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Abstract 

Background:  Traditional Chinese Medicine (TCM) is distinguished by Syndrome differentiation, which prescribes vari-
ous formulae for different Syndromes of same disease. This study aims to investigate the underlying mechanism.

Methods:  Using a strategy which integrated proteomics, metabolomics study for clinic samples and network phar-
macology for six classic TCM formulae, we systemically explored the biological basis of TCM Syndrome differentiation 
for two typical Syndromes of CHD: Cold Congealing and Qi Stagnation (CCQS), and Qi Stagnation and Blood Stasis 
(QSBS).

Results:  Our study revealed that CHD patients with CCQS Syndrome were characterized with alteration in panto-
thenate and CoA biosynthesis, while more extensively altered pathways including D-glutamine and D-glutamate 
metabolism; alanine, aspartate and glutamate metabolism, and glyoxylate and dicarboxylate metabolism, were 
present in QSBS patients. Furthermore, our results suggested that the down-expressed PON1 and ADIPOQ might 
be potential biomarkers for CCQS Syndrome, while the down-expressed APOE and APOA1 for QSBS Syndrome in 
CHD patients. In addition, network pharmacology and integrated analysis indicated possible comorbidity differences 
between the two Syndromes, that is, CCQS or QSBS Syndrome was strongly linked to diabetes or ischemic stroke, 
respectively, which is consistent with the complication disparity between the enrolled patients with two different 
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Background
Traditional Chinese medicine (TCM) has developed over 
thousands of years in China, in which the medication is 
mainly practiced in the form of TCM formula based on 
Syndrome (ZHENG in Chinese) differentiation by TCM 
physicians [1, 2]. Syndrome differentiation (Bian Zheng 
Lun ZHI in Chinese) means comprehensive analysis of 
clinical information from standpoint of TCM, including 
pulse manifestation, tongue appearances, clinical indica-
tors, and symptoms. Usually, same disease diagnosed by 
orthodox medical methods could have different TCM 
Syndromes. For example, in TCM diagnosis, rheumatoid 
arthritis is classified as the types of cold Syndrome and 
heat Syndrome [3, 4], coronary heart disease is catego-
rized as several Syndromes, including heart-blood stasis, 
Qi stagnation and blood stasis, Qi deficiency and blood 
stasis, as well as Cold Congealing and Qi Stagnation [5]. 
Hence different TCM formulae were prescribed for dif-
ferent Syndromes of the same disease. Correct TCM 
Syndrome differentiation is the most important basis for 
prescribing TCM formulae. A pioneer study has illus-
trated the features of hot and cold Syndrome of arthritis 
in the context of neuro-endocrine-immune network [4]. 
However, it is still an enormous challenge for elucidating 
the scientific basis of TCM Syndrome differentiation in 
the context of modern biomedical science.

Coronary heart disease (CHD) lists the first position 
in mortality in the world, which includes four classes, 
i.e. nonobstructive coronary atherosclerosis, unsta-
ble angina pectoris, stable angina pectoris, and acute 

myocardial infarction [6]. Meanwhile, several types of 
typical TCM Syndromes have been well-established 
in TCM theory, such as Cold Congealing and Qi Stag-
nation (CCQS), and Qi Stagnation and Blood Stasis 
(QSBS), etc. [5, 7]. Although the patient stratification of 
CHD with different Syndromes is practical for “precise 
therapy” with diversified formula in TCM, the scientific 
basis for Syndrome differentiation of CHD is poorly 
understood so far. Considering that a TCM formula is 
prescribed according to a specific Syndrome, we think 
that the molecules and biological processes regulated 
by the formula could be associated with dysfunctional 
molecules and biological processes caused by the Syn-
drome of the disease. Hence, investigating the mecha-
nism of the TCM formula may facilitate the illustration 
for the scientific basis of TCM Syndrome differen-
tiation. Network pharmacology has been widely and 
effectively applied in the study for the mode of action 
of TCM formulae [8–10]. In this sense, the strategy 
of systems biology is highly valued for its potential in 
elucidating the mechanism of TCM Syndrome by inte-
grating multi-omics approaches and network pharma-
cology [5, 11–13]. For example, Ding et al. investigated 
the holistic mechanism of Ge-Gen-Qin-Lian decoc-
tion in LPS-induced acute lung injury mice by using 
a systems biology strategy including transcriptomics, 
metabolomics and network pharmacology, in which a 
novel PI3K/Akt signaling pathway was predicted and 
validated [12]. Previously, we systematically explored 
the mechanisms underlying the 8 clinically used TCM 

Syndromes. These results confirmed our assumption that the molecules and biological processes regulated by the 
Syndrome-specific formulae could be associated with dysfunctional objects caused by the Syndrome of the disease.

Conclusion:  This study provided evidence-based strategy for exploring the biological basis of Syndrome differentia-
tion in TCM, which sheds light on the translation of TCM theory in the practice of precision medicine.

Highlights 

1. Our work was based on clinical samples rather than pure data analysis or animal models.

2. We conducted multiple omics studies. Especially, as for metabolomics study, we performed both untargeted and 
targeted metabolomics experiments.

3. We performed network pharmacological study to cross-validated the results of multi-omics study. Although the 
data sources of network pharmacology were completely unrelated with our omics data, they came to the same con-
clusion about the difference of the two Syndromes.

4. In the network pharmacological study, we made efforts to collect and screen high-quality data. We collected data 
from multiple TCM databases and conducted drug likeness screening. Especially, we added quality markers of each 
herb, whose pharmacological relevance had been validated. To enhance the reliability of targets, for each Syndrome, 
we only studied common targets of 3 different TCM formulae prescribed for this Syndrome.

Keywords:  Coronary heart disease, Syndrome differentiation, Traditional Chinese Medicine, Proteomics, 
Metabolomics, Network pharmacology
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formula for the treatment of CHD patients with differ-
ent Syndromes by using network pharmacology and 
machine learning [5]. In the study, a series of common 
and Syndrome-related signaling pathways and molecu-
lar targets of CHD were determined. However, the 
computation-based analytic results were not experi-
enced experimental validation.

In our current study, an integrated multi-omics and 
network pharmacology strategy was proposed for elu-
cidating the scientific basis of patient stratification of 
TCM Syndrome in a group of patients with CHD who 
were also diagnosed as either CCQS or QSBS Syn-
drome by TCM physicians. Between August 2018 and 
December 2019, we collected serum samples of 111 
participants, including 44 CHD patients with CCQS 
Syndrome, 37 with QSBS Syndrome and 30 healthy 
people from the Cardiology Clinic of Dongzhimen 
Hospital affiliated to Beijing University of Chinese 
Medicine and the neighboring communities in Bei-
jing. The blood samples were then used in metabo-
lomics and proteomics studies. Pathways involved in 
the pathologic process of the two Syndromes were dis-
covered by functional annotation of differential pro-
teins and metabolites. For each of the two Syndromes, 
we selected 3 classic TCM formulae clinically used for 

the treatment of the Syndrome. The common putative 
targets of the 3 formulae were considered as feature 
targets of the Syndrome and used for network phar-
macological study and integrated analysis with omics 
data. At last, we identified key biological processes and 
molecules that may associated with the occurrence and 
development of the two Syndromes of CHD.

Materials and methods
Integrated multi‑omics and network pharmacology 
research strategy
The workflow of the study is illustrated in Fig.  1. First, 
clinical CHD patients were enrolled who were diagnosed 
as either CCQS or QSBS Syndrome by TCM physicians 
simultaneously. Serum samples of patients with either 
CCQS or QSBS and healthy controls were analyzed with 
metabolomics and proteomics. Second, network pharma-
cology was performed based on 6 typical TCM formulae 
which were extensively used for the treatment of either 
CCQS or QSBS Syndrome of CHD patients in clinic. 
Third, a cross validation was performed between network 
pharmacology and results from both metabolomics and 
proteomics to characterize the basis of both CCQS and 
QSBS Syndromes of CHD patients.

Fig. 1  The flowchart of the integrated multi-omics and network pharmacology strategy of our current study
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Participants
This study was conducted in compliance with the Dec-
laration of Helsinki and the requirements of clinical 
trials by the Drug Administration Law of the People’s 
Republic of China in Dongzhimen Hospital, Beijing 
between August 2018 and December 2019. The proto-
col and informed consent were reviewed and approved 
by the Beijing University of Chinese Medicine Clinical 
Trials and Biomedical Ethics Committee (No. DZMEC-
KY-2019–121). Informed consent was obtained from all 
participants and their privacy rights were always pre-
served. All patients were enrolled by the Cardiology 
Clinic of Beijing University of Chinese Medicine or the 
surrounding communities in Beijing. Whether it meets 
the inclusion criteria (CCQS and QSBS Syndrome of 
CHD) is determined by an expert (Xiaoxu Shen, Chief 
Physician of Cardiovascular Medicine Dept in Dong-
zhimen Hospital), with verification by two assistants 
(Yuanyuan Zeng and Jing Zhao).

Diagnosis criteria
Diagnostic criteria for CHD referred to the “Diagnos-
tic Criteria for Coronary Heart Disease” defined by the 
International Society of Cardiology and Association 
and the World Health Organization in 1979: (1) With a 
history of typical angina pectoris or myocardial infarc-
tion, except for valvular heart disease, coronary embo-
lism and cardiomyopathy; (2) Patients over the age of 
40 for men and over 45 for women, the ECG myocardial 
ischemia in resting state, or the treadmill exercise test is 
positive, without other reasons (various heart disease, 
autonomic dysfunction, significant anemia, obstructive 
lung Emphysema, taking digitalis, electrolyte distur-
bances); (3) Among the risk factors of coronary heart 
disease, two of the three items of hypertension, diabe-
tes and hyperlipidemia can be clinically diagnosed for 
coronary heart disease. Or coronary angiography or 
coronary CT scan shows that at least one main branch 
vessel has a stenosis greater than 50% to confirm the 
diagnosis of coronary heart disease. In this study we 
mainly selected patients with stable angina while satis-
fying the diagnosis of coronary heart disease. They are 
characterized by paroxysmal squeezing pain or suffo-
cation in the anterior chest, mainly located at the back 
of the sternum, which can radiate to the anterior heart 
area and left upper limb. The ulnar side usually occurs 
when the labor load increases and lasts for a few min-
utes. The pain disappears after resting or using nitrate 
ester preparations. The degree, frequency, nature, and 
predisposing factors of pain episodes did not change 
significantly within weeks to months.

Diagnosis of TCM syndrome
According to the “Guiding Principles for Clinical 
Research of New Chinese Medicines”, the diagnostic 
criteria for Syndromes were determined as follows:

Diagnostic criteria for CCQS Syndrome: primary 
symptoms include chest tightness, chest pain. First set 
of secondary symptoms includes the condition or pain 
aggravates on rainy days or cold, face pale, like warmth 
and fear of cold, cold limbs, cramps and pain. Second 
set of secondary symptoms includes heart palpitations, 
fullness of the chest and flanks, fullness of the abdomi-
nal abdomen. The tongue is pale or dark, and the 
tongue coating is white. Late or tight pulse.

Diagnostic criteria for QSBS Syndrome: primary 
symptoms include chest tightness, chest pain. First set 
of secondary symptoms includes that the condition is 
related to emotions, emotional depression, irritability, 
sigh, and chest fullness; The second set of secondary 
symptoms includes palpitations, rough, dry, and hyper-
keratotic skin, sublingual varicose veins, dark purple 
face and lips, dark purple tongue or petechiae, and 
astringent pulse.

Those who have one of the primary symptoms, one or 
more of the first and second set of secondary symptoms 
at the same time, and the tongue and pulse conditions 
are consistent, can be diagnosed. In the diagnosis pro-
cess, three researchers (at least one senior professional 
title) independently differentiated syndromes at the 
same time and then determined the types of syndromes 
together.

Included criteria
Patients meeting the diagnostic criteria were poten-
tially eligible for the study if they meet the following 
criteria: (1) age at 18 to 85  years old; (2) clearly diag-
nosed as angina pectoris, and are classified as CCQS or 
QSBS in the chest pain of TCM after the doctor’s differ-
entiation witness; (3) the included patients have stable 
vital signs, clear consciousness, and certain expression 
skills; (4) voluntary submission of written informed 
consent prior to enrollment.

Excluded criteria
Patients would be excluded if they meet one of the fol-
lowing criteria: (1) those who have had myocardial 
infarction within 3 months or have undergone coronary 
revascularization; (2) patients with other serious heart 
diseases: such as valvular heart disease, hypertrophic 
cardiomyopathy, severe arrhythmia (such as rapid atrial 
fibrillation, II–III degree atrioventricular block, etc.), 
severe cardiac insufficiency; (3) patients with severe 
liver and kidney dysfunction; (4) pregnant and lactating 
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women; (5) those who use traditional Chinese medicine 
decoctions and related preparations within 2 weeks; (6) 
those who have participated in other drug clinical trials 
within 2 weeks.

Proteomics study
Sample preparation
Serum proteins were prepared by in solution digestion 
method. All samples were randomly divided into 11 
experimental groups. A standard sample was added to 
each experimental group and prepared at the same time. 
We processed one set of samples (including a standard 
sample) per day and all samples and standard samples 
were prepared within 11 days. In brief, lysis solution was 
added into the collected human serum samples. Then 
DTT and IAA were added. After this procedure, we 
added precipitation buffer and placed it in -20 ℃ refriger-
ator overnight. The cold concentrate containing proteins 
was centrifugated and then removed the supernatant. 
Pre-cooled 100% acetone was added into the precipi-
tated proteins and removed by centrifugating. Then pre-
cooling 70% ethanol was added into the proteins and the 
procedure was same as before. The above two steps were 
repeated twice. Proteins were resuspended with 100 mM 
NH4HCO3 solution and digested with trypsin (Promega, 
USA). Peptides were collected with 10  kDa filter (Milli-
pore Corporation, USA).

Protein digestion
Equal volume of all human serum samples was pooled for 
the generation of a spectral library. The pooled sample 
was depleted by High-Select™ Top14 Abundant Protein 
Depletion Resin (Thermo Fisher). The sample with abun-
dant proteins removed was further digested by trypsin 
with the in-solution digestion method. Digested pep-
tides were desalted and fractionated through the high-
pH reverse phase liquid chromatography using a Waters 
XBridge BEH300 C18 3.5  μm 2.1 × 150  mm column on 
Agilent 1200 LC instrument using an 85-min gradient.

Online nanoflow LC–MS/MS analysis
EASYnLC 1000 HPLC system (Thermo Fisher Scientific) 
and Q Exactive HF mass spectrometer (Thermo Fisher 
Scientific) were used for LC–MS/MS analysis. The col-
lected peptides were separated on a home-made col-
umn (75 × 200  mm, packed with 3.0  μm ReproSil-Pur 
C18 beads, Dr. Maisch GmbH, Ammerbuch, Germany). 
Each fractionation of peptides for spectral library gen-
eration was analyzed with data dependent acquisition 
(DDA) mode and separated with a 120-min gradient. 
For DIA analysis, desalted peptides concentration was 
measured by NanoDrop 2000 (Thermo Scientific). Then 
peptides were separated on a 70-min LC gradient. The 

DIA acquisition scheme consisted of 32 variable windows 
ranging from 350 to 1600 m/z.

Data analysis
DDA data for spectral library generation were analyzed 
via MaxQuant software (http://​maxqu​ant.​org/, version 
1.6.7.0). The results were imported into Spectronaut 
14.0 (Biognosys) for library generation. And the gener-
ated library contained 1,095 proteins and 11,871 precur-
sors. For human serum, DIA data was processed with 
Spectronaut 14.0. Statistical analysis was performed in 
R software. Significantly differential proteins were deter-
mined using Student’s t-test with a p-value < 0.05 and fold 
change (FC) > 1.1.

Untargeted Metabolomics study
Sample preparation
An aliquot of 50 µl of thawed serum sample was depro-
teinized with 150 µl of MeOH: ACN (1:1, v/v) precooled 
to − 20 ℃. After vortex mixed for 30 s and sonication for 
10 min in an ice bath, samples were overnight at − 20 ℃ 
to improve protein precipitation and then centrifuged at 
12 000×g for 15 min at 4 ℃, 2 µl of supernatant was sub-
jected to HPLC-QTOF-MS/MS analysis.

HPLC‑QTOF‑MS/MS analysis
Sample analysis was performed on a Shimadzu Nex-
era XR LC-20AD HPLC system equipment with SCIEX 
Triple TOF 5600+. In order to capture serum metabolic 
characteristics as comprehensively as possible, two dif-
ferent types of chromatographic columns [ACQUITY 
UPLC BEH amide column (2.1 × 150  mm, 1.7  µm) and 
ACQUITY UPLC BEH C18 column (2.1 × 100  mm, 
1.8 µm)] were used for untargeted metabolomics analysis.

Data processing and analysis
The raw data were imported to the Progenesis QI for 
peak alignment to obtain the peak area list and the identi-
fication result list. The nonparametric univariate method 
(Mann–Whitney-Wilcoxon test) was used to analysis 
metabolites that differed in abundance between the dif-
ferent subgroups corrected for false discovery rate (FDR) 
to ensure that the peak of each metabolite was repro-
ducibly detected in the samples. Metabolites selected 
as biomarker candidates for further statistical analy-
sis were identified on the basis of variable importance 
in the projection (VIP) threshold of 1 from the tenfold 
cross-validated OPLS-DA model, which was validated 
at a univariate level with FDR < 0.05. The online HDMB 
data (https://​hmdb.​ca/), LIPIDMAPS (https://​www.​lipid​
maps.​org/), KEGG (https://​www.​kegg.​jp/) and MET-
LIN (https://​metlin.​scrip​ps.​edu) were used to align the 
molecular mass data to identify metabolites.

http://maxquant.org/
https://hmdb.ca/
https://www.lipidmaps.org/
https://www.lipidmaps.org/
https://www.kegg.jp/
https://metlin.scripps.edu
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Targeted metabolomics study
Sample preparation
An aliquot of 25 µl of thawed serum sample was added to 
the pre-chilled 96-well plate, then added 100 µl of metha-
nol containing internal standard (IS) vortex for 5  min, 
and finally centrifuged at 4000×g for 30 min at 4 ℃. The 
supernatant (30  µl) was transferred into a new 96-well 
plate containing 20 µl of derivatization reagent, and the 
mixture was reacted at 30 ℃ for 60 min. After reaction, 
we added 350 µl 50% methanol solution precooled to -20 
℃ for 20 min, then centrifuged at 4000 × g for 30 min at 
4 ℃, the supernatant (135 µl) was transferred into a new 
96-well plate containing 15  µl of IS. Gradient dilutions 
of the derivatized standard stock solution were added to 
the left hole, and finally the plate was sealed for LC–MS 
analysis.

UPLC‑ESI–MS/MS analysis
Chromatographic analysis was performed using a Waters 
ACQUITY I-Class UPLC equipped with an ACQUTIY 
UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm). Waters 
Xevo TQ-S triple quadrupole mass spectrometer was 
combined with UPLC system via the electro-spray ioni-
zation (ESI) source in both positive and negative ioniza-
tion modes. We performed accurate quantitative analysis 
of 306 metabolites (including 60 amino acids, 55 fatty 
acids, 41 organic acids, 39 bile acids, 25 carbohydrates, 
21 benzenoids, 20 carnitines, 9 indoles, 3 nucleosides, 9 
phenylpropanoic acids and 16 others) in this study.

Data processing and analysis
The targeted raw data were processed through calibra-
tion curve of standards. Then, the raw data were analyzed 
by the iMAP software (Metabo-profile, Shanghai, China). 
Metabolites selected as biomarker candidates for further 
statistical analysis were identified on the basis of variable 
importance in the projection (VIP) threshold of 1.0 from 
the tenfold cross-validated OPLS-DA model, which was 
validated at a univariate level with p value < 0.05.

More detailed process descriptions of proteomics and 
metabolomics are provided in Additional file 1.

Network pharmacological analysis
Data collection
For each of the two TCM Syndrome of CHD, we selected 
3 formulae applied in clinic for the treatment of this Syn-
drome. The treatment of each formula to corresponding 
Syndrome was recommended in the Expert Consensus 
for Chinese Medicine Diagnosis and Treatment of Sta-
ble Angina Pectoris of CHD [14] and also recorded in 
the Chinese Pharmacopeia [15]. Active compounds of 
each herb in the formulae and their corresponding tar-
gets were collected from the Encyclopedia of Traditional 

Chinese Medicine (ETCM) [16], Traditional Chinese 
Medicine Systems Pharmacology Database and Analysis 
Platform (TCMSP) [17], and the high-throughput experi-
ment- and reference-guided database of traditional Chi-
nese medicine (HERB) [18]. Diseases highly related with 
coronary heart disease (CHD) were collected from Dis-
GeNet database [19]. Drug classes for CHD related dis-
eases and their Anatomical Therapeutic Chemical (ATC) 
codes, as well as drugs in these classes, were collected 
from DrugBank database [20].

Network construction and analysis
Protein–protein interaction networks were construc-
tion by GeneMania platform [21]. Metabolite-gene 
association networks were constructed by the “Network 
Analysis” module of MetaboAnalyst platform [22]. All 
networks were visualized and analyzed by Cytoscape 
software [23].

Functional annotation analysis
Functional annotation analysis for genes was conducted 
by DAVID [24] and STRING platform [25]. Functional 
annotation analysis for metabolites and genes was per-
formed by “Pathway Analysis” and “Joint-Pathway Analy-
sis” module of MetaboAnalyst platform.

Results
Characteristics of CHD patients with either CCQS or QSBS 
Syndrome
A total of 111 participants, including CHD patients with 
CCQS Syndrome (n = 44), QSBS (n = 37) and healthy 
controls (HC, n = 30) were enrolled at the Cardiology 
Clinic of Dongzhimen Hospital affiliated to Beijing Uni-
versity of Chinese Medicine or the surrounding com-
munities in Beijing between August 2018 and December 
2019. The demographic and clinical biochemical indica-
tors of the participants were listed in Table 1. There were 
no significant differences in age, sex, BMI and labora-
tory data between CCQS and QSBS group. However, 
there were some disparities in the comorbidity of the 
two groups. CCQS group included higher percentage 
of patients with diabetes mellitus, whereas QSBS group 
contained higher percentage of patients with hyperten-
sion, hyperlipidemia, and cerebrovascular disease. The 
differences may reflect the respective characteristics of 
the two Syndromes to some extent.

It is noted that the levels of TC and LDL in blood 
samples from healthy controls were higher than CHD 
patients, whereas high levels of LDL and TC have been 
known to be associated to CHD. However, these levels of 
most healthy controls were in the normal range, that is, 
LDL < 3.62 mmol/L (SUR method), and TG < 1.7 mmol/L 
(GPO-POD method). This bias could be due to the higher 
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age of participants (most between 60 and 70), meanwhile 
participants in CHD group may have been given some 
lipid-lowering interventions.

Proteomics profiling on CHD patients with either CCQS 
or QSBS syndrome
In order to study the proteomic characteristics, we used 
the data independent acquisition (DIA) method to ana-
lyze the serum samples. In total, 470 proteins were identi-
fied. Averagely, 353, 355 and 354 proteins were identified 
in CCQS, QSBS and HC group, respectively (Fig. 2A). We 
also detected protein intensities covering nearly 6 orders 
of magnitude, with serum albumin being the most abun-
dant one and macrophage receptor MARCO the lowest 
one (Additional file 1: Fig. S1A). Then correlation analysis 
was performed between samples, in which the correla-
tion coefficients between each two samples were higher 
than 0.87, indicating high correlation (Additional file  1: 
Fig. S1B). Meanwhile, more than 95% of the proteins 
quantified in standard samples had coefficient of varia-
tion (CV) below 10% (Fig. 2B).

Next, to figure out the proteomic profile differences 
between CCQS and QSBS Syndrome, 388 proteins (miss-
ing values filled by R software) were included in sub-
sequent analysis. Differential proteins (DPs) between 
CCQS and HC groups, as well as QSBS and HC groups 
(FC > 1.1, Student’s t-test, p-value < 0.05) were deter-
mined. There were 24 differential proteins between 
CCQS and HC groups, with 5 up-regulated and 19 down-
regulated (Fig.  2C). A total of 23 differential proteins 
were determined between QSBS and HC groups, with 9 
up-regulated and 14 down-regulated (Fig. 2D). By inter-
section analysis, 7 proteins were common DPs of the two 
Syndromes, while 17 and 16 proteins were specific DPs 
for CCQS and QSBS Syndrome, respectively (Fig. 2E).

We input DPs of the two Syndromes to GeneMania 
platform [21] to construct their protein–protein inter-
action (PPI) network, respectively. This platform uses 
the label propagation algorithm to score each gene in 
the entire human genomic-scale PPI network accord-
ing to its links to all genes in the input list. Genes with 
higher scores are functionally associated with the input 

Table 1  The demographic and clinical biochemical indicators of participants

Values were mean ± SD or %; p values determined by one-way ANOVA and χ2 test

HC (n = 30) CCQS (n = 44) QSBS (n = 37) p values

Basic information

 Age (year) 62.8 ± 9.4 67.2 ± 7.7 67.5 ± 7.8 0.048

 Female 17 (56.7) 25 (56.8) 21 (56.8) 1.000

 BMI (kg/m2) 24.7 ± 2.9 24.1 ± 3.9 25.2 ± 3.3 0.367

 Arrhythmia 6 (20) 6 (13.6) 6 (16.2) 0.768

 Diabetes mellitus 1 (3.3) 20 (45.5) 15 (40.5)  < 0.001

 Hypertension 5 (16.7) 28 (63.6) 28 (75.7)  < 0.001

 Hyperlipidemia 4 (13.3) 26 (59.1) 24 (64.9)  < 0.001

 Cerebrovascular disease 2 (6.7) 4 (9.1) 15 (40.5)  < 0.001

Laboratory data

 TC (mmol/L) 5.2 ± 1.0 4.4 ± 1 4.3 ± 0.9 0.001

 TG (mmol/L) 1.4 ± 0.9 1.5 ± 0.8 1.6 ± 0.7 0.704

 HDL (mmol/L) 1.5 ± 0.3 1.2 ± 0.2 1.3 ± 0.3 0.005

 LDL (mmol/L) 3.1 ± 0.8 2.6 ± 0.8 2.5 ± 0.7 0.002

 Albumin (g/L) 44.0 ± 2.1 44.1 ± 2.7 45 ± 5.9 0.532

 ALP (U/L) 89.9 ± 24.7 87.8 ± 20 86.4 ± 31.6 0.871

 ALT (U/L) 20.4 ± 10.9 22.2 ± 12 21.3 ± 10.5 0.800

 AST (U/L) 24.1 ± 5.1 24.5 ± 8.3 23.1 ± 6.1 0.665

 Creatinine (µmol/L) 61.8 ± 11.3 65 ± 16.8 63.6 ± 16.5 0.694

 GGT (U/L) 25.6 ± 16.9 29.5 ± 24.7 29.2 ± 17.4 0.717

 Glu (mmol/L) 5.8 ± 1.2 6.8 ± 1.9 6.6 ± 1.7 0.03

 HCY (µmol/L) 17.3 ± 13.5 14.9 ± 5.7 14.6 ± 5.3 0.377

 hs-CRP (mg/L) 1.9 ± 2.1 2 ± 2.2 1.6 ± 1.9 0.666

 Total protein (g/L) 74.4 ± 4.6 73.8 ± 4.7 73.4 ± 6.2 0.778

 Urea (mmol/L) 5.2 ± 1.0 5.5 ± 2 5.9 ± 1.9 0.315

 Uric acid (µmol/L) 305 ± 80.2 318.4 ± 79.9 344.3 ± 81 0.131
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genes at higher extent, hence they are more likely to be 
affected by the input genes. For each of the input lists, 
we added 10 other genes with the top-ranking scores to 
construct the PPI network (Fig.  2F, G). Then, we used 
STRING platform [25] to perform KEGG pathway [26] 
enrichment analysis for the DPs and genes in the two 
PPI networks, respectively. Figure 3H showed that all the 
4 groups of genes were enriched in the pathway of cho-
lesterol metabolism, while 3 groups of genes were also 
enriched in PPAR signaling pathway, vitamin digestion 
and absorption, and fat digestion and absorption. This 
suggested that all the 4 pathways were associated with 
the occurrence and development of both CCQS and 

QSBS Syndrome. On the other hand, only the two groups 
of genes for QSBS Syndrome were enriched in 4 other 
pathways, including the pathway of complementary and 
coagulation cascades.

At last, we applied the Functional Annotation Cluster-
ing tool of DAVID to identify disease groups enriched 
with DPs of CCQS and QSBS (classification stringency 
was set as “High”.), respectively. Table  2 showed that 
DPs of both Syndromes were significantly enriched 
with genes involved in diseases directly related to CHD, 
including inflammation, cardiovascular diseases, coro-
nary artery disease, and coronary atherosclerosis. Except 
these common diseases, DPs of CCQS were also enriched 

Fig. 2  Analysis of the differential proteins (DPs) for the two classes of Syndromes. (A) The identified protein number in each group. (B) Coefficient 
of variation of proteins in Standard samples. The volcano plots of DPs between CCQS and HC group (C) or QSBS and HC group (D). (E) Overlaps 
between DPs of the two Syndromes. (F) Protein–protein interaction network for DPs of CCQS Syndrome. (G) Protein–protein interaction network for 
DPs of QSBS Syndrome. (H) KEGG pathways enriched with DPs and proteins in PPI networks for DPs of the two Syndromes. In F, G, Pink circles are 
common DPs of the two Syndromes, blue and orange circles are DPs specific for CCQS and QSBS Syndrome, respectively. Purple circles are proteins 
functionally associated with the DPs
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Fig. 3  Metabolic analysis of CHD patients with two different Syndromes. (A, B) PLS-DA score plot of untargeted and targeted metabolome for two 
Syndromes. (C) The categories and proportions of DMs obtained from the two Syndromes. (D) Venn plot of the DMs filtered by OPLS-DA model 
and univariate analysis. (E) Differential metabolic pathways of DMs enrichment in CCQS Syndrome. (F) Differential metabolic pathways of DMs 
enrichment in QSBS Syndrome. (G) KEGG metabolic pathways enriched with DMs of the two Syndromes
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with disease genes of insulin resistance, metabolic Syn-
drome, and type 2 diabetes, while those of QSBS were 
enriched with genes associated with venous thromboem-
bolism, brain ischemia, stroke, and Alzheimer’s disease. 
The distinction of DP-enriched diseases was consistent 
with the comorbidity difference of clinic samples for the 
two Syndromes.

Metabolomics profiling on CHD patients with either CCQS 
or QSBS syndromes
Syndrome‑specific metabolic characters in CHD patients
To explore the metabolic differences between CCQS and 
QSBS Syndromes, we constructed a partial least squares 
discriminant analysis (PLS-DA) model. The serum 
metabolome of CCQS and QSBS patients were clearly 
separated from health control on the PLS-DA score plot 
in both untargeted (Fig. 3A) and targeted metabolomics 
(Fig.  3B). The identified differential metabolites (DMs) 
belonged to 10 categories, in which glycerophospholip-
ids (25.3%), fatty acyls (23.3%) and amino acids (14.4%) 
were the three most influential metabolites (Fig. 3C). The 
200 metabolites were significantly changed in serum of 
CCQS patients and the 225 metabolites were significantly 
changed in QSBS patients, including commonly altered 
110 DMs in two Syndromes (Fig.  3D and Additional 
file 1: Table S1). These results suggested the Syndrome-
specific metabolic characters in CHD patients, as well as 
common metabolic characters between CCQS and QSBS 
Syndromes.

Syndrome‑specific metabolic pathways in CHD patients
On the basis of identified DMs, a total of 91 and 97 DMs 
with KEGG IDs were further analyzed, which were signif-
icantly altered in CHD patients of either CCQS or QSBS 
Syndrome, respectively. Then, we used MetaboAnalyst 
platform to perform functional enrichment analysis for 
the DMs. Compared with healthy controls, seven differ-
ential metabolic pathways were enriched in the serum of 
CCQS patients, including lipid metabolism (biosynthesis 
of unsaturated fatty acids, glycerophospholipid metabo-
lism, linoleic acid metabolism, sphingolipid metabolism), 
amino acid metabolism (cysteine and methionine metab-
olism, glycine, serine and threonine metabolism), metab-
olism of cofactors and vitamins (pantothenate and CoA 
biosynthesis) (Fig. 3E). Compared with healthy controls, 
ten differential metabolic pathways were enriched in the 
serum of QSBS patients, including lipid metabolism (lin-
oleic acid metabolism and biosynthesis of unsaturated 
fatty acids), amino acid metabolism (alanine, aspartate 
and glutamate metabolism, cysteine and methionine 
metabolism, glycine, serine and threonine metabolism, 
and arginine biosynthesis), metabolism of other amino 
acids (D-glutamine and D-glutamate metabolism), trans-
lation (aminoacyl-tRNA biosynthesis), carbohydrate 
metabolism (glyoxylate and dicarboxylate metabolism) 
(Fig. 3F).

Figure  3G showed that all the 2 groups of metabo-
lites were enriched in 2 pathways of lipid metabolism 
(linoleic acid metabolism, and biosynthesis of unsatu-
rated fatty acids), as well as 2 pathways of amino acid 

Table 2  Disease clusters enriched with differential proteins of the two Syndromes

Syndrome Enrichment 
score/Rank

Disease term #Mapped 
genes

Total genes Percentage P

CCQS 3.69/1 Myocardial infarct 5 121 20.83% 2.51E−05

Coronary Artery Disease| 4 52 16.67% 5.63E−05

3.39/2 Coronary Disease|Coronary heart disease|
Inflammation|Insulin Resistance

5 59 20.83% 1.42E−06

Atherosclerosis, coronary 5 155 20.83% 6.61E−05

Cardiovascular disease 4 59 16.67% 8.23E−05

Metabolic syndrome 4 165 16.67% 0.00168

Obesity 5 369 20.83% 0.00177

Cardiovascular Diseases 4 189 16.67% 0.00248

Diabetes, type 2 5 439 20.83% 0.00334

QSBS 5.26/1 Myocardial ischemia 5 18 21.74% 7.85E−09

Carotid atherosclerosis 5 21 21.74% 1.53E−08

Atherosclerosis, coronary 6 155 26.09% 1.73E−06

Recurrence|Venous Thromboembolism 4 58 17.39% 6.60E−05

Brain Ischemia|Hypertension|Osteoporosis|Stroke 4 64 17.39% 8.87E−05

Cardiovascular Diseases 4 67 17.39% 1.02E−04

Alzheimer’s disease 5 950 21.74% 0.03828
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metabolism (glycine, serine and threonine metabo-
lism; cysteine and methionine metabolism). In addi-
tion, DMs of CCQS were enriched in 2 more pathways 
of lipid metabolism, i.e., glycerophospholipid metabo-
lism, and sphingolipid metabolism; while DMs of QSBS 
were enriched in 4 pathways of amino acid metabolism, 

including arginine metabolism, tyrosine metabolism, 
and two pathways of glutamate metabolism.

Next, we mapped the network of differential meta-
bolic pathways (p < 0.05) enriched with DMs through 
Cytoscape software. As shown in Fig.  4A, B, the 12 
DMs, including 5 glycerophospholipids (PC (14:0/18:1), 
lysoPC (20:2), lysoPA (18:2/0:0), PE (22:6/22:6) and 

Fig. 4  Differential metabolic network analysis of DMs and diagnostic analysis of metabolic biomarkers panel. (A) Differential metabolic network 
analysis of DMs enrichment in Syndrome of CCQS. (B) Differential metabolic network analysis of DMs enrichment in Syndrome of QSBS
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glycerophosphocholine), 2 sphingolipids (sphingosine 
1-phosphate and SM (d18:0/16:1)), 1 fatty acyls (doco-
sahexaenoic acid), 2 amino acid (l-valine and panteth-
eine), 2 amines (sphinganine and ethanolamine), were 
unique metabolites in the serum of patients with 
CCQS. The 15 DMs, including 10 amino acids (DL-O-
phosphoserine, l-phenylalanine, glycine, isocitric acid, 
dimethylglycine, N-acetylornithine, pyroglutamic acid, 
l-glutamic acid, l-leucine and acetic acid), 2 fatty acyls 
(oleic acid and alpha-linolenic acid), 1 glycerophospho-
lipids (PC (20:1/14:1)), 1 benzenoids (phenylpyruvic 
acid), and 1 organic acid (oxoglutaric acid), were unique 
metabolites in the serum of patients with QSBS.

Metabolome‑proteome integrated analysis and ROC 
diagnosis
First, we used MetaboAnalyst platform to study the inter-
actions between metabolites and proteins associated 
with the same Syndrome. We input DMs and DPs of the 
same Syndrome into the “Network Analysis” module of 
MetaboAnalyst and constructed the integrated metabo-
lite-protein network of Syndrome. As shown in Fig. 5A, 
B, the two Syndromes have different metabolite-protein 
networks. Six metabolites (including diethylphosphate, 
phenylacetic acid, SM(d18:1/18:0), arachidonic acid, 
eicosapentaenoic acid and linoleic acid) and 4 proteins 
(including APOB, PON1, PON3 and ADIPOQ) form 
the CCQS network, 11 metabolites (including ursode-
oxycholic acid, cytidine, eicosapentaenoic acid, oleic 
acid, l-serine, 5-aminolevulinic acid, arachidonic acid, 
linoleic acid, PC(16:0/16:0), oxalic acid, oxoglutaric acid) 
and 6 proteins (including APOA1, APOE, APOB, CETP, 
CAT and APOD) form the QSBS network. Three fatty 
acids metabolites (arachidonic acid, linoleic acid, eicos-
apentaenoic acid) and 1 protein (APOB) are the same 
metabolites and protein included in the two networks. 
Arachidonic acid, linoleic acid, eicosapentaenoic acid 
are fatty acids metabolites significantly associated with 
inflammation, which suggests that inflammation may 
be a common feature of the two Syndromes. Figure  5C 
showed pathways enriched with DMs and DPs of the two 
Syndromes (p < 0.05). All the 5 common pathways were 
also identified only by proteomics analysis (cholesterol 
metabolism, vitamin digestion and absorption, fat diges-
tion and absorption) or metabolomics analysis (linoleic 
acid metabolism, biosynthesis of unsaturated fatty acids). 
One pathway specific for CCQS (sphingolipid metabo-
lism) were also identified by metabolomics analysis. Two 
pathways specific for QSBS (D-glutamine and D-gluta-
mate metabolism; glyoxylate and dicarboxylate metabo-
lism) were also identified only by metabolomics analysis.

Further, we performed ROC diagnostic analysis on the 
unique DPs and DMs of the two Syndromes. A binary 

logical regression analysis was carried out for the CCQS 
and QSBS based DPs and DMs to produce a biomarker 
panel. In the proteomics experiment, we found that a 
biomarker panel (ACTA2, FCGBP, LBP, IGHM) could 
accurately distinguish CCQS patients from healthy con-
trols. as indicated by the area under the receiver operat-
ing curve (AUC), which had a value up to 0.844 (Fig. 5D). 
However, we found that the biomarker panel obtained 
poor performance when discriminating between QSBS 
and healthy controls due to decreased specificity and 
sensitivity (AUC = 0.607) (Fig. 5D). Similarly, a biomarker 
panel (CFHR3, EFEMP1, UBA52, APOD, CAT), could 
accurately distinguish QSBS patients from healthy con-
trols (AUC = 0.86) and obtained poor performance when 
discriminating between CCQS and healthy controls due 
to decreased specificity and sensitivity (AUC = 0.592) 
(Fig. 5E). In the metabolomics experiment, we also found 
that two biomarker panel (l-valine, pantetheine, lysoPC 
(20:2), sphingosine 1-phosphate) and (pyroglutamic acid, 
acetic acid, PC (20:1/14:1), socitric acid), could accurately 
distinguish CCQS and QSBS patients from healthy con-
trols, AUC were 0.84 and 0.81, respectively (Fig. 5F, G). 
The biomarker panel obtained poor performance when 
discriminating between another Syndrome and healthy 
controls due to decreased specificity and sensitivity 
(Fig. 5F, G).

Network pharmacology analysis on TCM formulae used 
in the treatment of CHD patients with either CCQS or QSBS 
syndrome in clinic
To investigate features of the two distinct Syndromes 
from TCM formulae specifically used to treat them, we 
selected 6 TCM formulae recorded in the Chinese Phar-
macopeia and extensively used for the treatment of the 
two TCM Syndromes of CHD in clinic. Each Syndrome 
corresponded to 3 formulae. The formulae prescribed 
for CCQS Syndrome were Shexiang Baoxin Pill, Guanxin 
Suhe Pill, and Kuanxiong Aerosol; while those for QSBS 
Syndrome were Suxiao Jiuxin Pill, Xuefu Zhuyu Pill, and 
Compound Danshen Drop Pill (Table  3). For simplic-
ity, we coded the formulae corresponding to Syndrome 
CCQS and QSBS as F1 and F2, respectively; and the three 
formulae of F1 type were coded as F1-1, F1-2 and F1-3; 
the formulae of F2 type were coded as F2-1, F2-2 and 
F2-3 (Table 3; See Additional file 1: Table S2 for herbs in 
each formula).

For each herb in the TCM formulae, we first collected 
its chemical ingredients and corresponding putative tar-
gets from ETCM [16] and TCMSP [17] database. We fil-
tered active compounds by OB ≥ 30% and DL ≥ 0.18 for 
ingredients from TCMSP database, while ingredients 
from ETCM database whose Druglikeness Gradings were 
good or moderate were considered as active compounds. 
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Fig.5  Metabolome-proteome integrated analysis and ROC diagnosis. (A) Metabolome-proteome integrated analysis of CCQS patients. (B) 
Metabolome-proteome integrated analysis of QSBS patients. (C) KEGG metabolic pathways enriched with DMs and DPs of the two Syndromes. 
Pathways within the rectangles were also identified only by metabolomics or proteomics data. (D) The ROC diagnostic analysis of biomarker panel 
(ACTA2, FCGBP, LBP, IGHM) for different Syndromes. (E) The ROC diagnostic analysis of biomarker panel (CFHR3, EFEMP1, UBA52, APOD, CAT) for 
different Syndromes. (F) The ROC diagnostic analysis of biomarker panel (l-valine, pantetheine, lysoPC (20:2) and sphingosine 1-phosphate) for 
different Syndromes. (G) The ROC diagnostic analysis of biomarker panel (pyroglutamic acid, acetic acid, PC (20:1/14:1) and socitric acid)
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Then, from the Chinese Pharmacopeia we searched qual-
ity markers (Q-markers) of each herb, whose pharmaco-
logical effects have been validated; we then searched their 
corresponding targets of the Q-markers from the HERB 
database [18]. We combined all data and finally obtained 
696 active compounds for the 26 distinct herbs in the 6 
formulae (Additional file 1: Table S3), in which 528 active 
compounds had 1246 putative targets (Table 3 and Addi-
tional file 1: Table S4).

We considered the common targets of the 3 formulae 
for CCQS and QSBS Syndrome as signature targets of 
the corresponding class of formulae, respectively. There 
were 252 and 218 signature targets for the two classes of 
formulae, respectively (Fig. 6A, B). The two classes of for-
mulae had 182 common signature targets, we considered 
the 70 and 36 ones which were signature targets of only 
F1 or F2 formulae as F1- and F2-specific signature targets 
of the two classes of formulae, respectively (Fig. 6C).

To understand the effects of the two classes of formu-
lae, we compared the signature targets with targets of 
FDA-approved CHD-related drugs. We first searched 
DisGenet database [19] with key word “Coronary Heart 
Disease” for CHD-related diseases. Setting threshold as 
JIg > 0.2 and JIv > 0.05, where Jig and JIv denoted Jaccard 
index based on shared genes and shared variants, respec-
tively, we identified 15 diseases highly associated with 
CHD (Additional file 1: Table S5). In DrugBank database 
[20], drugs treating these diseases could be classified to 
4 categories according to their Anatomical Therapeutic 
Chemical (ATC) codes, i.e., drugs for cardiovascular sys-
tem (ATC ID: C), diabetes (ATC ID: A10), obesity (ATC 
ID: A08), and ischemic stroke (ATC ID: B01). 

Then we mapped the common and specific signature 
targets to targets of the 4 categories of drugs in Drug-
Bank database. Note that here we only studied pharma-
cological targets in DrugBank and excluded transporters, 
carriers, and enzymes of the drugs. As shown in Fig. 6D 
and E, the common feature targets had overlaps with 
drug targets of all the 4 categories. Both F1- and F2-spe-
cific feature targets overlapped with targets of drugs for 

cardiovascular system. However, F1-specific feature tar-
gets also overlapped with drug targets of diabetes, while 
F2-specific feature targets had intersection with drug tar-
gets for ischemic stroke and obesity. This result suggested 
that, besides treatment to CHD, F1 formulae paid more 
attention in the treatment of diabetes complications 
of CHD, while F2 formulae had higher efficacy to treat 
ischemic stroke complications of CHD. The differences 
in specific feature targets were consistent with the dis-
parities of disease comorbidity in clinic samples, indicat-
ing that the targets and pathways regulated by formulae 
specific for a Syndrome could be the Syndrome-specific 
dysfunction objects.

Integrated analysis between network pharmacology 
and multi‑omics results
Our network pharmacological analysis suggested that 
targets of TCM formulae specific for a Syndrome could 
be dysfunction genes in the development of the Syn-
drome. Advances in technology have made it increas-
ingly possible to study multiple biological aspects from 
genomes, proteomes and metabolomics to phenotypic 
analysis. Integrative analyses that use information across 
these data modalities promise to deliver more compre-
hensive insights into the biological systems under study 
[27, 28]. Thus we conducted integrated analysis of net-
work pharmacology, proteomics, and metabolomics in 
this section.

We used MetaboAnalyst platform to study the interac-
tions between metabolites and genes associated with the 
same Syndrome. We input DMs, DPs, and feature targets 
of CCQS Syndrome into the “Network Analysis” module 
of MetaboAnalyst and constructed the integrated metab-
olite-gene network of CCQS (Fig.  7A). This network 
included interactions between 35 DMs and 102 genes 
related with CCQS Syndrome. Besides common mol-
ecules corresponding to the two Syndromes, this network 
contains 14 DMs and 2 DPs specific for CCQS Syndrome, 
and 17 F1-specific feature targets. The metabolite-gene 
network for QSBS was built similarly, which includes 

Table 3  The number of herbs, potential bioactive compounds and corresponding putative targets for each TCM formula

Syndrome/
Formula code

TCM formula Formula code # Herbs #Active 
compounds

# Active compounds 
with targets

#Putative 
targets

CCQS/F1 Shexiang Baoxin Pill F1-1 7 99 74 702

Guanxin Suhe Pill F1-2 5 58 36 280

Kuanxiong Aerosol F1-3 5 113 81 368

QSBS/F2 Suxiao Jiuxin Pill F2-1 2 63 45 301

Xuefu Zhuyu Pill F2-2 11 397 312 822

Compound Danshen Drop Pill F2-3 3 137 111 647

Total 26 696 528 1246
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14 DMs and 4 DPs specific for QSBS Syndrome and 10 
F2-specific feature targets (Fig. 7B).

We then applied MetaboAnalyst platform for func-
tional annotation of the two metabolite-gene networks. 
We focused the analysis on the basic biological path-
ways of KEGG database, which contains 5 sections: 
Metabolism, Genetic Information Processing, Envi-
ronmental Information Processing, Cellular Processes, 
and Organismal Systems. All the molecules, including 
DMs, DPs and feature targets, in the metabolite-gene 

network of CCQS were input into the “Joint-Pathway 
Analysis” module of MetaboAnalyst and 86 pathways 
enriched with molecules related with CCQS were 
identified (p < 0.05). Similarly, 80 pathways were found 
to be enriched with molecules associated with QSBS 
(p < 0.05). We conducted intersection analysis for the 
two groups of pathways and discovered that the two 
Syndromes shared 66 pathways, in which the top 35 
pathways were show in Fig.  7C. There were 20 and 14 
pathways specific for CCQS and QSBS (Fig.  7D, E), 

Fig. 6  Analysis of the signature targets for the two classes of formulae. (A) Overlaps between the targets of the 3 formulae for CCQS. (B) Overlaps 
between the targets of the 3 formulae for QSBS. (C) Overlaps between the signature targets of the two classes of formulae. (D) Number of signature 
targets that overlapped with targets of FDA-approved CHD-related drugs, where black, green, orange, and blue text were drug categories for 
cardiovascular system (ATC ID:C), diabetes (ATC ID: A10), thrombotic events (ATC ID: B01), and obesity (ATC ID: A08), respectively. (E) Target-drug 
network between signature targets and FDA-approved CHD-related drugs. Pink cercles were common signatures for the two classes of formulae, 
while blue and orange circles were F1- and F2-specific signature targets, respectively. Diamond, triangle, V-type, and rectangle nodes were drugs for 
cardiovascular system, diabetes, ischemic stroke, and obesity, respectively
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Fig. 7  Integrated network analysis of multi-omics data. Integrated metabolite-gene network for CCQS (A) and QSBS Syndrome (B). Circles 
are feature targets of TCM formulae, diamonds are DPs, hexagons are metabolites. Pink nodes are molecules related to both Syndromes, blue 
and orange nodes are molecules related to CCQS and QSBS, respectively. (C) Common pathways enriched with molecules in integrated 
metabolite-gene networks of CCQS and QSBS. (D) Pathways only enriched with molecules in integrated metabolite-gene networks of CCQS. (E) 
Pathways only enriched with molecules in integrated metabolite-gene networks of QSBS. Pathways within the rectangles were also identified only 
by metabolomics or proteomics data
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respectively. Seven of the 66 common pathways were 
metabolic pathways, in which 3 were also identified 
only by metabolomics results, i.e., glycine, serine and 
threonine metabolism; biosynthesis of unsaturated 
fatty acids; and linoleic acid metabolism. Two common 
pathways identified by proteomics analysis (cholesterol 
metabolism, PPAR signaling pathway) were also iden-
tified by integrated analysis. One pathway specific for 
CCQS (pantothenate and CoA biosynthesis) were iden-
tified both in metabolomics and integrated analysis. 
Three pathways specific for QSBS (D-Glutamine and 
D-glutamate metabolism; alanine, aspartate and gluta-
mate metabolism; glyoxylate and dicarboxylate metab-
olism) identified by metabolomics analysis, were also 
identified here.

Next, we applied DAVID platform to identify dis-
ease groups enriched with Syndrome-specific genes 
included in the integrated networks. We input the 2 
DPs and 17 feature targets specific for CCQS Syn-
drome in the metabolite-gene network into DAVID 
and performed functional annotation clustering with 
classification stringency “High”. QSBS-specific genes 
in the metabolite-gene network were analyzed in the 
same way. Table 4 showed that more than 20% specific 
genes of both Syndromes were significantly involved 
in coronary atherosclerosis and other diseases direct-
edly related to CHD. Except these common diseases, 
CCQS-specific genes were also enriched with disease 
genes of metabolic Syndrome, while those of QSBS 
were enriched with genes associated with cerebrovas-
cular disease, stroke, and hyperlipidemias. In addition, 
CCQS-specific DPs involved in these diseases were 
PON1 and ADIPOQ, while QSBS-specific DPs involved 
in these diseases were APOE and APOA1.

Discussion
In this study, we proposed a strategy which integrated 
clinic samples, multi-omics study, and network pharma-
cology to investigate the biomedical basis of two Syn-
dromes (CCQS and QSBS) of CHD.

We collected clinic samples and conducted proteomic 
and metabolomic experiments using serum samples of 
the participants. Statistics suggested that clinic samples 
of the two Syndromes had no differences in age, sex, BMI 
and laboratory indexes, but the comorbidity features 
were different. CCQS group included higher percentage 
of patients with diabetes, whereas more patients in QSBS 
group had complications of cerebrovascular disease. 
Our functional annotation clustering for proteomics 
and metabolomics results also reflected the comorbidity 
difference in clinic samples of the two Syndromes. Fur-
thermore, network pharmacological study on 6 TCM for-
mulae used for the treatment of two Syndromes revealed 
that the 3 CCQS formulae paid more attention on the 
treatment for diabetes complication of CHD, while the 
3 QSBS formulae focused more on the management of 
ischemic stroke complication related to CHD. This result 
suggested that the comorbidity discrepancy between 
the two Syndromes might be due to fundamental dif-
ferences in the two Syndromes, rather than a deviation 
in sample collection. Further research and more evi-
dence are needed for confirming this observation about 
comorbidity.

By analyzing differential proteins (DPs) of the two Syn-
dromes identified from proteomic experiments of clinic 
serum samples, it was found that DPs of both Syndromes 
were enriched in the pathways of cholesterol metabo-
lism, PPAR signaling, vitamin digestion and absorption, 
and fat digestion and absorption, suggesting that these 

Table 4  Disease clusters enriched with Syndrome-specific genes in the metabolite-gene networks

Genes of Italic characters are DPs

Syndrome Enrichment score/
Rank

Disease Term P value Mapped genes

CCQS 3.09/1 Metabolic syndrome 5.28E−05 MMP1, PON1, ADIPOQ, HMOX1, F3

Atherosclerosis, coronary 0.001006 MMP1, PON1, ADIPOQ, HMOX1

Atherosclerosis 0.010393 MMP1, PON1, ADIPOQ, HMOX1

QSBS 2.58/1 Hyperlipidemias 7.44E−04 SREBF1, APOA1, APOE

Hypercholesterolemia 9.77E−04 SREBF1, APOA1, APOE

Plasma HDL cholesterol (HDL-C) levels 0.024904 SREBF1, APOA1, APOE

2.41/2 Cerebrovascular disease; sickle cell anemia 2.12E−04 APOA1, APOE, ICAM1

Coronary Artery Disease 0.001195 APOA1, APOE, ICAM1

Acute Coronary Syndrome 0.002469 APOA1, APOE, ICAM1

Hepatitis C|Remission, Spontaneous 0.005417 APOA1, APOE, ICAM1

Atherosclerosis, coronary 0.010151 APOA1, APOE, ICAM1

Stroke 0.100306 APOA1, APOE, ICAM1
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4 pathways were involved in the disease process of both 
Syndromes. It has been recognized for decades that CHD 
is strongly related with endogenous or exogenous lipids. 
Cholesterol is made by the body through the digestion 
and absorption of dietary fat, and plasma LDL choles-
terol levels have an independent correlation to the risk 
of CHD [29]. PPARs (peroxisome proliferator-activated 
receptors) consist of three related transcription factors: 
PPARA, PPARD, and PPARG. They control the prolif-
eration of peroxisomes, which are organelles involved in 
fatty acid metabolism. PPARs are critical regulators of 
lipid metabolism and play a role in biological processes 
associated with the onset and progression of CHD, such 
as fatty acid oxidation, insulin sensitivity, and inflamma-
tory signaling [30]. On the other hand, only DPs of QSBS 
were enriched in the pathways of complementary and 
coagulation cascades. Coagulation cascades are a set of 
proenzyme-to-serine protease conversions that result in 
thrombin production. It has been suggested that abnor-
malities in the plasmatic coagulation system are linked to 
ischemic stroke [31]. This result indicated that the QSBS 
is more strongly associated with ischemic stroke.

From metabolomic results of clinic serum samples, 
it was found that differential metabolites (DMs) of both 
Syndromes were enriched in 4 pathways: linoleic acid 
metabolism; biosynthesis of unsaturated fatty acids; gly-
cine, serine and threonine metabolism; and cysteine and 
methionine metabolism, suggesting that the 4 pathways 
were associated with both Syndromes of CHD. It has been 
known that dietary unsaturated fat intake is inversely 
correlated with CHD risk [32]. Linoleic acid is an unsat-
urated fatty acid that is necessary for the production of 
eicosanoids, which are significant regulators of platelet 
aggregation, blood pressure, and coronary flow [32]. Spe-
cific amino acids have been known to play important role 
in the etiology of CHD by influencing lipid metabolism. 
Several amino acids involved in our identified pathways, 
including glycine, cysteine, alanine, glutamate, and glu-
tamine, were found to have a significant impact on mac-
rophage atherogenicity, while macrophages initiate the 
atherogenesis process by accumulating high amounts 
of circulating lipids [33]. In addition, our study showed 
that DMs of CCQS were enriched in 2 more pathways of 
lipid metabolism (glycerophospholipid metabolism, and 
sphingolipid metabolism) and one pathway of cofactors 
and vitamins metabolism (pantothenate and CoA biosyn-
thesis); while DMs of QSBS were enriched in 4 pathways 
of amino acid metabolism, including arginine metabo-
lism, tyrosine metabolism, and two pathways of gluta-
mate metabolism. Diabetes mellitus is the most common 
endogenous cause for disorder of lipid metabolism [34]. 
Glycerophospohlipids and sphingolipids were found to 
be considerably lower in T2B patients [35, 36]. Khan et al.

observed that downregulated sphingolipid metabolism in 
mice reduced insulin sensitivity and caused dysfunction 
of pancreatic β cells [35]. The pancreatic β cells are endo-
crine cells for synthetizing, storing, and releasing insulin. 
The disruption of pancreatic β cell function was key fac-
tors for the incitation and progression of T2D [37]. Pan-
tothenate is a necessary precursor for the formation of 
coenzyme A (CoA), a ubiquitous cofactor involved in a 
wide range of metabolic pathways. The control of CoA is 
critical for metabolic flexibility and glucose homeostasis 
[38]. Glutamate is the most abundant free amino acid in 
the central nervous system. The function of glial gluta-
mate transporters is hindered in the pathological situa-
tion of ischemic stroke, resulting in excessive glutamate 
release from neurons and glial cells. This process triggers 
excitotoxicity which damages the surrounding nervous 
tissue and impairs normal brain functions [39]. Hence, 
the dysfunction of glutamate metabolism is highly associ-
ated with ischemic stroke. Therefore, the analysis of met-
abolic pathways enriched with the DMs suggested that 
CCQS and CSBS Syndromes were more strongly related 
with diabetes and ischemic stroke, respectively.

At last, by integrating data from network pharma-
cology, proteomics, and metabolomics study, we con-
structed integrated metabolite-gene network for the two 
Syndromes and conducted functional annotation for 
molecules in the two networks, respectively. The results 
of integrated analysis and omics (metabolomics and prot-
eomics) analysis were consistency in 5 common pathways 
for two Syndromes (glycine, serine and threonine metab-
olism; biosynthesis of unsaturated fatty acids; linoleic 
acid metabolism; cholesterol metabolism; PPAR signal-
ing pathway), 1 specific pathway for CCQS (pantothen-
ate and CoA biosynthesis), and 3 specific pathways for 
QSBS (D-glutamine and D-glutamate metabolism; ala-
nine, aspartate and glutamate metabolism; glyoxylate and 
dicarboxylate metabolism). Disease clustering analysis for 
Syndrome-specific genes in the integrated networks sug-
gested that the genes of both Syndromes were enriched 
in coronary atherosclerosis. In addition, CCQS-specific 
and QSBS-specific genes were also enriched in metabolic 
Syndrome and cerebrovascular disease, respectively, in 
which Syndrome-specific DPs involved in the diseases 
were PON1 and ADIPOQ for CCQS, APOE and APOA1 
for QSBS. According to our proteomics experiments, 
the abundance of PON1 and ADIPOQ were significantly 
lower in CCQS patients compared with healthy control, 
while both APOE and APOA1 were down-expressed in 
QSBS patients compared with healthy control, suggesting 
that the two pairs of DPs could play important roles in 
the pathology of the two Syndromes.

PON1 (serum paraoxonase/arylesterase 1) is one of the 
3 members of the paraoxonase family, any of which can 
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degrade lipid peroxides in HDL and LDL [40]. Primarily 
expressed in the liver and then secreted into the blood-
stream, PON1 was shown mainly bound to HDL in blood 
[41] and inhibited macrophage cholesterol biosynthesis 
[42]. Low PON1 levels were closely linked to the start 
and progression of atherosclerosis [43]. PON1 also has 
the function of regulating fasting blood glucose levels, 
glucose tolerance, and insulin sensitivity [44]. Previous 
studies have found lower PON1 activity in both T1DM 
and T2DM [43].

ADIPOQ (adiponectin) is an adipokine produced by 
adipose tissue that regulates lipid metabolism and insu-
lin sensitivity. In vitro experiments have shown that ADI-
POQ suppressed the expression of endothelial adhesion 
molecules, the production of TNFa and IL6, the prolif-
eration of vascular smooth muscle cells, and the trans-
formation of macrophage to foam cells [45, 46]. Lower 
plasma concentrations of adiponectin were found asso-
ciated with coronary artery disease [47]. ADIPOQ could 
increase insulin sensitivity [48] and its circulating levels 
have been found inversely associated with the risk of type 
2 diabetes [49].

APOE (apolipoprotein E) is an apolipoprotein impor-
tant for the transport and metabolism of lipids. It is abun-
dant in the brain [50]. APOE could clear cholesterol-rich 
lipoproteins from plasma, enhance the release of cellular 
lipid from macrophage foam cells, suppresses the migra-
tion and proliferation of vascular smooth muscle cells, 
and reduce lipid oxidation [51–53]. ApoE is also involved 
in the activation of endothelial cells and platelets, as well 
as the phagocytotic clearance of apoptotic materials 
[54, 55]. The expression of APOE is associated with the 
pathology of atherosclerosis and ischemic stroke [51, 56].

APOA1 (apolipoprotein A-I) is the major protein com-
ponent of high-density lipoprotein (HDL) complexes. 
By boosting cholesterol efflux from tissues, it plays a key 
function in the reverse transfer of cholesterol from tis-
sues to the liver for excretion. The quantity of ApoA1 in 
plasma has been found to be substantially associated with 
the level of HDL cholesterol in the blood [57]. Accord-
ing to epidemiological research, the ratio of APOA1 to 
APOB was a good predictor of coronary heart disease 
risk [57]. Lower levels of APOA1 were found to be corre-
lated with an increased risk of the acute onset of ischemic 
stroke [58].

To sum up, based on clinic samples and collected 
data, our study revealed the differences between the 
two Syndromes from three aspects: biological pro-
cesses, comorbidities, and potential biomarkers. We 
should point out some limitations in this research. The 
first is that the size of clinic samples is relatively small 
due to the limitation of time period, as well as strict 
inclusion and exclusion criteria. Second, formulae’s 

ingredients and targets are collected from databases. 
Although we integrated our data from most TCM data-
bases currently available in public and studied multiple 
TCM formulae to enhance the reliability of targets, the 
inherent quality of the databases themselves may cause 
some deviation in our results.

Conclusion
By integrating clinic samples, multi-omics study and 
network pharmacology, our study suggested that both 
CCQS and QSBS Syndrome of CHD were related with 
the dysfunction of 5 pathways: glycine, serine and thre-
onine metabolism; biosynthesis of unsaturated fatty 
acids; linoleic acid metabolism; cholesterol metabo-
lism; and PPAR signaling pathway. Moreover, CCQS 
Syndrome of CHD patients were specifically charac-
terized with altered pantothenate and CoA biosyn-
thesis, while disordered pathways of D-glutamine and 
D-glutamate metabolism; alanine, aspartate and glu-
tamate metabolism, and glyoxylate and dicarboxylate 
metabolism were present in CHD patients with QSBS 
Syndrome. Furthermore, our results indicated that the 
down-expressed PON1 and ADIPOQ could related 
with the pathology of CCQS Syndrome, while down-
expressed APOE and APOA1 for QSBS Syndrome. In 
addition, both clinic samples and network pharmaco-
logical results suggested that CCQS or QSBS Syndrome 
was highly related with the pathology of diabetes or 
ischemic stroke, respectively. Further research needs to 
be conducted to investigate whether such comorbidity 
phenomena is correlated with the inherent difference of 
the two Syndromes. This study helps us to understand 
the TCM Syndromes from perspective of modern bio-
medical science and facilitate the application of TCM 
theory in the practice of precision medicine.
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