Struck TH, Feder JL, Bendiksby M, Birkeland S, Cerca J, Gusarov VI, et al. Finding evolutionary processes hidden in cryptic species. Trends Ecol Evol. 2018;33:153–63.
Article
PubMed
Google Scholar
Hebert PD, Cywinska A, Ball SL, Dewaard JR. Biological identifications through DNA barcodes. P Roy Soc B Biol Sci. 2003;270:313–21.
Article
CAS
Google Scholar
Chase MW, Fay MF. Barcoding of plants and fungi. Science. 2009;325:682–3.
Article
CAS
PubMed
Google Scholar
Dong W, Xu C, Wu P, Cheng T, Yu J, Zhou S, et al. Resolving the systematic positions of enigmatic taxa: manipulating the chloroplast genome data of Saxifragales. Mol Phylogenet Evol. 2018;126:321–30.
Article
CAS
PubMed
Google Scholar
Zhai W, Duan X, Zhang R, Guo C, Li L, Xu G, et al. Chloroplast genomic data provide new and robust insights into the phylogeny and evolution of the Ranunculaceae. Mol Phylogenet Evol. 2019;135:12–21.
Article
CAS
PubMed
Google Scholar
Raman G, Park S. The complete chloroplast genome sequence of Ampelopsis: gene organization, comparative analysis, and phylogenetic relationships to other angiosperms. Front Plant Sci. 2016;7:341.
Article
PubMed
PubMed Central
Google Scholar
Parks M, Cronn R, Liston A. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol. 2009;7:84.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang Y, Du L, Liu A, Chen J, Wu L, Hu W, et al. The complete chloroplast genome sequences of five Epimedium species: lights into phylogenetic and taxonomic analyses. Front Plant Sci. 2016;7:306.
PubMed
PubMed Central
Google Scholar
Huang Y, Li X, Yang Z, Yang C, Yang J, Ji Y. Analysis of complete chloroplast genome sequences improves phylogenetic resolution in Paris (Melanthiaceae). Front Plant Sci. 2016;7:1797.
PubMed
PubMed Central
Google Scholar
Meng X-X, Xian Y-F, Xiang L, Zhang D, Shi Y-H, Wu M-L, et al. Complete chloroplast genomes from Sanguisorba: identity and variation among four species. Molecules. 2018;23:2137.
Article
PubMed Central
CAS
Google Scholar
Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S. Plant DNA barcoding: from gene to genome. Biol Rev. 2015;90:157–66.
Article
PubMed
Google Scholar
Li X-W. Study on conservation biology of Fritillaria cirrhosa. Beijing: Chinese Academy of Medical Sciences and Peking Union Medical College. 2009.
Wang B, Zhou Y, Qin G, Hu Z, Hu J. An authenticity survey of traditional Chinese medicines from Hubei Province using DNA barcoding. World Sci Technol. 2018;20(2):276–80.
Google Scholar
Tekşen M, Aytac Z, Pınar N. Pollen morphology of the genus Fritillaria L. (Liliaceae) in Turkey. Turk J Bot. 2010;34(5):397–416.
Google Scholar
Li Y, Zhang L, Wu H, Wu X, Ju L, Zhang Y. Metabolomic study to discriminate the different Bulbus fritillariae species using rapid resolution liquid chromatography-quadrupole time-of-flight mass spectrometry coupled with multivariate statistical analysis. Anal Methods. 2014;6(7):2247–59.
Article
CAS
Google Scholar
Luo K, Pei M, Hui Y, Jingyuan S, Keli C, Yimei L. Molecular identification of Fritillariae Cirrhosae Bulbus and its adulterants. World Sci Technol. 2012;1:1153–8.
Google Scholar
Xiang L, Su Y, Li X, Xue G, Wang Q, Shi J, Wang L, Chen S. Identification of Fritillariae bulbus from adulterants using ITS2 regions. Plant Gene. 2016;7:42–9.
Article
CAS
Google Scholar
Sharifi-Tehrani M, Advay M. Assessment of relationships between Iranian Fritillaria (Liliaceae) species using chloroplast trnH-psbA sequences and morphological characters. J Genet Resour. 2015;1(2):89–100.
Google Scholar
Türktaş M, Aslay M, Kaya E, Ertuğrul F. Molecular characterization of phylogenetic relationships in Fritillaria species inferred from chloroplast trnL-trnF sequences. Turk J Biol. 2012;36(5):552–60.
Google Scholar
Rønsted N, Law S, Thornton H, Fay MF, Chase MW. Molecular phylogenetic evidence for the monophyly of Fritillaria and Lilium (Liliaceae; Liliales) and the infrageneric classification of Fritillaria. Mol Phylogenet Evol. 2005;35(3):509–27.
Article
PubMed
CAS
Google Scholar
Huang H, Shi C, Liu Y, Mao S-Y, Gao L-Z. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships. BMC Evol Biol. 2014;14(1):151.
Article
PubMed
PubMed Central
Google Scholar
Guo H, Liu J, Luo L, Wei X, Zhang J, Qi Y, Zhang B, Liu H, Xiao P. Complete chloroplast genome sequences of Schisandra chinensis: genome structure, comparative analysis, and phylogenetic relationship of basal angiosperms. Sci China Life Sci. 2017;60(11):1286–90.
Article
PubMed
Google Scholar
Yu X, Zuo L, Lu D, Lu B, Yang M, Wang J. Comparative analysis of chloroplast genomes of five Robinia species: genome comparative and evolution analysis. Gene. 2019;689:141–51.
Article
CAS
PubMed
Google Scholar
Yang Z, Zhao T, Ma Q, Liang L, Wang G. Comparative genomics and phylogenetic analysis revealed the chloroplast genome variation and interspecific relationships of Corylus (Betulaceae) Species. Front Plant Sci. 2018;9:927.
Article
PubMed
PubMed Central
Google Scholar
Doorduin L, Gravendeel B, Lammers Y, Ariyurek Y, Chin-A-Woeng T, Vrieling K. The complete chloroplast genome of 17 individuals of pest species Jacobaea vulgaris: SNPs, microsatellites and barcoding markers for population and phylogenetic studies. DNA Res. 2011;18:93–105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng C-X, Zhang Y-X, Triplett JK, Yang J-B, Li D-Z. Large multi-locus plastid phylogeny of the tribe Arundinarieae (Poaceae: Bambusoideae) reveals ten major lineages and low rate of molecular divergence. Mol Phylogenet Evol. 2010;56:821–39.
Article
CAS
PubMed
Google Scholar
Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36:W5-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1:18.
Article
PubMed
PubMed Central
Google Scholar
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2010;27:578–9.
Article
PubMed
CAS
Google Scholar
Acemel RD, Tena JJ, Irastorza-Azcarate I, Marlétaz F, Gómez-Marín C, de la Calle-Mustienes E, et al. A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation. Nat Genetics. 2016;48:336.
Article
CAS
PubMed
Google Scholar
Liu C, Shi L, Zhu Y, Chen H, Zhang J, Lin X, et al. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics. 2012;13:715.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005;33:W686–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lohse M, Drechsel O, Bock R. OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet. 2007;52:267–74.
Article
CAS
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, et al. VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics. 2000;16:1046–7.
Article
CAS
PubMed
Google Scholar
Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 2004;32:W273–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang X-M, Sun J-T, Xue X-F, Zhu W-C, Hong X-Y. Development and characterization of 18 novel EST-SSRs from the western flower thrips, Frankliniella occidentalis (Pergande). Int J Mol Sci. 2012;13:2863–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller MA, Pfeiffer W, Schwartz T. The CIPRES science gateway: a community resource for phylogenetic analyses. In: Proceedings of the 2011 TeraGrid Conference: extreme digital discovery. ACM. 2011: 41.
Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008;25:1253–6.
Article
CAS
PubMed
Google Scholar
Swofford DL. Paup*: phylogenetic analysis using parsimony (and other methods) 4.0. B5. Sunderland: Sinauer; 2001.
Google Scholar
Yang Y, Yuanye D, Qing L, Jinjian L, Xiwen L, Yitao W. Complete chloroplast genome sequence of poisonous and medicinal plant datura stramonium: organizations and implications for genetic engineering. PLoS ONE. 2014;9: e110656.
Article
PubMed
PubMed Central
CAS
Google Scholar
Graveley BR. Alternative splicing: increasing diversity in the proteomic world. Trends Genet. 2001;17:100–7.
Article
CAS
PubMed
Google Scholar
Hansen DR, Dastidar SG, Cai Z, Penaflor C, Kuehl JV, Boore JL, Jansen RK. Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). Mol Phylogenet Evol. 2007;45:547–63.
Article
CAS
PubMed
Google Scholar
Xiang L, Su Y, Li X, Xue G, Wang Q, Shi J, et al. Identification of Fritillariae bulbus from adulterants using ITS2 regions. Plant Gene. 2016;7:42–9.
Article
CAS
Google Scholar
Do HDK, Kim JS, Kim J-H. Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of Veratrum patulum O. Loes. (Melanthiaceae). Gene. 2013;530:229–35.
Article
CAS
PubMed
Google Scholar
Kim JS, Kim J-H. Comparative genome analysis and phylogenetic relationship of order Liliales insight from the complete plastid genome sequences of two Lilies (Lilium longiflorum and Alstroemeria aurea). PLoS ONE. 2013;8: e68180.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takenaka M, Zehrmann A, Verbitskiy D, Härtel B, Brennicke A. RNA editing in plants and its evolution. Annu Rev Genet. 2013;47:335–52.
Article
CAS
PubMed
Google Scholar
Yang M, Zhang X, Liu G, Yin Y, Chen K, Yun Q, et al. The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS ONE. 2010;5: e12762.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao Y, Yin J, Guo H, Zhang Y, Xiao W, Sun C, et al. The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng. Front Plant Sci. 2015;5:696.
PubMed
PubMed Central
Google Scholar
Chmielewski M, Meyza K, Chybicki IJ, Dzialuk A, Litkowiec M, Burczyk J. Chloroplast microsatellites as a tool for phylogeographic studies: the case of white oaks in Poland. Iforest. 2015;8:765.
Article
Google Scholar
Jiao Y, Jia H-m, Li X-w, Chai M-l, Jia H-j, Chen Z, et al. Development of simple sequence repeat (SSR) markers from a genome survey of Chinese bayberry (Myrica rubra). BMC Genomics. 2012;13:201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen X, Wu M, Liao B, Liu Z, Bai R, Xiao S, et al. Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua. Molecules. 2017;22:1330.
Article
PubMed Central
CAS
Google Scholar
Li Q, Li Y, Song J, et al. High-accuracy de novo assembly and SNP detection of chloroplast genomes using a SMRT circular consensus sequencing strategy. New Phytol. 2015. https://doi.org/10.1111/nph.12966.
Article
PubMed
PubMed Central
Google Scholar
Ying L, Hui Y, Jingyuan S, et al. Screening Fritillaria genus-specific DNA barcodes based on complete chloroplast genome sequences. World Sci Technol. 2016;18(01):24–8.
Google Scholar
Türktaş M, Aslay M, Kaya E, et al. Molecular characterization of phylogeneticrelationships in Fritillaria species inferred from chloroplast trnL-trnF sequences. Turk J Biol. 2012;36:552–60.
Google Scholar
Park I, Kim WJ, Yeo S-M, et al. The complete chloroplast genome sequences of Fritillaria ussuriensis Maxim. and Fritillaria cirrhosa D. Don, and comparative analysis with other Fritillaria species. Molecules. 2017;22:982.
Article
PubMed Central
CAS
Google Scholar
Bi Y, Zhang M-F, Xue J, et al. Chloroplast genomic resources for phylogeny and DNA barcoding: a case study on Fritillaria. Sci Rep. 2018;8:1184.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li Y, Zhang Z, Yang J, et al. Complete chloroplast genome of seven Fritillaria species, variable DNA markers identification and phylogenetic relationships within the genus. PloS One. 2018, 13(3): e0194613.
Moon BC, Park I, Kim WJ, et al. The complete chloroplast genome sequence of Fritillaria thunbergii Miq., an important medicinal plant, and identification of DNA markers to authenticate Fritillariae Bulbus. Hortic Environ Biotechnol. 2018;59:71–80.
Article
CAS
Google Scholar
Lu RS, Yang T, Chen Y, et al. Comparative plastome genomics and phylogenetic analyses of Liliaceae. Bot J Linn Soc. 2021. https://doi.org/10.1093/botlinnean/boaa109.
Article
Google Scholar
Chen Q, Wu X, Zhang D. Phylogenetic analysis of Fritillaria cirrhosa D. Don and its closely related species based on complete chloroplast genomes. Peer J. 2019;7: e7480.
Article
PubMed
PubMed Central
Google Scholar
Nikolaus JS, Maria CC. Genome-Based approaches to the authentication of medicinal plants. Planta Med. 2008;74:603–23.
Article
CAS
Google Scholar
Nock CJ, Waters DLE, Edwards MA, et al. Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol J. 2010;9:328–33.
Article
PubMed
CAS
Google Scholar
Michael BJ, Rigault P, Spokevicius A, et al. Chloroplast genome analysis of Australian eucalypts—Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae). Mol Phylogenet Evol. 2013;69:704–16.
Article
CAS
Google Scholar
Yang JB, Tang M, Li H, et al. Complete chloroplast genome of the genus Cymbidium: lights into the species identification, phylogenetic implications and population genetic analyses. BMC Evol Biol. 2013;13:84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia Y, Hu Z, Li X, et al. The complete chloroplast genome sequence of Chrysanthemum indicum. Mitochondrial DNA. 2016;27:4668–9.
Article
CAS
PubMed
Google Scholar
Chen X, Zhou J, Cui Y, et al. Identification of Ligularia herbs using the complete chloroplast genome as a super-barcode. Front Pharmacol. 2018;9:695.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hollingsworth PM, Graham SW, Little DP. Choosing and using a plant DNA barcode. PLoS ONE. 2011;5: e19254. https://doi.org/10.1371/journal.pone.0019254.
Article
CAS
Google Scholar
Xiao P, Yan J, Ping L, Yi-Bo L, Yong L. The botanical origin and pharmacophylogenetic treatment of Chinese materia medica Beimu. Acta Phytotaxonomica Sinica. 2007;45(4):473–87.
Article
Google Scholar