 459

SSC 383 10 107 29 31 16 521 55

IRa 47 3 60 20 12 6 119 29

IRb 45 2 60 15 12 5 117 22

Total 1075 29 1065 422 309 114 2449 565
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greater than that of polyG/C. We speculate that the rich-
ness of A/T SSRs may be related to the AT abundance in 
these Fritillaria genomes [22, 55]. Comparative analy-
sis showed a high similarity among 26 Fritillaria cp 
genomes.

In order to find ideal molecular markers in Fritillaria, 
many studies tried to select highly variable regions based 
on cp genomes as genus-specific DNA barcodes for spe-
cies identification [56–64]. Li et  al. [56] found eight 
genes which had abundant variations among species 
by comparing four Fritillaria cp genomes. And Li et  al. 
[57] performed multiple sequence alignment analysis on 
gene and intergenic regions respectively using clustalw2 
and chose 20 highly variable genes and 20 highly vari-
able intergenic regions. They found that both genes and 
intergenic regions in Fritillaria were relatively conserva-
tive compared with other species. Only seven hypervari-
able intergenic regions were selected as potential specific 
DNA barcode based on comparison of four Fritillaria cp 
genomes. Similar results existed in other studies [58–64], 
except that the number of highly variable regions was 
different. Unfortunately, none of the above regions have 
been verified by further experiments. We tested all 57 
highly variable loci selected by published works except 
regions over 2 k bp in length using 26 samples from 10 
Fritillaria species (see Additional file  4: Table  S3 and 
Additional file  7). A total of seven hypervariable sites 
were screened and verified in this study. We found none 
of the loci could identify all these 10 species (see Addi-
tional file  4: Table  S3). Therefore, these findings dem-
onstrated that traditional molecular methods including 
DNA barcoding could not solve the problem of spe-
cies identification in Fritillaria due to high sequence 
similarities.

Because of the low discriminatory ability of general 
molecular markers in plants and their closely related 
species, researchers have placed high hopes on the use 
of plastid genome sequences in plant identification [7, 
65, 66]. Some authors have performed tentative stud-
ies to test the potential of cp genomes in certain plant 
groups of closely related species. Bayly et  al. [67] pre-
sented a phylogenetic analysis in three genera (Eucalyp-
tus, Corymbia and Angophora) and demonstrated that cp 
genome was useful in lower-level genetic studies. Yang 
et  al. [68] found that the cp genome lighted the species 
identification as organelle scale-scale “barcodes”. Li et al. 
[11] then put forward that cp genome can be regarded as 
a super-barcode for closely related species. Xia et al. [69] 
and Chen et al. [70] tested the ability of super-barcode in 
Chrysanthemum and Ligularia respectively. However, the 
above two studies lacked sufficient species number and 
intraspecific samples. We here extended earlier investiga-
tions on a large scale to evaluate the feasibility of using 

the cp-genome to discriminate closely related species of 
Fritillaria.

Our results showed that the two topologies of MP 
and ML were identical with high support values (see 
Fig.  3 and Additional file  5: Figure S2). Both phyloge-
netic trees constructed by the entire cp genome pre-
sented a high discrimination power for the Fritillaria 
species, and different individuals from same species were 
formed into a monophyletic clade whatever in species 
level and in subspecies level. The cp-genome possesses 
the basic qualifications to be a universal marker com-
pared with traditional molecular identification markers. 
First, Chloroplasts are haploid and non-recombining and 
cp-genome sequences are highly conserved, so they can 
act as a single locus [66]. Second, in contrast to a single 
gene, they have more variation and have the potential to 
identify closely related species at lower taxonomic levels 
[7]. Third, in our study, chloroplast sequence data has 
really shown 100% identification efficiency in Fritillaria. 
Because the results of screening genus-specific barcodes 
with different species groups were distinct, plant identifi-
cation of closely related species based on super-barcode 
using DNA barcoding may no longer need to choose 
between more loci or more taxa.

Some authors disagreed with this approach for sev-
eral reasons, including high expenditures, compared 
to Sanger sequencing, and the lack of close reference 
sequences for assembly [71]. With the development of 
next generation sequencing, the cost for cp-genome 
sequencing and assembly is almost the same as that of 
PCR-based sequencing on average. And for most plants, 
close reference for assembly has become less important 
than before. Taking the entire cp genome as a super-bar-
code becomes feasible for accurate species identification, 
since it has been demonstrated that cp genome could 
provide a higher resolution in species authentication in 
species and even population level [7, 25, 26].

Our results showed that the super-barcode based on 
the full length of the cp genome sequence could suc-
cessfully distinguish the Fritillaria species recorded 
in the Chinese Pharmacopoeia 2020. According to 
the pharmacophylogenetic theory of Xiao et  al. [72], 
the species that had the closest phylogenetic relation-
ships were also similar in chemical components and 
curative effects. This confirmed the accuracy and reli-
ability of the original species division for the five types 
of Fritillaria bulbs in the Chinese Pharmacopoeia 
2020. Furthermore, this study demonstrated that the 
super-barcode based on the full length of the Fritil-
laria cp genome sequence could not only successfully 
distinguish the Fritillaria species in species level but 
also reflect the characteristics of biogeography. The 
analysis of phylogenetic relationship was coincident 
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with geographical distribution of BM (see Additional 
file 6: Figure S3), which provided a way for alternative 
resource discovery in natural drug development.

Although super-barcode has many advantages, it is 
not suitable for plant species identification when DNA 
extraction is difficult. For dried, cooked or decocting 
material medica, DNA is degraded seriously. We may 
not extract enough DNA or longer DNA fragments. 
It is not easy to obtain whole cp genome sequence by 
assembly. Compared with a single-locus barcode, the 
cost of super-barcode is higher and data analysis is 
complex using windows software. In fact, we don’t rec-
ommend superbarcode if commonly used DNA barcode 
can make accurate identification. Therefore super-bar-
code is a useful supplement to the current molecular 
identification. It can show its advantages when tradi-
tional DNA barcoding is limited to plant identification 
of some closely related species.

Conclusions
The cp genome is now a reasonable option for increasing 
the resolution of plant identification in closely related spe-
cies. In this study, we firstly verified the hypothesis that 
the cp genome could be used as a super-barcode to actu-
ally identify closely related species. Secondly, we analyzed 
and compared 26 complete cp genomes of the ten Fritil-
laria species, including 18 newly sequenced genomes. 
Finally, the phylogenetic analysis constructed by the 26 
complete cp genomes strongly showed that the medicinal 
plants from the genus Fritillaria can effectively be distin-
guished at the species level. Recent advances in sequenc-
ing strategies make an unprecedented depth and scale of 
plastid genome sampling possible. Plastome sequencing 
is now a reasonable option for increasing the resolution 
of plant identification studies at low taxonomic levels. We 
are encouraged by the fact that species identification based 
upon the cp-genome is generally straightforward. Although 

Fig. 3  Phylogenetic relationships among the ten Fritillaria species based on complete cp genome sequences by the maximum parsimony (MP) 
method. Lilium brownie and Cardiocrinum giganteum were set as the compound outgroups
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there are some issues to be solved, i.e., intraspecies sam-
pling remains sporadic, and discrimination is not rapid, we 
believe that super-barcode is a good choice for identifica-
tion of closely related species especially when DNA bar-
coding encounters difficulties.
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