Bataller R, North KE, Brenner DA. Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal. Hepatology. 2003;37:493–503.
Article
CAS
PubMed
Google Scholar
Liu T, Wang X, Karsdal MA, Leeming DJ, Genovese F. Molecular serum markers of liver fibrosis. Biomark Insights. 2012;7:105–17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Hu Y, Xu L, Liu C, Liu P. Effect of Fuzheng Huayu formula and its actions against liver fibrosis. Chin Med. 2009;4:12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fuchs BC, Hoshida Y, Fujii T, Wei L, Yamada S, Lauwers GY, et al. Epidermal growth factor receptor inhibition attenuates liver fibrosis and development of hepatocellular carcinoma. Hepatology. 2014;59:1577–90.
Article
CAS
PubMed
Google Scholar
Lan Q, Ren Z, Chen Y, Cui G, Choi IC, Ung COL, et al. Hepatoprotective effect of Qushihuayu formula on non-alcoholic steatohepatitis induced by MCD diet in rat. Chin Med. 2021;16:1–12.
Article
CAS
Google Scholar
Luedde T, Schwabe RF. NF-κB in the liver-linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2011;8:108–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Z, Liu L, Gao C, Chen W, Vong CT, Yao P, et al. Astragali Radix (Huangqi): A promising edible immunomodulatory herbal medicine. J Ethnopharmacol. 2020;258:112895.
Article
CAS
PubMed
Google Scholar
Fu J, Wang Z, Huang L, Zheng S, Wang D, Chen S, et al. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phyther Res. 2014;28:1275–83.
Article
CAS
Google Scholar
Li N, Zhou T, Wu F, Wang R, Zhao Q, Zhang JQ, et al. Pharmacokinetic mechanisms underlying the detoxification effect of Glycyrrhizae Radix et Rhizoma (Gancao): drug metabolizing enzymes, transporters, and beyond. Expert Opin Drug Metab Toxicol. 2019;15:167–77.
Article
CAS
PubMed
Google Scholar
Li X, Sun R, Liu R. Natural products in licorice for the therapy of liver diseases: progress and future opportunities. Pharmacol Res. 2019;144:210–26.
Article
CAS
PubMed
Google Scholar
Liu C, Wang G, Chen G, Mu Y, Zhang L, Hu X, et al. Huangqi decoction inhibits apoptosis and fibrosis, but promotes Kupffer cell activation in dimethylnitrosamine-induced rat liver fibrosis. BMC Complement Altern Med. 2012;12:1.
Article
CAS
Google Scholar
Du JX, Sun MY, Du GL, Li FH, Liu C, Mu YP, et al. Ingredients of Huangqi decoction slow biliary fibrosis progression by inhibiting the activation of the transforming growth factor-beta signaling pathway. BMC Complement Altern Med. 2012;12:33.
Article
PubMed
PubMed Central
Google Scholar
Zhang GB, Song YN, Chen QL, Dong S, Lu YY, Su MY, et al. Actions of Huangqi decoction against rat liver fibrosis: a gene expression profiling analysis. Chin Med. 2015;10:1–11.
Article
CAS
Google Scholar
Liu C, Liu P, Mu Y, Zhang H. Research development on treatment of HuangQi decoction for chronic liver disease. World Chinese Med. 2015;10:157–61.
CAS
Google Scholar
Xie G, Wang S, Zhang H, Zhao A, Liu J, Ma Y, et al. Poly-pharmacokinetic study of a multicomponent herbal medicine in healthy chinese volunteers. Clin Pharmacol Ther. 2018;103:692–702.
Article
CAS
PubMed
Google Scholar
Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 2009;37:623–33.
Article
CAS
Google Scholar
Harding SD, Sharman JL, Faccenda E, Southan C, Pawson AJ, Ireland S, et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Res. 2018;46:D1091–106.
Article
CAS
PubMed
Google Scholar
Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn C, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92:414–7.
Article
CAS
PubMed
Google Scholar
Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J. BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. 2016;44:D1045–53.
Article
CAS
PubMed
Google Scholar
Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34:D668–72.
Article
CAS
PubMed
Google Scholar
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets - Update. Nucleic Acids Res. 2013;41:991–5.
Article
CAS
Google Scholar
Pletscher-Frankild S, Pallejà A, Tsafou K, Binder JX, Jensen LJ. DISEASES: text mining and data integration of disease-gene associations. Methods. 2015;74:83–9.
Article
CAS
PubMed
Google Scholar
Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford). 2017;2017:1–17.
Article
CAS
Google Scholar
Amberger J, Bocchini CA, Scott AF, Hamosh A. McKusick’s Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res. 2009;37:D793–6.
Article
CAS
PubMed
Google Scholar
Li YH, Yu CY, Li XX, Zhang P, Tang J, Yang Q, et al. Therapeutic target database update 2018: Enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res. 2018;46:D1121–7.
Article
CAS
PubMed
Google Scholar
Piñero J, Bravo Á, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017;45:D833–9.
Article
PubMed
CAS
Google Scholar
Rappaport N, Twik M, Plaschkes I, Nudel R, Stein TI, Levitt J, et al. MalaCards: An amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res. 2017;45:D877–87.
Article
CAS
PubMed
Google Scholar
Wu Z, Peng Y, Yu Z, Li W, Liu G, Tang Y. NetInfer: a web server for prediction of targets and therapeutic and adverse effects via network-based inference methods. J Chem Inf Model. 2020;60:3687–91.
Article
CAS
PubMed
Google Scholar
Martin A, Ochagavia ME, Rabasa LC, Miranda J, Fernandez-de-Cossio J, Bringas R. BisoGenet: a new tool for gene network building, visualization and analysis. BMC Bioinformatics. 2010;11:91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8:S11.
Article
PubMed
PubMed Central
Google Scholar
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52.
Article
CAS
PubMed
Google Scholar
Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, et al. The protein data bank. Acta Crystallogr Sect D Biol Crystallogr. 2002;58:899–907.
Article
CAS
Google Scholar
Li H. Advances in anti hepatic fibrotic therapy with Traditional Chinese Medicine herbal formula. J Ethnopharmacol. 2020;251:112442.
Article
CAS
PubMed
Google Scholar
Zhang X, Xu Y, Chen JM, Liu C, Du GL, Zhang H, et al. Huang qi decoction prevents BDL-induced liver fibrosis through inhibition of notch signaling activation. Am J Chin Med. 2017;45:85–104.
Article
PubMed
Google Scholar
Li WK, Wang GF, Wang TM, Li YY, Li YF, Lu XY, et al. Protective effect of herbal medicine Huangqi decoction against chronic cholestatic liver injury by inhibiting bile acid-stimulated inflammation in DDC-induced mice. Phytomedicine. 2019;62:152948.
Article
PubMed
Google Scholar
Hemmann S, Graf J, Roderfeld M, Roeb E. Expression of MMPs and TIMPs in liver fibrosis—a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol. 2007;46:955–75.
Article
CAS
PubMed
Google Scholar
Kurzepa J, Czechowska G, Kurzepa J, Celiński K, Kazmierak W, et al. Role of MMP-2 and MMP-9 and their natural inhibitors in liver fibrosis, chronic pancreatitis and non-specific inflammatory bowel diseases. Hepatobiliary Pancreat Dis Int. 2014;13:570–9.
Article
CAS
PubMed
Google Scholar
Yang C, Zeisberg M, Mosterman B, Sudhakar A, Yerramalla U, Holthaus K, et al. Liver fibrosis: insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors. Gastroenterology. 2003;124:147–59.
Article
CAS
PubMed
Google Scholar
Galli A, Svegliati-Baroni G, Ceni E, Milani S, Ridolfi F, Salzano R, et al. Oxidative stress stimulates proliferation and invasiveness of hepatic stellate cells via a MMP2-mediated mechanism. Hepatology. 2005;41:1074–84.
Article
CAS
PubMed
Google Scholar
Capone F, Guerriero E, Sorice A, Maio P, Colonna G, Castello G, et al. Characterization of metalloproteinases, oxidative status and inflammation levels in the different stages of fibrosis in HCV patients. Clin Biochem. 2012;45:525–9.
Article
CAS
PubMed
Google Scholar
Prystupa A, Boguszewska-Czubara A, Bojarska-Junak A, Toruń-Jurkowska A, Roliński J, Załuska W. Activity of MMP-2, MMP-8 and MMP-9 in serum as a marker of progression of alcoholic liver disease in people from Lublin region, eastern Poland. Ann Agric Environ Med. 2015;22:325–8.
Article
CAS
PubMed
Google Scholar
Kozłowska J, Mikuła T, Suchacz M, Jabłońska J, Stańczak W, Cianciara J, et al. Pigment epithelium-derived factor and matrix metalloproteinase-9 in liver cirrhosis. Saudi J Gastroenterol. 2016;22:375–9.
Article
PubMed
PubMed Central
Google Scholar
Abdel-Latif MS. Plasma levels of matrix metalloproteinase (MMP)-2, MMP-9 and tumor necrosis factor-α in chronic hepatitis C virus patients. Open Microbiol J. 2015;9:136–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Copple BL, Kaska S, Wentling C. Hypoxia-inducible factor activation in myeloid cells contributes to the development of liver fibrosis in cholestatic mice. J Pharmacol Exp Ther. 2012;341:307–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bryan L, Shan Bai J-OM. Hypoxia-inducible Factor-dependent Production of Profibrotic Mediators by Hypoxic Kupffer Cells. Hepatol Res. 2010;40:530–9.
Article
CAS
Google Scholar
Moon JOK, Welch TP, Gonzalez FJ, Copple BL. Reduced liver fibrosis in hypoxia-inducible factor-1α-deficient mice. Am J Physiol. 2009;296:582–92.
Google Scholar
Wang B, Ding YM, Fan P, Wang B, Xu JH, Wang WX. Expression and significance of MMP2 and HIF-1α in hepatocellular carcinoma. Oncol Lett. 2014;8:539–46.
Article
PubMed
PubMed Central
Google Scholar
Jin R, Krasinskas A, Le NA, Konomi JV, Holzberg J, Romero R, et al. Association between plasminogen activator inhibitor-1 and severity of liver injury and cardiovascular risk in children with non-alcoholic fatty liver disease. Pediatr Obes. 2018;13:23–9.
Article
CAS
PubMed
Google Scholar
Alisi A, Manco M, Devito R, Piemonte F, Nobili V. Endotoxin and plasminogen activator inhibitor-1 serum levels associated with nonalcoholic steatohepatitis in children. J Pediatr Gastroenterol Nutr. 2010;50:645–9.
Article
CAS
PubMed
Google Scholar
Thuy S, Ladurner R, Volynets V, Wagner S, Strahl S, Königsrainer A, et al. Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. J Nutr. 2008;138:1452–5.
Article
CAS
PubMed
Google Scholar
Bergheim I, Guo L, Davis MA, Duveau I, Arteel GE. Critical role of plasminogen activator inhibitor-1 in cholestatic liver injury and fibrosis. J Pharmacol Exp Ther. 2006;316:592–600.
Article
CAS
PubMed
Google Scholar
Wang H, Vohra BPS, Zhang Y, Heuckeroth RO. Transcriptional profiling after bile duct ligation identifies PAI-1 as a contributor to cholestatic injury in mice. Hepatology. 2005;42:1099–108.
Article
CAS
PubMed
Google Scholar
Wang H, Zhang Y, Heuckeroth RO. PAI-1 deficiency reduces liver fibrosis after bile duct ligation in mice through activation of tPA. FEBS Lett. 2007;581:3098–104.
Article
CAS
PubMed
Google Scholar
Liang B, Guo XL, Jin J, Ma YC, Feng ZQ. Glycyrrhizic acid inhibits apoptosis and fibrosis in carbontetrachloride-induced rat liver injury. World J Gastroenterol. 2015;21:5271–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee EH, Park K, Kim KY, Lee JH, Jang EJ, Ku SK, et al. Liquiritigenin inhibits hepatic fibrogenesis and TGF-β1/Smad with Hippo/YAP signal. Phytomedicine. 2019;62:152780.
Article
CAS
PubMed
Google Scholar
Tsai YC, Leu SY, Peng YJ, Lee YM, Hsu CH, Chou SC, et al. Genistein suppresses leptin-induced proliferation and migration of vascular smooth muscle cells and neointima formation. J Cell Mol Med. 2017;21:422–31.
Article
CAS
PubMed
Google Scholar
Liu LL, Zhang Y, Zhang XF, Li FH. Influence of rutin on the effects of neonatal cigarette smoke exposure-induced exacerbated MMP-9 expression, Th17 cytokines and NF-kB/iNOS-mediated inflammatory responses in asthmatic mice model. Korean J Physiol Pharmacol. 2018;22:481–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Z, Sheng Y, Chen M, Hao Z, Hu F, Ji L. Liquiritigenin and liquiritin alleviated MCT-induced HSOS by activating Nrf2 antioxidative defense system. Toxicol Appl Pharmacol. 2018;355:18–27.
Article
CAS
PubMed
Google Scholar
Quan GH, Wang H, Cao J, Zhang Y, Wu D, Peng Q, et al. Calycosin suppresses RANKL-mediated osteoclastogenesis through inhibition of MAPKs and NF-κB. Int J Mol Sci. 2015;16:29496–507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou C, Li W, Li Z, Gao J, Chen Z, Zhao X, et al. Synthetic Isoliquiritigenin Inhibits Human Tongue Squamous Carcinoma Cells through Its Antioxidant Mechanism. Oxid Med Cell Longev. 2017;2017:1379430.
Article
PubMed
PubMed Central
Google Scholar
Jie Z, Xie Z, Zhao X, Sun X, Yu H, Pan X, et al. Glabridin inhibits osteosarcoma migration and invasion via blocking the p38- and JNK-mediated CREB–AP1 complexes formation. J Cell Physiol. 2019;234:4167–78.
Article
CAS
PubMed
Google Scholar
Hua F, Li CH, Chen XG, Liu XP. Daidzein exerts anticancer activity towards SKOV3 human ovarian cancer cells by inducing apoptosis and cell cycle arrest, and inhibiting the Raf/MEK/ERK cascade. Int J Mol Med. 2018;41:3485–92.
CAS
PubMed
Google Scholar
Vishwakarma A, Singh TU, Rungsung S, Kumar T, Kandasamy A, Parida S, et al. Effect of Kaempferol Pretreatment on Myocardial Injury in Rats. Cardiovasc Toxicol. 2018;18:312–28.
Article
CAS
PubMed
Google Scholar
Yang M, Li WY, Xie J, Wang ZL, Wen YL, Zhao CC, et al. Astragalin inhibits the proliferation and migration of human colon cancer HCT116 cells by regulating the NF-κB signaling pathway. Front Pharmacol. 2021;12:1–15.
Google Scholar
Auyeung KKW, Law PC, Ko JKS. Novel anti-angiogenic effects of formononetin in human colon cancer cells and tumor xenograft. Oncol Rep. 2012;28:2188–94.
Article
CAS
PubMed
Google Scholar
Kim GD. Kaempferol inhibits angiogenesis by suppressing HIF-1α and VEGFR2 activation via ERK/p38 MAPK and PI3K/Akt/mTOR Signaling pathways in endothelial cells. Prev Nutr Food Sci. 2017;22:320–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sundaram R L, Sali VK, Vasanthi HR. Protective effect of rutin isolated from Spermococe hispida against cobalt chloride-induced hypoxic injury in H9c2 cells by inhibiting oxidative stress and inducing apoptosis. Phytomedicine. 2018;51:196–204.
Wang C, Chen Y, Wang Y, Liu X, Liu Y, Li Y, et al. Inhibition of COX-2, mPGES-1 and CYP4A by isoliquiritigenin blocks the angiogenic Akt signaling in glioma through ceRNA effect of miR-194-5p and lncRNA NEAT1. J Exp Clin Cancer Res. 2019;38:1–14.
Article
Google Scholar
Wu J, Ke X, Ma N, Wang W, Fu W, Zhang H, et al. Formononetin, an active compound of Astragalus membranaceus (Fisch) Bunge, inhibits hypoxia-induced retinal neovascularization via the HIF-1α/VEGF signaling pathway. Drug Des Devel Ther. 2016;10:3071–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia Z, Wang X, Wang X, Wei P, Li L, Wu P, et al. Calycosin alleviates allergic contact dermatitis by repairing epithelial tight junctions via down-regulating HIF-1α. J Cell Mol Med. 2018;22:4507–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park MK, Ji J, Haam K, Han TH, Lim S, Kang MJ, et al. Licochalcone A inhibits hypoxia-inducible factor-1α accumulation by suppressing mitochondrial respiration in hypoxic cancer cells. Biomed Pharmacother. 2021;133:111082.
Article
CAS
PubMed
Google Scholar
Mukund V, Saddala MS, Farran B, Mannavarapu M, Alam A, Nagaraju GP. Molecular docking studies of angiogenesis target protein HIF-1α and genistein in breast cancer. Gene. 2019;701:169–72.
Article
CAS
PubMed
Google Scholar
Wang Q, Lu W, Yin T, Lu L. Calycosin suppresses TGF-β-induced epithelial-to-mesenchymal transition and migration by upregulating BATF2 to target PAI-1 via the Wnt and PI3K/Akt signaling pathways in colorectal cancer cells. J Exp Clin Cancer Res. 2019;38:1–12.
Google Scholar
Jiang L, Zhao L, Bi J, Guan Q, Qi A, Wei Q, et al. Glycolysis gene expression profilings screen for prognostic risk signature of hepatocellular carcinoma. Aging (Albany NY). 2019;11:10861–82.
Article
CAS
Google Scholar
Zhang F, Jin H, Wu L, Shao J, Zhu X, Chen A, et al. Diallyl trisulfide suppresses oxidative stress-induced activation of hepatic stellate cells through production of hydrogen sulfide. Oxid Med Cell Longev. 2017;2017:1406726.
Article
PubMed
PubMed Central
Google Scholar
Derdak Z, Villegas KA, Harb R, Wu AM, Sousa A, Wands JR. Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease. J Hepatol. 2013;58:785–91.
Article
CAS
PubMed
Google Scholar
Yahagi N, Shimano H, Matsuzaka T, Sekiya M, Najima Y, Okazaki S, et al. p53 Involvement in the pathogenesis of fatty liver disease. J Biol Chem. 2004;279:20571–5.
Article
CAS
PubMed
Google Scholar
Farrell GC, Larter CZ, Hou JY, Zhang RH, Yeh MM, Williams J, et al. Apoptosis in experimental NASH is associated with p53 activation and TRAIL receptor expression. J Gastroenterol Hepatol. 2009;24:443–52.
Article
CAS
PubMed
Google Scholar
Sun S, Zhao B, Qi M, Yao Y, Xu L, Ji R, Chen W, Wang J, Huang S, Ma L, Chen Y, Yang Z, Sheng H, Fei J, Chen EME. TUDCA ameliorates liver injury via activation of SIRT1-FXR signaling in a rat Hemorrhagic shock model. Shock. 2020;53:217–22.
Article
CAS
PubMed
Google Scholar
Koyama Y, Brenner DA, Koyama Y, Brenner DA. Liver inflammation and fibrosis. J Clin Invest. 2017;127:55–64.
Article
PubMed
PubMed Central
Google Scholar
Cheng ASL, Chan HLY, Leung NWY, Liew CT, To KF, Lai PBS, et al. Expression of cyclooxygenase-2 in chronic hepatitis B and the effects of anti-viral therapy. Aliment Pharmacol Ther. 2002;16:251–60.
Article
CAS
PubMed
Google Scholar
Hazra S, Xiong S, Wang J, Rippe RA, Chatterjee VKK, Tsukamoto H. peroxisome proliferator-activated receptor γ induces a phenotypic switch from activated to quiescent hepatic stellate cells. J Biol Chem. 2004;279:11392–401.
Article
CAS
PubMed
Google Scholar
Miyahara T, Schrum L, Rippe R, Xiong S, Yee J, Motomura K, et al. Peroxisome proliferator-activated receptors and hepatic stellate cell activation. J Biol Chem. 2000;275:35715–22.
Article
CAS
PubMed
Google Scholar
Chen J, Montagner A, Tan NS, Wahli W. Insights into the role of PPARβ/δ in NAFLD. Int J Mol Sci. 2018;19:1–23.
Google Scholar
Lee CH, Park SW, Kim YS, Kang SS, Kim JA, Lee SH, et al. Protective mechanism of glycyrrhizin on acute liver injury induced by carbon tetrachloride in mice. Biol Pharm Bull. 2007;30:1898–904.
Article
CAS
PubMed
Google Scholar
Hou W, Li S, Li S, Shi D, Liu C. Screening and isolation of cyclooxygenase-2 inhibitors from Trifolium pratense L. via ultrafiltration, enzyme-immobilized magnetic beads, semi-preparative high-performance liquid chromatography and high-speed counter-current chromatography. J Sep Sci. 2019;42:1133–43.
Article
CAS
PubMed
Google Scholar
Su X, Huang Q, Chen J, Wang M, Pan H, Wang R, et al. Calycosin suppresses expression of pro-inflammatory cytokines via the activation of p62/Nrf2-linked heme oxygenase 1 in rheumatoid arthritis synovial fibroblasts. Pharmacol Res. 2016;113:695–704.
Article
CAS
PubMed
Google Scholar
Rebhun JF, Glynn KM, Missler SR. Identification of glabridin as a bioactive compound in licorice (Glycyrrhiza glabra L.) extract that activates human peroxisome proliferator-activated receptor gamma (PPARγ). Fitoterapia. 2015;106:55–61.
Article
CAS
PubMed
Google Scholar
Zhou L, Tang YP, Gao L, Fan XS, Liu CM, Wu DK. Separation, characterization and dose-effect relationship of the PPARγ-activating bio-active constituents in the chinese herb formulation “San-ao decoction.” Molecules. 2009;14:3942–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin XY, Sohn DH, Lee SH. Isoliquiritigenin suppresses tumor necrosis factor-α-induced inflammation via peroxisome proliferator-activated receptor-γ in intestinal epithelial cells. Arch Pharm Res. 2016;39:1465–71.
Article
CAS
PubMed
Google Scholar