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Alpinia oxyphylla Miq extract reduces 
cerebral infarction by downregulating 
JNK‑mediated TLR4/T3JAM‑ and ASK1‑related 
inflammatory signaling in the acute phase 
of transient focal cerebral ischemia in rats
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Abstract 

Background:  Post-ischemic inflammation is a crucial component in stroke pathology in the early phase of cerebral 
ischemia–reperfusion (I/R) injury. Inflammation caused by microglia, astrocytes, and necrotic cells, produces pro-
inflammatory mediators and exacerbates cerebral I/R injury. This study evaluated the effects of the Alpinia oxyphylla 
Miq [Yi Zhi Ren (YZR)] extract on cerebral infarction at 1 day after 90 min of transient middle cerebral artery occlusion 
(MCAo) and investigated the molecular mechanisms underlying the regulation of c-Jun N-terminal kinase (JNK)-medi‑
ated inflammatory cascades in the penumbral cortex. Rats were intraperitoneally injected with the YZR extract at the 
doses of 0.2 g/kg (YZR-0.2 g), 0.4 g/kg (YZR-0.4 g), or 0.8 g/kg (YZR-0.8 g) at MCAo onset.

Results:  YZR-0.4 g and YZR-0.8 g treatments markedly reduced cerebral infarction, attenuated neurological deficits, 
and significantly downregulated the expression of phospho-apoptosis signal-regulating kinase 1 (p-ASK1)/ASK1, 
tumor necrosis factor receptor-associated factor 3 (TRAF3), TRAF3-interacting JNK-activating modulator (T3JAM), ion‑
ized calcium-binding adapter molecule 1 (Iba1), p-JNK/JNK, inducible nitric oxide synthase, cyclooxygenase-2, tumor 
necrosis factor-α, toll-like receptor 4 (TLR4), glial fibrillary acidic protein (GFAP), nuclear factor-kappa B (NF-κB), and 
interleukin-6 in the penumbral cortex at 1 day after reperfusion. SP600125 (SP), a selective JNK inhibitor, had the same 
effects. Furthermore, Iba1- and GFAP-positive cells were colocalized with TLR4, and colocalization of GFAP-positive 
cells was found with NF-κB in the nuclei.

Conclusion:  YZR-0.4 g and YZR-0.8 g treatments exerted beneficial effects on cerebral ischemic injury by downregu‑
lating JNK-mediated signaling in the peri-infarct cortex. Moreover, the anti-infarction effects of YZR extract treatments 
were partially attributed to the downregulation of JNK-mediated TLR4/T3JAM- and ASK1-related inflammatory signal‑
ing pathways in the penumbral cortex at 1 day after reperfusion.

Keywords:  Alpinia oxyphylla Miq, Ischemia, Reperfusion, c-Jun N-terminal kinase, Toll-like receptor 4, TRAF3-
interacting JNK-activating modulator, Apoptosis signal-regulating kinase 1
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Background
Post-ischemic inflammation is a crucial component in 
stroke pathology in the early phase of cerebral ischemia–
reperfusion (I/R) injury [1]. The increased production 
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of free radicals and the consequent induction of oxi-
dative stress in the ischemic area initiate inflamma-
tory responses [2]. Generally, inflammation is caused 
by microglia, astrocytes, and necrotic cells, producing 
pro-inflammatory mediators and aggravating cerebral 
I/R injury [3]. In the pathological process of cerebral 
ischemia, toll-like receptor (TLR)-mediated signaling ini-
tiates inflammatory cascades and is closely related to the 
development of cerebral infarction [4].

TLRs play an important role in the innate immune 
response. TLR4, a member of the TLR family, is 
expressed on microglia and astrocytes in the ischemic 
area in cerebral I/R injury [5]. During brain ischemic 
insult, activated microglia and reactive astrocytes pre-
dominantly express TLR4, which recognizes damage-
associated molecular patterns (DAMPs), subsequently 
triggering downstream cascades through myeloid differ-
entiation primary response gene 88 (MyD88)-dependent 
and toll/interleukin (IL)-1 receptor homology domain-
containing adaptor-inducing interferon-β (TRIF)-
dependent signaling pathways [6, 7]. These two pathways 
result in the activation of transcription factor nuclear 
factor-kappa B (NF-κB), which stimulates the production 
of pro-inflammatory mediators [6, 8]. The expression of 
TLR4, ionized calcium-binding adapter molecule 1 (Iba1; 
a marker of microglia), and glial fibrillary acidic protein 
(GFAP; a marker of astrocytes) is markedly increased in 
the ischemic area at 24  h after transient focal cerebral 
ischemia [9]. In MyD88-dependent signaling, MyD88 
interacts with tumor necrosis factor (TNF) receptor-
associated factor 6 (TRAF6), subsequently activating 
two pathways involving NF-κB- and mitogen-activated 
protein kinase (MAPK), which includes extracellular sig-
nal-regulated kinase 1/2, c-Jun N-terminal kinase (JNK), 
and p38 MAPK [10, 11]. In TRIF-dependent signaling, 
TRIF binds to TRIF-related adaptor molecule (TRAM), 
subsequently activating TRAF3 and resulting in the acti-
vation of interferon-β expression [12, 13]. Studies have 
reported that TRAF3-interacting JNK-activating modu-
lator (T3JAM) (also named TRAF3IP3), a coiled-coil 
membrane protein, interacts with TRAF3 in the cytosol, 
subsequently triggering the activation of JNK-mediated 
signaling and further amplifying TLR4-mediated sign-
aling [14, 15]. In the early phase of cerebral ischemia, 
oxidative stress triggers the activation of apoptosis sig-
nal-regulating kinase 1 (ASK1), which activates down-
stream MAPK kinase (MKK) 4/JNK signaling cascades, 
leading to the initiation of apoptosis and inflammation in 
the ischemic area [16, 17]. JNK signaling plays a crucial 
role in modulation of multiple cellular activities, includ-
ing proliferation, differentiation, inflammation, and 
apoptosis [18]. Furthermore, JNK is considered a major 
stress-activated protein kinase and a promising candidate 

for activating microglia, and it induces neuroinflamma-
tion in response to I/R injury in in vitro and in vivo mod-
els [19].

Generally, JNK pathways are activated by TLR4/
MyD88/TRAF6-, TLR4/T3JAM-, and ASK1-mediated 
signaling stimuli during cerebral ischemia. Phosphoryl-
ated JNK positively regulates activated NF-κB, which 
translocates into the nucleus and induces the expres-
sion of genes encoding pro-inflammatory cytokines such 
as inducible nitric oxide synthase (iNOS), cyclooxy-
genase-2 (COX-2), TNF-α, and IL-6 [18, 20]. In post-
ischemic inflammatory cascades, NF-κB-mediated iNOS 
production induces oxidative stress and then disrupts 
blood–brain barrier (BBB) integrity, aggravating cerebral 
infarction [21]. COX exists in two isoforms: COX-1 and 
COX-2. COX-1 is a constitutive enzyme and is expressed 
in most tissues, where COX-1-derived prostanoids pro-
vide stability to the internal environment. By contrast, 
COX-2 is the inducible isoform; it is highly expressed in 
the cerebral ischemic area and consequently promotes 
microglia activation, thereby enlarging the cerebral 
infarct area [22, 23]. Elevated TNF-α expression causes 
increased disruption of the BBB integrity and stimulates 
cytotoxic iNOS production by microglia and astrocytes. 
In addition, TNF-α, in turn, could induce the production 
of NF-κB, leading to the augmentation of the inflamma-
tory response and exacerbation of brain injury [12, 21, 
24]. IL-6 that is mainly produced by activated microglia 
contributes to BBB disruption and is closely associated 
with neuronal damage in the ischemia penumbra dur-
ing transient middle cerebral artery occlusion (MCAo). 
Furthermore, IL-6 shows peak expression in the ischemic 
penumbra at 24 h after MCAo [21, 25].

Alpinia oxyphylla Miq, commonly known as Yi Zhi 
Ren (YZR), is a traditional Chinese herb that has been 
widely used to treat intestinal disorders, urosis, diure-
sis, ulceration, hypertension, dementia, and cerebrovas-
cular disorders [26, 27]. Studies have reported that YZR 
attenuates memory impairment through the inhibition 
of neuroinflammation, amyloid-β deposition, and p-tau 
expression in the cortex and hippocampus in mice with 
lipopolysaccharide-induced Alzheimer’s disease [28]. In 
addition, YZR protects against ischemia-induced mem-
ory deficits by promoting hippocampal cornu ammonis 
neuronal survival after transient global cerebral ischemia 
[29]. Protocatechuic acid, chrysin and nootkatone are the 
main active components of YZR [30, 31]. Intraperitoneal 
(IP) administration of protocatechuic acid (5 mg/kg) con-
tributes to the suppression of oxidative stress by increas-
ing superoxide dismutase and glutathione peroxidase 
activities and decreasing malondialdehyde expression 
in the brain in aged rats [32]. Chrysin attenuates cer-
ebral I/R injury by downregulating IL-6, TNF-α, NK-κB, 
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COX-2, and iNOS expression in the ischemic area after 
transient focal [33] and global [34] cerebral ischemia. 
Intracerebroventricular (ICV) injections of nootkatone 
(0.02  mg/kg and 0.2  mg/kg) provide beneficial effects 
against β-amyloid-induced cognitive impairment by 
upregulating anti-oxidative and anti-acetylcholinester-
ase activities in the hippocampus [35]. On the basis of 
the aforementioned findings, we speculate that the YZR 
extract protects against cerebral I/R injury by modulat-
ing JNK-mediated signaling in the acute phase of tran-
sient focal cerebral ischemia. Therefore, in this study the 
effects of the YZR extract on cerebral infarction were 
assessed, and the potential mechanism through which 
the extract modulates JNK-mediated inflammatory sign-
aling in the penumbral cortex at 1 day after transient 
MCAo was verified.

Methods
Experimental animals
A total of 151 adult male Sprague–Dawley rats, 
8–9  weeks old and weighting 290–330  g (purchased 
from BioLASCO Co., Ltd., Yilan, Taiwan), were used in 
the present study. They were housed under the condi-
tions of controlled temperature (22–24  °C), humidity 
(50–55%), and lighting cycle (12/12-h light/dark). All 
experimental procedures were conducted in accordance 
with the guidelines approved by the Institutional Animal 
Care and Use Committee of China Medical University 
(Permit Number: CMUIACUC-2019-312). Twenty three 
rats died during the experiments and 7 rats subjected to 
incomplete MCAo were excluded from this study.

YZR extract preparation
YZR extract powder was obtained from Chuang Song 
Zong Pharmaceutical Co., Ltd. (Kaohsiung, Taiwan). Two 
grams of YZR extract powder was dissolved with 8 mL of 
double-distilled water. The concentration measurements 
were performed as described previously [36]. The final 
concentration of the YZR aqueous extract was main-
tained at 0.1 g/mL.

High‑performance liquid chromatography assessment 
of the indicators of the YZR extract
The standards comprising protocatechuic acid [purity: 
99.9%, National Institutes for Food and Drug Control 
(NIFDC), China], chrysin (purity: 100%, NIFDC, China) 
and nootkatone (purity: 99.5%, NATURE STANDARD, 
Shanghai, China) were precisely weighed and dissolved 
in absolute methanol to prepare standard solutions. 
Two grams of the YZR extract powder was dissolved 
in 100  mL of absolute methanol and the solution was 
then shaken using an ultrasonic cleaner at room tem-
perature (RT) for 30 min. After filtration of the solution, 

the filtrate was collected as the sample solution. Sub-
sequently, high-performance liquid chromatography 
(HPLC) measurements were conducted as described 
previously [37]. In brief, 20 μL of the standard or sam-
ple solution was injected into the Waters HPLC system 
(Waters Corp., Miford, MA, USA), which consists of the 
Waters 2690 Separations Module and Waters 2996 Pho-
todiode Array Detector. The HPLC profile of the YZR 
extract was determined using a C18 column (Cosmosil 
5C18-AR-II, 4.6  mm I.D. × 250  mm, 5  μm). The mobile 
phase consisted of water with 0.1% phosphoric acid (A) 
and acetonitrile with 0.1% phosphoric acid (B). In gradi-
ent elution processes, the proportion of mobile phase A 
was decreased from 93 to 30%, whereas the proportion 
of mobile phase B was increased from 7 to 70%. The flow-
rate of the mobile phase was 1.0  mL/min, and the total 
run time was 85  min. The effluent was monitored by a 
photodiode array detector at 254 nm.

Transient middle cerebral artery occlusion
Transient MCAo was performed in the rats by using 
the intraluminal suture occlusion technique described 
previously [37]. In Brief, all rats were anesthetized with 
isoflurane (5% and 2% isoflurane for induction and main-
tenance, respectively). The rat’s head was fixed in the 
stereotaxic frame and a burr hold was drilled into the 
skull (2.0  mm posterior and 2.5  mm lateral to the right 
from the bregma) to expose the distal territory of the 
middle cerebral artery (MCA). A 3-cm midline neck inci-
sion was made to expose the right external carotid artery 
(ECA) and internal carotid artery (ICA). A 3–0 nylon 
suture with a heat-blunted tip was carefully inserted into 
the lumen of the right ICA through the stump of the ECA 
and was advanced up to the origin of the MCA. After 
90  min of MCAo, the suture was gently withdrawn to 
permit reperfusion. Blood flow in the MCA was moni-
tored using a Laser-Doppler flowmetry (DRT4, Moor 
Instruments Inc., Wilmington, USA) in the MCAo proce-
dure. Successful establishment of MCAo was defined as a 
reduction in the MCA blood flow to 20–30% of baseline 
in the ischemic period and an increase in MCA blood 
flow to 60% of baseline in the reperfusion period. The 
rats subjected to incomplete MCAo were excluded for 
further study.

Assessment of neurological function
Modified neurological severity score (mNSS) tests were 
performed to determine neurological function at 1 day 
after reperfusion. The mNSS tests listed in Table  1 are 
divided into four components: motor, sensory, beam 
balance, and reflex tests, as described previously [38]. 
The neurological deficit scores (NDSs) for each rat were 
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obtained using the mNSS, which ranges from 0 to 18. A 
normal score is 0, and the maximal deficit score is 18.

Experiment A
Grouping
The rats were randomly divided into five groups 
(n = 5–6): Sham, Control, YZR-0.2  g, YZR-0.4  g, and 
YZR-0.8 g groups. The rats in the YZR-0.2 g, YZR-0.4 g, 
and YZR-0.8  g groups were IP injected with the YZR 
extract at the doses of 0.2, 0.4, and 0.8 g/kg, respectively, 
after the initiation of MCAo. After 90  min of ischemia 
followed by 1 day of reperfusion, the rats were euthanized 
by CO2 inhalation, and their brains were immediately 
removed. The rats in the Control group were subjected 
to the identical protocols of the YZR-0.8 g group, except 
that the rats were injected with normal saline instead of 
the YZR extract. The rats in the Sham group were sub-
jected to the identical protocols of the Control group, 
except that the MCA was not occluded.

Measurement of cerebral infarction
After 1 day of reperfusion, the rats were euthanized, and 
their brains were immediately removed. The fresh brains 
were placed at − 20 °C for 5 min and were then cut into 
six coronal sections of 2-mm thickness. The brain sec-
tions were stained with 2% 2,3,5-triphenyltetrazolium 
chloride (TTC; Merck, Germany) at 37 °C for 5 min and 
consequently fixed in 4% paraformaldehyde (PFA) solu-
tion at RT overnight. In each TTC-stained brain section, 
the white portion in the ipsilateral hemisphere indi-
cates the infarcted area, whereas the deep red portion 
indicates the healthy region. The percentage of cerebral 
infarct areas was determined by dividing the infarct area 
by the total coronal sectional area; the calculation was 
conducted using ImageJ software (NIH, MD, USA).

Experiment B
Grouping
The rats were randomly divided into five groups (n = 5): 
Sham, Control, YZR-0.2  g, YZR-0.4  g, and YZR-0.8  g 

Table 1  The components of the mNSS

Tests Scores

Motor tests

 Raising rat by tail

  Forelimb flexion 1

  Hindlimb flexion 1

  Head moves more than 10 degree from the vertical axis 1

 Placing rat on floor

  Walking in a straight line 0

  Walking toward the paretic side 1

  Circling toward the paretic side 2

  Falls down on the contralateral or ipsilateral side 3

Sensory tests

 Placing test

  No forelimb placing response after vibrissae stimulation 1

  Proprioceptive test

 No forelimb resistance after pushing paws against the table edge 1

Beam balance tests

 Normal walking on the beam 0

 Grasps side of the beam 1

 Hugs the beam and the paretic forelimb falls down from the beam 2

Hugs the beam and the paretic forelimb and hindlimb fall down from the beam 3

 Attempts to balance on the beam but falls off (more than 40 s) 4

 Attempts to balance on the beam but falls off (the duration between 20 and 40 s) 5

 Falls off immediately 6

Reflex absence and abnormal movement

 Lack of pinna reflex (examined using a cotton swab into the ear canal) 1

 Lack of corneal reflex (examined using a cotton swab lightly touching the cornea) 1

 Lack of startle reflex (examined using a loud hand clap) 1

Seizure, myoclonus, or myodystony 1
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groups. The rats in these groups were subjected to proto-
cols identical to those for Experiment A.

Western blot analysis
After 1 day of reperfusion, the rats were euthanized, 
and their brains were immediately removed. The right 
penumbral cortices of the brain samples were divided 
into cytosolic and mitochondrial fractions, as described 
previously [37]. Equal amounts of protein samples 
(15 μg/lane) were loaded and then separated through 10% 
sodium dodecyl sulfate–polyacrylamide gel electropho-
resis, transferred onto nitrocellulose (NC) membranes, 
and incubated with primary antibodies listed in Table 2 
at 4  °C overnight. Subsequently, appropriate secondary 
antibodies (1:5000 dilution) (Table 2) were used to detect 
the primary antibodies presented in the NC membranes, 
with incubation at RT for 1 h. The images were scanned 
using a luminescence image analyzer (LAS-3000, Fuji-
Film), and the data were analyzed using ImageJ software.

Experiment C
Grouping
The rats were randomly divided into four groups (n = 5): 
D+Sham, D+Control, D+YZR-0.8 g, and SP groups. The 
rats in the SP group were subjected to the Control group 
protocols identical to those for Experiment A, but they 
were given an ICV injection of SP600125, a selective JNK 
inhibitor, 20 min before MCAo. The rats in the D+Sham, 
D+Control, and D+YZR-0.8 g groups were subjected to 
protocols identical to those for the Sham, Control, and 
YZR-0.8 g groups, as described in Experiment A, respec-
tively; however, all of them were given ICV injections of 
1% dimethyl sulfoxide (DMSO) 20 min before MCAo.

Intracerebroventricular injection of SP600125 or 1% DMSO
The rats were maintained under anesthesia with 2% iso-
flurane, and a burr hole located 0.8 mm posterior to the 
bregma and 1.5 mm lateral to the midline was drilled into 
the right side of the skull. The rats were given an ICV 
injection of 10 μL of SP600125 solution (2 mM in DMSO, 
ab120065 abcam) or 1% DMSO solution. The solution 
was injected at a depth of 3.5 mm from the skull using a 
10-µL Hamilton syringe (Hamilton Company, Reno, NV, 
USA).

Measurement of neurological function and cerebral 
infarction
One day after reperfusion, the rats were subjected to 
mNSS tests and were subsequently euthanized for meas-
urement of cerebral infarction. The cerebral infarction 
measurement procedures are the same as those in Exper-
iment A.

Experiment D
Grouping
The rats were randomly divided into four groups 
(n = 5): D+Sham, D+Control, D+YZR-0.8  g, and SP 
groups. The rats in these groups were subjected to pro-
tocols identical to those for Experiment C.

Western blot analysis
One day after transient MCAo, the rats were eutha-
nized, and their brains were immediately removed for 
Western blot analysis of p-ASK1, ASK1, Iba1, T3JAM, 
TRAF3, p-JNK, JNK, iNOS, COX-2, and TNF-α (listed 
in Table 2) expression. The procedures of Western blot 
assay were the same as those for Experiment B.

Experiment E
Grouping
The rats were randomly divided into six groups (n = 5): 
Sham, Control, YZR-0.2  g, YZR-0.4  g, YZR-0.8  g, and 
SP groups. The rats in these groups were subjected to 
protocols identical to those for Experiment A and C.

Immunohistochemical analysis
After completing neurological examinations at 1 day 
of reperfusion, the rats were euthanized. They were 
transcardially perfused with cold 0.9% saline, and their 
brains were removed quickly. Subsequently, the brains 
were embedded in optimal cutting temperature com-
pound in small aluminum foil paper boxes, frozen 
at − 35 ± 5  °C using dry ice, and cut into 15  µm thick 
coronal brain sections using a cryostat (Leica CM3050 
S, Wetzlar, Germany), as previously described [36]. The 
brain sections were rinsed in phosphate buffered saline/
Tween 20 (0.01%; PBST) and post-fixed with 4% PFA 
at RT for 15  min. After washing with PBST, the brain 
sections were immersed with 3% hydrogen peroxidase/
methanol for 20 min to inhibit endogenous peroxidase 
activity and then incubated with Iba1, GFAP, TLR4, 
NF-κB, iNOS, and IL-6 (listed in Table 2) at 4 °C over-
night. The brain sections were subsequently stained 
with appropriate secondary antibodies (Table  2) and 
labeled with avidin–biotin–peroxidase complexes 
(Leica Biosystems Newcastle Ltd., UK). Immuno-
positive cells in the selected penumbral cortex were 
detected using a light microscope (Axioskop 40, Zeiss). 
The negative control slides from the Control group 
were stained without the primary antibodies.

Immunofluorescence staining
The brain sections adjacent to those used in immuno-
histochemical (IHC) analysis were used for immunoflu-
orescence (IF) staining. The brain sections were rinsed 
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Table 2  Primary and secondary antibodies applied in this study

WB: Western blotting; IHC: immunohistochemistry; IF: immunofluorescence; CST: Cell Signaling Technology

Source Primary antibody
Secondary antibody

WB
Dilution

IHC
Dilution

IF
Dilution

Supplier/product number

Rabbit
Goat

p-ASK1
Anti-rabbit IgG

1:1000
1:5000

CST/#3765
Jackson/AB_2313567

Rabbit
Goat

ASK1
Anti-rabbit IgG

1:1000
1:5000

CST/#8662
Jackson/AB_2313567

Rabbit
Goat

MyD88
Anti-rabbit IgG

1:1000
1:5000

CST/#4283
Jackson/AB_2313567

Rabbit
Goat

TRAF6
Anti-rabbit IgG

1:1000
1:5000

abcam/ab40675
Jackson/AB_2313567

Rabbit
Goat

T3JAM
Anti-rabbit IgG

1:500
1:5000

Merck/SAB4503206
Jackson/AB_2313567

Rabbit
Goat

TRAF3
Anti-rabbit IgG

1:500
1:5000

abcam/36988
Jackson/AB_2313567

Rabbit
Goat

Iba1
Anti-rabbit IgG

1:1000
1:5000

abcam/ab178846
Jackson/AB_2313567

Rabbit
Goat

p-JNK
Anti-rabbit IgG

1:1000
1:5000

CST/#9251
Jackson/AB_2313567

Rabbit
Goat

JNK
Anti-rabbit IgG

1:1000
1:5000

CST/#9252
Jackson/AB_2313567

Rabbit
Goat

p-p38 MAPK
Anti-rabbit IgG

1:1000
1:5000

CST/#9211
Jackson/AB_2313567

Rabbit
Goat

P38 MAPK
Anti-rabbit IgG

1:1000
1:5000

CST/#9212
Jackson/AB_2313567

Rabbit
Goat

iNOS
Anti-rabbit IgG

1:250
1:5000

abcam/ab15323
Jackson/AB_2313567

Rabbit
Goat

COX-2
Anti-rabbit IgG

1:1000
1:5000

CST/#4842
Jackson/AB_2313567

Rabbit
Goat

TNF-α
Anti-rabbit IgG

1:1000
1:5000

Millipore/AB1837P
Jackson/AB_2313567

Mouse
Goat

Actin (loading control)
Anti-mouse IgG

1:5000
1:5000

NOVUS/NB600-501
Jackson/AB_10015289

Rabbit Iba1
Polymer kit

1:500 abcam/ab178846
Leica/RE7111&RE7112

Mouse TLR4
Polymer kit

1:100 abcam/ab22048
Leica/RE7111&RE7112

Mouse GFAP
Polymer kit

1:200 CST/#3670
Leica/RE7111&RE7112

Rabbit NF-κB (p65)
Polymer kit

1:200 abcam/ab16502
Leica/RE7111&RE7112

Rabbit iNOS
Polymer kit

1:100 abcam/ab15323
Leica/RE7111&RE7112

Mouse IL-6
Polymer kit

1:500 abcam/ab9324
Leica/RE7111&RE7112

Mouse
Goat

NeuN
Anti-mouse IgG

1:100
1:100

abcam/ab178846
Jackson Alexa 594/AB_2338871

Rabbit
Goat

Iba1
Anti-rabbit IgG

1:250
1:100

abcam/ab178846
Jackson Alexa 488/AB_2338046

Mouse
Goat

TLR4
Anti-mouse IgG

1:100
1:100

abcam/ab22048
Jackson Alexa 594/AB_2338871

Mouse
Goat

GFAP
Anti-mouse IgG

1:100
1:100

CST/#3670
Jackson Alexa 594/AB_2338871

Rabbit
Goat

NF-κB (p65)
Anti-rabbit IgG

1:100
1:100

abcam/ab16502
Jackson Alexa 488/AB_2338046

Rabbit
Goat

GFAP
Anti-rabbit IgG

1:100
1:100

abcam/ab104139
Jackson Alexa 488/AB_2338046
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in PBST and post-fixed with 4% PFA at RT for 15 min. 
After washing with PBST, the brain sections were 
blocked with a blocking buffer containing 1% bovine 
serum albumin in PBST at RT for 1 h, and the sections 
were subsequently incubated with mouse and rabbit 
primary antibodies (listed in Table 2) at 4 °C overnight. 
After being washed with PBST for 5 min, the brain sec-
tions were incubated with anti-mouse and anti-rabbit 
immunoglobulin G secondary antibodies (Table  2) at 
37 °C for 1.5 h and then counterstained with 4’,6-diami-
dino-2-phenylindole (DAPI, ab4139 abcam) at RT for 
3  min, as described previously [36]. Immunopositive 
cells in the selected penumbral cortex were evaluated 
using a fluorescence microscope (CKX53, Olympus, 
Tokyo, Japan). In addition, the percentage of activated 

forms of Iba1 (GFAP) was evaluated by dividing acti-
vated forms of Iba1 (GFAP)-positive cells by total Iba1 
(GFAP)-positive cells in the selected penumbral cortex.

Statistical analysis
The normality test was performed on all data by Kol-
mogorov–Smirnov test with a significance level of 0.05. 
All numeric data, except for neurological function 
scores, follow the normal distribution (P > 0.05). The data 
acquired from cerebral infarction, Western blot, IHC, 
and IF analyses among the experimental groups were 
evaluated using one-way analysis of variance (ANOVA) 
followed by Bonferroni post-hoc test, and the data 
were expressed as mean ± standard deviation. The data 
acquired from neurological tests among the experimental 

Fig.1  HPLC chromatograms of protocatechuic acid, chrysin, and nootkatone in the YZR extract. HPLC chromatograms A and B denote the standard 
and YZR extract solutions, respectively. AU: absorbance unit
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groups were analyzed using Kruskal–Wallis one-way 
ANOVA, and the data were expressed as median (min−
max). P values less than 0.05 were considered as statisti-
cally significant.

Results
HPLC analysis of the YZR extract
After the detection of the standard and YZR extract solu-
tions using HPLC analysis, the retention times of proto-
catechuic acid, chrysin, and nootkatone were 10.0, 58.7, 
and 75.0  min, respectively. The contents of protocat-
echuic acid, chrysin, and nootkatone in the YZR extract 
were 0.064, 0.017, and 0.083 mg/g, respectively (Fig. 1A 
and B).

Effects of YZR extract treatments on cerebral infarction
After 1 day of reperfusion, TTC staining revealed that the 
percentage of cerebral infarct areas was markedly higher 
in the Control group than in the Sham group (P < 0.05) 
and was markedly lower in the YZR-0.4 g and YZR-0.8 g 
groups than in the Control group (both P < 0.05; Fig. 2A 
and B) (F4,21 = 45.700, P = 0.000). The percentage of cer-
ebral infarct areas did not differ significantly between the 
Control and YZR-0.2 g groups (P > 0.05).

Fig. 2  Effects of YZR-0.4 g and YZR-0.8 g treatments on cerebral infarction at 1 day after reperfusion. A Representative TTC staining images (S1–S6) 
of the Sham, Control, YZR-0.2 g, YZR-0.4 g, and YZR-0.8 g groups (n = 5–6) showed that normal tissues turned deep red, whereas infarcted tissues 
remained pale white. B The percentage of cerebral infarct areas was measured among the experimental groups at 1 day after reperfusion. Data are 
expressed as mean ± standard deviation. *P < 0.05 vs. the Sham group; #P < 0.05 vs. the Control group. Scale bar represents 1 cm

Table 3  The NDSs of neurological tests performed in 
Experiment A, B, and E (n = 15)

Each value was expressed as median (min−max)

 NDSs: neurological deficit scores

*P < 0.05 vs. the Sham group; #P < 0.05 vs. the Control group

Group NDSs of motor 
function

NDSs of sensory 
function

NDSs of beam 
balance 
function

Sham 0 (0–0) 0 (0–0) 0 (0−0)

Control 4 (3–4)* 2 (1–2)* 2 (2−3)*

YZR-0.2 g 4 (3–4) 2 (1–2) 2 (2−3)

YZR-0.4 g 2 (1–3)# 1 (0–2)# 1 (0−2)#

YZR-0.8 g 2 (1–3)# 0 (0–1)# 1 (0−1)#



Page 9 of 21Cheng et al. Chin Med           (2021) 16:82 	

Effects of YZR extract treatments on neurological function
The mNSS tests revealed that the NDSs of motor, sen-
sory, and beam balance functions were markedly higher 
in the Control group than in the Sham group (all P < 0.05) 
and were markedly lower in the YZR-0.4 g and YZR-0.8 g 
groups than in the Control groups (all P < 0.05; Table 3). 
However, the NDSs of motor, sensory, and beam balance 
functions did not differ significantly between the Control 
and YZR-0.2  g groups (P > 0.05). In addition, the rats in 
the experimental groups did not lose the reflex function 
at 1 day after reperfusion.

Effects of YZR extract treatments on the cytosolic 
expression of p‑ASK1, ASK1, MyD88, TRAF6, T3JAM, TRAF3, 
Iba1, p‑JNK, JNK, p‑p38 MAPK, p38 MAPK, iNOS, COX‑2, 
and TNF‑α
The cytosolic expression of p-ASK1/ASK1, T3JAM/
actin, TRAF3/actin, Iba1/actin, p-JNK/JNK, iNOS/actin, 
COX-2/actin, and TNF-α/actin in the penumbral cor-
tex was markedly higher in the Control group (2.3-, 2.4-, 
1.7-, 2.2-, 1.7-, 2.6-, 2.0-, and 1.8-fold, respectively) than 
in the Sham group (all P < 0.05) and was markedly lower 
in the YZR-0.4 g (0.5-, 0.5-, 0.7-, 0.6-, 0.6-, 0.4-, 0.5-, and 
0.6-fold, respectively) and YZR-0.8 g (0.5-, 0.5-, 0.6-, 0.6-, 
0.7-, 0.4-, 0.5-, and 0.6-fold, respectively) groups than in 
the Control group at 1 day after reperfusion (all P < 0.05; 
Figs.  3A, B, E–G, 4A, B, and D–F) [(F4,20 = 12.359, 
P = 0.000), (F4,20 = 27.241, P = 0.000), (F4,20 = 19.613, 
P = 0.000), (F4,20 = 21.942, P = 0.000), (F4,20 = 26.072, 

Fig. 3  Effects of YZR-0.4 g and YZR-0.8 g treatments on cytosolic p-ASK1, ASK, MyD88, TRAF6, T3JAM, TRAF3, and Iba1 expression in the penumbral 
cortex. A Representative Western blot images showed cytosolic p-ASK1, ASK, MyD88, TRAF6, T3JAM, TRAF3, and Iba1 expression in the penumbral 
cortex in the Sham, Control, YZR-0.2 g, YZR-0.4 g, and YZR-0.8 g groups (n = 5) at 1 day after reperfusion. Actin was used as an internal control in the 
Western blot analysis. The ratios of B p-ASK1/ASK1, C MyD88/actin, D TRAF6/actin, E T3JAM/actin, F TRAF3/actin, and G Iba1/actin were measured in 
the penumbral cortex among the experimental groups. cyto, cytosolic fraction. *P < 0.05 vs. the Sham group; #P < 0.05 vs. the Control group
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P = 0.000), (F4,20 = 26.183, P = 0.000), (F4,20 = 48.012, 
P = 0.000), and (F4,20 = 52.574, P = 0.000), respectively]. 
However, the cytosolic expression of these proteins did 
not differ significantly between the Control and YZR-
0.2 g groups (P > 0.05). In addition, the cytosolic expres-
sion of MyD88/actin, TRAF6/actin, and p-p38 MAPK/
p38 MAPK in the penumbral cortex did not differ signifi-
cantly among the experimental groups (P > 0.05; Figs. 3A, 
C, D, 4A and C) [(F4,20 = 0.456, P = 0.767), (F4,20 = 0.325, 
P = 0.858), and (F4,20 = 1.788, P = 0.171), respectively]. 

Effects of D+YZR‑0.8 g and SP treatments on cerebral 
infarction
The percentage of cerebral infarct areas was markedly 
higher in the D+Control group than in the D+Sham 
group (P < 0.05) and was markedly lower in the D+YZR-
0.8  g and SP groups than in the D+Control group at 1 

day after reperfusion (both P < 0.05; Fig.  5A and B) 
(F3,16 = 128.346, P = 0.000).

Effects of D+YZR‑0.8 g and SP treatments on neurological 
function
The NDSs of motor, sensory, and beam balance func-
tions were markedly higher in the D+Control group 
than in the D+Sham group (all P < 0.05) and were mark-
edly lower in the D+YZR-0.8 g and SP groups than in the 
D+Control groups (all P < 0.05; Table 4).

Effects of D+YZR‑0.8 g and SP treatments on the cytosolic 
expression of p‑ASK1, ASK1, T3JAM, TRAF3, Iba1, p‑JNK, 
JNK, iNOS, COX‑2, and TNF‑α
The cytosolic expression of p-ASK1/ASK1, T3JAM/
actin, TRAF3/actin, Iba1/actin, p-JNK/JNK, iNOS/
actin, COX-2/actin, and TNF-α/actin in the penumbral 

Fig. 4  Effects of YZR-0.4 g and YZR-0.8 g treatments on cytosolic p-JNK, JNK, p-p38 MAPK, p38 MAPK, iNOS, COX-2, and TNF-α expression in the 
penumbral cortex. A Representative Western blot images showed cytosolic p-JNK, JNK, p-p38 MAPK, p38 MAPK, iNOS, COX-2, and TNF-α expression 
in the penumbral cortex in the Sham, Control, YZR-0.2 g, YZR-0.4 g, and YZR-0.8 g groups (n = 5) at 1 day after reperfusion. The ratios of B p-JNK/
JNK, C p-p38 MAPK/p38 MAPK, D iNOS/actin, E COX-2/actin, and F TNF-α/actin were measured in the penumbral cortex among the experimental 
groups. *P < 0.05 vs. the Sham group; #P < 0.05 vs. the Control group
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cortex was markedly higher in the D+Control group 
(1.9-, 2.3-, 1.9-, 2.3-, 1.9-, 2.7-, 2.0-, and 1.8-fold, 
respectively) than in the D+Sham group (all P < 0.05) 
and was markedly lower in the D+YZR-0.8 g (0.6-, 0.5-, 
0.6-, 0.5-, 0.5-, 0.4-, 0.6-, and 0.6-fold, respectively) and 
SP (0.6-, 0.4-, 0.5-, 0.5-, 0.6-, 0.4-, 0.5-, and 0.6-fold, 
respectively) groups than in the D+Control group at 1 
day after reperfusion (all P < 0.05; Figs. 6A–E and 7A–
E) [(F3,16 = 7.963, P = 0.002), (F3,16 = 32.593, P = 0.000), 
(F3,16 = 19.315, P = 0.000), (F3,16 = 42.457, P = 0.000), 
(F3,16 = 27.482, P = 0.000), (F3,16 = 37.871, P = 0.000), 
(F3,16 = 20.725, P = 0.000), and (F3,16 = 10.819, 
P = 0.000), respectively].

Effects of YZR extract and SP treatments on the expression 
of Iba1, TLR4, GFAP, NF‑κB, iNOS, and IL‑6
In the present study, the immunopositive cells were 
detected in the selected penumbral cortex (Fig. 8B). The 
numbers of Iba1-, TLR4-, GFAP-, NF-κB-, iNOS-, and 
IL-6-positive cells in the penumbral cortex were mark-
edly higher in the Control group than in the Sham group 

(all P < 0.05) and were markedly lower in the YZR-0.4 g, 
YZR-0.8  g, and SP groups than in the Control group at 
1 day after reperfusion (all P < 0.05; Figs. 9A–D, 10A–D, 
and 11A–D) [(F5,24 = 38.712, P = 0.000), (F5,24 = 34.085, 
P = 0.000), (F5,24 = 33.126, P = 0.000), (F5,24 = 126.919, 
P = 0.000), (F5,24 = 46.320, P = 0.000), and (F5,24 = 24.066, 
P = 0.000), respectively]. However, no significant dif-
ferences were found in immunopositive cell numbers 
between the Control and YZR-0.2 g groups (P > 0.05).   

Expression of neuronal nuclei‑, TLR4/Iba1‑, TLR4/GFAP‑, 
and NF‑κB/GFAP‑positive cells, and activated forms of Iba1 
and GFAP in the penumbral cortex
TLR4-, Iba1-, GFAP-, and NF-κB-positive cells were 
predominantly expressed in the selected penum-
bral cortex (Figs.  12A-1, A-2, B-1, B-2, C-1, and C-2). 
Iba1- and GFAP-positive cells colocalized with TLR4 
(Fig.  12A-3 and B-3). GFAP-positive cells colocalized 
with NF-κB (Fig.  12C-3). NF-κB double labeling with 
GFAP was detected in the nucleus (Fig. 12C-4 and C-5). 
The numbers of TLR4/Iba1-, TLR4/GFAP-, and NF-κB/

Fig. 5  Effects of D+YZR-0.8 g and SP treatments on cerebral infarct areas at 1 day after reperfusion. A Representative TTC staining images (S1–S6) 
in the D+Sham, D+Control, D+YZR-0.8 g, and SP groups (n = 5) showed cerebral infarction. Scale bar represents 1 cm. B The percentage of cerebral 
infarct areas was measured among the experimental groups at 1 day after reperfusion. *P < 0.05 vs. the D+Sham group; #P < 0.05 vs. the D+Control 
group
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GFAP-positive cells in the penumbral cortex were mark-
edly higher in the Control group than in the Sham group 
(all P < 0.05) and were markedly lower in the YZR-0.4 g, 
YZR-0.8 g, and SP groups than in the Control group at 1 
day after reperfusion (all P < 0.05; 12F–H) [(F5,24 = 39.640, 
P = 0.000), (F5,24 = 34.769, P = 0.000), and (F5,24 = 113.297, 
P = 0.000), respectively]. By contrast, the number of neu-
ronal nuclei (NeuN)-positive cells in the penumbral cor-
tex was markedly lower in the Control group than in the 
Sham group (P < 0.05) and was markedly higher in the 
YZR-0.4  g, YZR-0.8  g, and SP groups than in the Con-
trol group at 1 day after reperfusion (P < 0.05; Fig. 8A and 
C) (F5,24 = 47.439, P = 0.000). However, no significant 
differences were found in immunopositive cell numbers 
between the Control and YZR-0.2  g groups (P > 0.05). 
The activated forms of Iba1 (activated microglia)- and 

GFAP (reactive astrocytes)-positive cells are morphologi-
cally characterized by swollen processes with amoeboid 
cell bodies and hypertrophy of main cellular processes, 
respectively (Fig.  12A-2 and C-2). The percentages of 
activated forms of Iba1 and GFAP in the penumbral 
cortex were markedly higher in the Control group than 
in the Sham group (both P < 0.05), and were markedly 
lower in the YZR-0.4  g, YZR-0.8  g, and SP groups (all 
P < 0.05; Fig.  12D and E) [(F5,24 = 37.792, P = 0.000) and 
(F5,24 = 77.384, P = 0.000), respectively]. No significant 
differences were found in the percentages of activated 
forms of Iba1 and GFAP between the Control and YZR-
0.2 g groups (P > 0.05).

Fig. 6  Effects of D+YZR-0.8 g and SP treatments on cytosolic p-ASK1, ASK1, T3JAM, TRAF3, and Iba1 expression in the penumbral cortex. A 
Representative Western blot images showed cytosolic p-ASK1, ASK1, T3JAM, TRAF3, and Iba1 expression in the penumbral cortex in the D+Sham, 
D+Control, D+YZR-0.8 g, and SP groups (n = 5) at 1 day after reperfusion. The ratios of B p-ASK1/ASK1, C T3JAM/actin, D TRAF3/actin, and E Iba1/
actin were measured in the penumbral cortex among the experimental groups. *P < 0.05 vs. the D+Sham group; #P < 0.05 vs. the D+Control group
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Discussion
Post-ischemic inflammation, one of the main patho-
logical features in the early stage of cerebral I/R injury, 

contributes to the release of pro-inflammatory media-
tors, which exacerbate cerebral infarction [39]. Studies 
have reported that TLR4 expressed on microglia and 
astrocytes plays a crucial role in the generation of pro-
inflammatory cytokines in the initial stage of cerebral 
I/R injury, whereas pharmacological interventions alle-
viate cerebral infarction by inhibiting TLR4-mediated 
microglial and astrocytic activation in the ischemic area 
in the acute phase of transient MCAo [40]. In the pre-
sent study, the TTC-stained brain sections revealed that 
cerebral infarction was predominantly distributed in the 
right cerebral hemisphere involving the cortex and stria-
tum at 1 day after 90 min of MCAo. However, the YZR 
extract administered at doses of 0.4 g/kg (YZR-0.4 g) and 
0.8  g/kg (YZR-0.8  g), but not 0.2  g/kg (YZR-0.2  g), sig-
nificantly reduced infarct areas and effectively alleviated 
behavioral deficits (including motor, sensory, and beam 

Fig. 7  Effects of D+YZR-0.8 g and SP treatments on cytosolic p-JNK, JNK, iNOS, COX-2, and TNF-α expression in the penumbral cortex. A 
Representative Western blot images showed cytosolic p-JNK, JNK, iNOS, COX-2, and TNF-α expression in the penumbral cortex in the D+Sham, 
D+Control, D+YZR-0.8 g, and SP groups (n = 5) at 1 day after reperfusion. The ratios of B p-JNK/JNK, C iNOS/actin, D COX-2/actin, and E TNF-α/actin 
were measured in the penumbral cortex among the experimental groups. *P < 0.05 vs. the D+Sham group; #P < 0.05 vs. the D+Control group

Table 4  The NDSs of neurological tests performed in 
Experiment C and D (n = 10)

Each value was expressed as median (min−max)

*P < 0.05 vs. the D+Sham group; #P < 0.05 vs. the D+Control group

Group NDSs of motor 
function

NDSs of sensory 
function

NDSs of beam 
balance 
function

D+Sham 0 (0−0) 0 (0−0) 0 (0−0)

D+Control 4 (3−4)* 2 (1−2)* 2 (2−3)*

D+YZR-0.8 g 2 (1−3)# 1 (0−1)# 1 (0−1)#

SP 3 (2−3)# 1 (0−1)# 1 (0−1)#
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balance functions). TTC staining results also revealed 
that YZR-0.8  g treatment could fully reverse cortical 
infarction in cerebral I/R injury. In addition, our Western 
blot, IHC, and IF results revealed that the expression of 
Iba1 (a marker of microglia), TLR4, and GFAP (a marker 
of reactive astrocytes) was markedly increased in the 
penumbral cortex at 1 day after reperfusion. In cerebral 
ischemia, the transformation of microglia morphology 
into an amoeboid cell shape in the ischemic area is widely 
utilized to determine microglia activation [41]. Moreo-
ver, activated microglia and reactive astrocytes release 
inflammatory mediators in the ischemia area, leading to 
the exacerbation of cerebral infarction in the acute phase 
after cerebral ischemia [42]. Our results further revealed 
that amoeboid microglia and reactive astrocytes were 
predominantly expressed in the penumbral cortex, and 
activated microglia and reactive astrocytes were double 
labeled with TLR4, whereas YZR-0.4  g and YZR-0.8  g 
treatments effectively downregulated the increased 
expression of TLR4, TLR4/Iba1, and TLR4/GFAP, and 
inhibited microglial and astrocytic activation in the 
peri-infarct region. By contrast, the expression of NeuN 
(neuronal marker) was downregulated in the cortical 
penumbra, whereas YZR extract treatments effectively 
rescued cortical neurons in the peri-infarct zone. On the 

basis of these findings, we infer that YZR-0.4 g and YZR-
0.8 g treatments effectively reduced cerebral infarct areas 
and alleviated neurological deficits at 1 day after reper-
fusion. Moreover, YZR extract treatments exert neuro-
protective effects against cerebral infarction partially 
through the downregulation of TLR4-mediated inflam-
matory signaling in the acute phase of transient MCAo.

In the pathology of cerebral I/R injury, TLR4 that is 
mainly expressed in microglia and astrocytes recognizes 
DAMPs and subsequently elicits downstream inflam-
matory signaling cascades through MyD88- and TRIF-
dependent pathways [3, 4]. In the MyD88-dependent 
pathway, TLR4 interacts with MyD88 and subsequently 
stimulates TRAF6, thereby triggering the activation of 
the downstream targets JNK, p38 MAPK, and NF-κB 
[3, 43, 44]. Moreover, JNK and p38 MAPK contribute 
to post-ischemic inflammation and are considered the 
upstream kinases of NF-κB [18]. In the TRIF-depend-
ent pathway, TLR4 binds to TRIF by interacting with 
TRAM, and TLR4/TRIF signaling subsequently acti-
vates TRAF3. Furthermore, TRAF3 located on the cell 
membrane cooperates with T3JAM and then promotes 
the activation of JNK and TLR4, creating a vicious cir-
cle and amplifying TLR4-mediated inflammatory sign-
aling [10, 13–15]. Previous studies have reported that 

Fig. 8  Effects of YZR-0.4 g and YZR-0.8 g treatments on neuronal protection at 1 day after reperfusion. A Representative images showed NeuN 
expression in the penumbral cortex in the Sham, Control, YZR-0.2 g, YZR-0.4 g, YZR-0.8 g, and SP groups (n = 5) at 1 day after reperfusion. B A 
representative TTC staining image showed a coronal brain section. The dashed line square indicates the region where immunopositive cells were 
counted. PC: penumbral cortex. Dashed line square = 1 mm2. C The bar graphs showed the number of NeuN-positive cells in the penumbral cortex 
among the experimental groups. *P < 0.05 vs. the Sham group; #P < 0.05 vs. the Control group. Arrows in A indicate NeuN-positive cells. Scale bars 
represent A 50 μm and B 2 mm
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TLR4-mediated signaling causes JNK, p38 MAPK, and 
NF-κB activation, which induces the production of pro-
inflammatory factors, including iNOS, COX-2, TNF-α, 
and IL-6, in the ischemic area, further exaggerating BBB 
disruption and cerebral infarction. By contrast, pharma-
cological reduction of the aforementioned inflammatory 
mediators and cytokines effectively attenuates cerebral 
infarction at 1 day after MCAo [3, 8, 40, 45]. The current 
findings indicated that the expression levels of TRAF3, 
T3JAM, p-JNK, NF-κB, iNOS, COX-2, TNF-α, and IL-6 
were markedly higher in the penumbral cortex. However, 
YZR-0.4 g and YZR-0.8 g treatments effectively reversed 
the increased expression of the aforementioned proteins 
but did not affect the expression of MyD88, TRAF6, and 
p-p38 MAPK in the penumbral cortex at 1 day after rep-
erfusion. In addition, the IF assay revealed that reactive 

astrocytes colocalized with NF-κB located in the nucleus 
in the peri-infarct region, indicating the activation and 
translocation of NF-κB into the nucleus following cer-
ebral I/R injury. In addition, YZR extract treatments 
effectively downregulated NF-κB activation in the nuclei 
of reactive astrocytes. The present results indicate that 
YZR-0.4 g and YZR-0.8 g treatments exert neuroprotec-
tive effects against cerebral I/R injury possibly by down-
regulating the TLR4-mediated TRAF3/T3JAM/JNK, but 
not MyD88/TRAF6/JNK (p38 MAPK), signaling pathway 
in the peri-infarct cortex. Furthermore, the effects of YZR 
extract treatments on cerebral infarction are partially due 
to the suppression of JNK/NF-κB-mediated iNOS, COX-
2, TNF-α, and IL-6 expression in the penumbral cortex at 
1 day after reperfusion.

Fig. 9  Effects of YZR-0.4 g, YZR-0.8 g, and SP treatments on Iba1 and TLR4 expression in the penumbral cortex. Representative images showed 
A Iba1 and B TLR4 expression in the penumbral cortex in the Sham, Control, YZR-0.2 g, YZR-0.4 g, YZR-0.8 g, and SP groups (n = 5) at 1 day after 
reperfusion. The bar graphs showed the numbers of C Iba1- and D TLR4-positive cells in the penumbral cortex among the experimental groups. 
*P < 0.05 vs. the Sham group; #P < 0.05 vs. the Control group. Arrows in A and B indicate Iba1- and TLR4-positive cells, respectively. Scale bar 
represents 40 μm
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JNK, a member of the MAPK family, is considered a 
major stress-responsive kinase and is closely involved 
in the induction of inflammation and apoptosis in the 
penumbra region after transient focal cerebral ischemia 
[19]. In the initial stage of cerebral ischemia, phospho-
rylated JNK induces NF-κB activation, which causes the 
production of excessive amounts of pro-inflammatory 
mediators in the ischemic area, subsequently exacerbat-
ing cerebral infarction. Thus, JNK plays a critical role 
in the regulation of post-ischemic inflammation [46]. 
In addition to JNK activation by TLR4/MyD88- and 
TLR4/T3JAM-mediated signaling, JNK is activated 
by ASK1 signaling in ischemic brain injury [16]. In 
ASK1/JNK signaling, ASK1 activates the downstream 
MKK4/MKK7-JNK signaling pathway in response to 
ischemia-induced oxidative stress after transient cer-
ebral ischemia. Moreover, reactive oxygen species and 

the pro-inflammatory cytokine TNF-α induce ASK1 
phosphorylation at Thr-845, which is required for ASK1 
kinase activity [16, 47]. Related studies have reported that 
phosphorylated ASK1 (Thr-845) activates downstream 
JNK signaling and activated JNK then translocates into 
the nucleus and modulates stress-responsive transcrip-
tion factors (such as NF-κB and activator protein 1), 
which induce gene transcription, resulting in inflamma-
tion and apoptosis in the ischemic area following cerebral 
I/R injury [17, 46]. In a previous study, increased activa-
tion of ASK1/JNK signaling in the penumbra worsened 
neurological deficits and exaggerated infarct size at 1 day 
after transient MCAo [48]. By contrast, pharmacologi-
cal inhibition of ASK1/JNK signaling markedly reduced 
the cerebral infarct volume in acute perinatal hypoxic-
ischemic cerebral injury [49]. Our Western blot find-
ings revealed that the expression levels of p-ASK1/ASK1 

Fig. 10  Effects of YZR-0.4 g, YZR-0.8 g, and SP treatments on GFAP and NF-κB expression in the penumbral cortex. Representative images showed 
A GFAP and B NF-κB expression in the penumbral cortex in the Sham, Control, YZR-0.2 g, YZR-0.4 g, YZR-0.8 g, and SP groups (n = 5) at 1 day after 
reperfusion. The bar graphs showed the numbers of C GFAP- and D NF-κB-positive cells in the penumbral cortex among the experimental groups. 
*P < 0.05 vs. the Sham group; #P < 0.05 vs. the Control group. Arrows in A and B indicate GFAP- and NF-κB-positive cells, respectively. Scale bar 
represents 40 μm
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and p-JNK/JNK ratios were markedly upregulated in the 
penumbral cortex, whereas YZR-0.4  g and YZR-0.8  g 
treatments effectively reduced the p-ASK1/ASK1 and 
p-JNK/JNK ratios at 1 day after reperfusion. On the basis 
of these results, we suggest that YZR extract treatments 
attenuate cerebral ischemic injury partially through the 
suppression of ASK1/JNK signaling activation in the 
peri-infarct cortex. Furthermore, the anti-infarct effects 
of YZR extract treatments may be partially attributed to 
the downregulation of TLR4/T3JAM/JNK- and ASK1/
JNK-mediated inflammatory signaling in the penumbral 
cortex at 1 day after reperfusion.

JNK-mediated inflammatory signaling leads to the 
production of excessive amounts of the pro-inflamma-
tory mediators, such as TNF-α, which in turn induces 
ASK1 activation, promoting the activation of ASK1/
JNK signaling in cerebral I/R injury [50]. By contrast, 

pharmacological downregulation of p-JNK attenuated 
TLR4, Iba1, NF-κB, COX-2, and TNF-α expression in the 
peri-infarct cortex and striatum; reduced cerebral infarct 
areas; and ameliorated neurobehavioral deficits in a rat 
model of permanent MCAo [51]. On the basis of these 
findings, we propose that activated JNK could in turn 
regulate its upstream factor expression and play a key role 
in the regulation of TLR4/JNK- and ASK1/JNK-mediated 
inflammatory signaling after focal cerebral ischemia. 
Thus, in the present study, to identify the possible role 
of JNK in the effects of YZR extract treatments on cer-
ebral infarction after transient MCAo, pretreatment with 
SP600125, an inhibitor of the JNK pathway, and pretreat-
ment with 1% DMSO were performed in the SP (as the 
positive control group) and D+YZR-0.8 g groups (as the 
treatment group), respectively. SP600125, a non-protein 
synthetic inhibitor of JNK enzymatic activity, inhibits 

Fig. 11  Effects of YZR-0.4 g, YZR-0.8 g, and SP treatments on iNOS and IL-6 expression in the penumbral cortex. Representative images showed 
A iNOS and B IL-6 expression in the penumbral cortex in the Sham, Control, YZR-0.2 g, YZR-0.4 g, YZR-0.8 g, and SP groups (n = 5) at 1 day after 
reperfusion. The bar graphs showed the numbers of C iNOS- and D IL-6-positive cells in the penumbral cortex among the experimental groups. 
*P < 0.05 vs. the Sham group; #P < 0.05 vs. the Control group. Arrows in A and B indicate iNOS- and IL-6-positive cells, respectively. Scale bar 
represents 40 μm
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interactions between JNK and its substrates [52]. In the 
acute phase of cerebral I/R injury, SP600125 treatment 
reduced cerebral infarction by inhibiting the expres-
sion of inflammatory mediators including TNF-α, IL-1β, 
IL-6, and matrix metalloproteinase-9 and downregulat-
ing the mitochondria-mediated apoptotic pathway in the 
ischemic area [53–55]. In the present study, the Western 
blotting, IHC, and TTC staining results revealed that SP 
and D+YZR-0.8  g treatments effectively reversed the 
increased p-ASK1/ASK1 and p-JNK/JNK ratios, and 
the increased expression of TLR4, Iba1, GFAP, T3JAM, 
TRAF3, NF-κB, iNOS, COX-2, TNF-α, and IL-6 in the 
penumbral cortex and subsequently reduced the percent-
age of cerebral infarct areas and NDSs at 1 day after rep-
erfusion. In addition, the aforementioned effects of the 
YZR extract treatment (D+YZR-0.8 g group) on cerebral 
I/R injury were similar to those of the SP600125 treat-
ment (SP group). According to these findings, we reason-
ably assume that YZR extract treatments protect against 
cerebral I/R injury by downregulating JNK-mediated 
signaling in the penumbral cortex. The inhibitory effect 
of YZR extract treatments on JNK activation contributes 

to the suppression of TLR4/Iba1 (GFAP)/TRAF3/
T3JAM- and NF-κB/ASK1-mediated signaling, and then 
abrogates the vicious circles of TLR4/JNK and ASK1/JNK 
signaling in the penumbral cortex. Thus, YZR extract 
treatments reduce cerebral infarction partially through 
the downregulation of JNK-mediated TLR4/T3JAM- and 
ASK1-related inflammatory signaling at 1 day after rep-
erfusion (Fig. 13).

Conclusions
The findings of this study indicated that the YZR extract 
administered at doses of 0.4  g/kg and 0.8  g/kg signifi-
cantly reduced cerebral infarction and alleviated neuro-
logical deficits in the early stage of MCAo; that is, after 
90  min of MCAo. Further analysis revealed that YZR 
extract treatments exert neuroprotective effects against 
cerebral I/R injury by downregulating the JNK-mediated 
signaling pathway in the peri-infarct cortex. Further-
more, the anti-infarct effects of YZR extract treatments 
are partially attributed to the downregulation of the JNK-
mediated TLR4/T3JAM- and ASK1-related NF-κB sign-
aling pathways in the penumbral cortex at 1 day after 

Fig. 12  Expression of TLR4/Iba1, TLR4/GFAP, and NF-κB/GFAP, and activated forms of Iba1 and GFAP in the penumbral cortex. Arrows in A-1, A-2, 
B-1, B-2, C-1, C-2, and C-4 indicate TLR4-, Iba1-, TLR4-, GFAP-, NF-κB-, GFAP-, and DAPI-positive cells, respectively. Arrows in A-3, B-3, and C-3 
indicate TLR4/Iba1, TLR4/GFAP, and NF-κB/GFAP double-labeled cells, respectively. Arrows in C-5 indicate NF-κB/GFAP-positive cells labeled with 
DAPI. Arrowheads in A-2 and C-2 indicate activated forms of Iba1 and GFAP, respectively. The bar graphs showed the percentages of activated 
forms of D Iba1 and E GFAP in the penumbral cortex among the experimental groups (n = 5) at 1 day after reperfusion. In addition, the bar graphs 
showed the numbers of F TLR4/Iba1- G TLR4/GFAP-, and H NF-κB/GFAP-positive cells in the penumbral cortex among the experimental groups 
(n = 5). *P < 0.05 vs. the Sham group; #P < 0.05 vs. the Control group. Scale bars in B-3 and C-5 represent 50 μm



Page 19 of 21Cheng et al. Chin Med           (2021) 16:82 	

reperfusion. Thus, the results of the present study sug-
gest that the A. oxyphylla Miq extract may reduce cer-
ebral infarction in the early phase of cerebral I/R injury. 
However, to elucidate the precise mechanisms underly-
ing the anti-infarct effects of the YZR extract treatment, 
further research is needed to clarify the effects of the A. 
oxyphylla Miq extract on the regulation of JNK-mediated 
apoptotic signaling in the acute phase of transient focal 
cerebral ischemia.
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