Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18:844–7. https://doi.org/10.1111/jth.14768.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan. China JAMA. 2020;323:1061–9. https://doi.org/10.1001/jama.2020.1585.
Article
CAS
PubMed
Google Scholar
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–33. https://doi.org/10.1056/NEJMoa2001017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li WH, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–4. https://doi.org/10.1038/nature02145.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohammad A, Marafie SK, Alshawaf E, et al. Structural analysis of ACE2 variant N720D demonstrates a higher binding affinity to TMPRSS2. Life Sci. 2020. https://doi.org/10.1016/j.lfs.2020.118219.
Article
PubMed
PubMed Central
Google Scholar
Chung MK, Karnik S, Saef J, et al. SARS-CoV-2 and ACE2: The biology and clinical data settling the ARB and ACEI controversy. Ebiomedicine. 2020. https://doi.org/10.1016/j.ebiom.2020.102907.
Article
PubMed
PubMed Central
Google Scholar
Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;3:237–61. https://doi.org/10.1146/annurev-virology-110615-042301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han YX, Kral P. Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano. 2020;14:5143–7. https://doi.org/10.1021/acsnano.0c02857.
Article
CAS
PubMed
Google Scholar
Lambert DW, Yarski M, Warner FJ, et al. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem. 2005;280:30113–9. https://doi.org/10.1074/jbc.M505111200.
Article
CAS
PubMed
Google Scholar
Haga S, Nagata N, Okamura T, et al. TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds. Antiviral Res. 2010;85:551–5. https://doi.org/10.1016/j.antiviral.2009.12.001.
Article
CAS
PubMed
Google Scholar
Wang HL, Yang P, Liu KT, et al. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 2008;18:290–301. https://doi.org/10.1038/cr.2008.15.
Article
CAS
PubMed
Google Scholar
Zhu XJ, Liu Q, Du LY, et al. Receptor-binding domain as a target for developing SARS vaccines. J Thorac Dis. 2013;5:S142–8. https://doi.org/10.3978/j.issn.2072-1439.2013.06.06.
Article
PubMed
PubMed Central
Google Scholar
Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020;27:325–8. https://doi.org/10.1016/j.chom.2020.02.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wan Y, Shang J, Graham R, et al. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020. https://doi.org/10.1128/JVI.00127-20.
Article
PubMed
PubMed Central
Google Scholar
Zhou Y, Hou Y, Shen J, et al. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020;6:14. https://doi.org/10.1038/s41421-020-0153-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–3. https://doi.org/10.1038/s41586-020-2012-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:565–74. https://doi.org/10.1016/S0140-6736(20)30251-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci. 2020;63:457–60. https://doi.org/10.1007/s11427-020-1637-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung MK, Karnik S, Saef J, et al. SARS-CoV-2 and ACE2: The biology and clinical data settling the ARB and ACEI controversy. EBioMedicine. 2020;58: 102907. https://doi.org/10.1016/j.ebiom.2020.102907.
Article
PubMed
PubMed Central
Google Scholar
Hoffmann M, Kleine-Weber H, Pohlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell. 2020;78:779-784 https://doi.org/10.1016/j.molcel.2020.04.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(281–292): e6. https://doi.org/10.1016/j.cell.2020.02.058.
Article
CAS
Google Scholar
Yang X, Yang W, McVey DG, et al. FURIN expression in vascular endothelial cells is modulated by a coronary artery disease-associated genetic variant and influences monocyte transendothelial migration. J Am Heart Assoc. 2020;9: e014333. https://doi.org/10.1161/JAHA.119.014333.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020;75:1564–81. https://doi.org/10.1111/all.14364.
Article
CAS
PubMed
Google Scholar
Polidoro RB, Hagan RS, de Santis Santiago R, et al. Overview: systemic inflammatory response derived from lung injury caused by SARS-CoV-2 infection explains severe outcomes in COVID-19. Front Immunol. 2020;11:1626. https://doi.org/10.3389/fimmu.2020.01626.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020;7:11. https://doi.org/10.1186/s40779-020-00240-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–4. https://doi.org/10.1016/S0140-6736(20)30628-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang T, Chen RC, Liu CL, et al. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19. Lancet Haematol. 2020;7:E362–3. https://doi.org/10.1016/S2352-3026(20)30109-5.
Article
PubMed
PubMed Central
Google Scholar
Arachchillage DRJ, Laffan M. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18:1233–4. https://doi.org/10.1111/jth.14820.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–20. https://doi.org/10.1056/NEJMoa2002032.
Article
CAS
PubMed
Google Scholar
Osterholm MT. Preparing for the next pandemic. New Engl J Med. 2005;352:1839–42. https://doi.org/10.1056/NEJMp058068.
Article
CAS
PubMed
Google Scholar
Sun XJ, Wang TY, Cai DY, et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth F R. 2020;53:38–42. https://doi.org/10.1016/j.cytogfr.2020.04.002.
Article
CAS
Google Scholar
Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395:1763–70. https://doi.org/10.1016/S0140-6736(20)31189-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henderson LA, Canna SW, Schulert GS, et al. On the alert for cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol. 2020;72:1059–63. https://doi.org/10.1002/art.41285.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science. 2020;368:473–4. https://doi.org/10.1126/science.abb8925.
Article
CAS
PubMed
Google Scholar
Lu L, Zhang H, Zhan M, et al. Preventing mortality in COVID-19 patients: which cytokine to target in a raging storm? Front Cell Dev Biol. 2020;8:677. https://doi.org/10.3389/fcell.2020.00677.
Article
PubMed
PubMed Central
Google Scholar
Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180:934–43. https://doi.org/10.1001/jamainternmed.2020.0994.
Article
CAS
PubMed
Google Scholar
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39:529–39. https://doi.org/10.1007/s00281-017-0629-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou X, Wang G, Chen L, et al. Clinical characteristics of hematological patients concomitant with COVID-19. Cancer Sci. 2020;111:3379–85. https://doi.org/10.1111/cas.14544.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet. 2020;395:497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.
Article
CAS
PubMed
Google Scholar
Mahmudpour M, Roozbeh J, Keshavarz M, et al. COVID-19 cytokine storm: the anger of inflammation. Cytokine. 2020;133: 155151. https://doi.org/10.1016/j.cyto.2020.155151.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miossec P. Synergy between cytokines and risk factors in the cytokine storm of COVID-19: does ongoing use of cytokine inhibitors have a protective effect? Arthr Rheumatol. 2020;72:1963–6. https://doi.org/10.1002/art.41458.
Article
CAS
Google Scholar
Panigrahy D, Gilligan M, Huang S, et al. Inflammation resolution: a dual-pronged approach to averting cytokine storms in COVID-19? Cancer Metastasis Rev. 2020;39:337–40. https://doi.org/10.1007/s10555-020-09889-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Guo M, Tian X, et al. Virus-host interactome and proteomic survey reveal potential virulence factors influencing SARS-CoV-2 pathogenesis. Med (N Y). 2021;2(99–112): e7. https://doi.org/10.1016/j.medj.2020.07.002.
Article
Google Scholar
Ye Q, Wang BL, Mao JH. The pathogenesis and treatment of the “Cytokine Storm” in COVID-19. J Infection. 2020;80:607–13. https://doi.org/10.1016/j.jinf.2020.03.037.
Article
CAS
Google Scholar
Zhang R, Wang XB, Ni L, et al. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci. 2020;250: 117583. https://doi.org/10.1016/j.lfs.2020.117583.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang XB, Yu Y, Xu JQ, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Resp Med. 2020;8:475–81. https://doi.org/10.1016/S2213-2600(20)30079-5.
Article
CAS
Google Scholar
Quirch M, Lee J, Rehman S. Hazards of the cytokine storm and cytokine-targeted therapy in patients with COVID-19: review. J Med Internet Res. 2020;22: e20193. https://doi.org/10.2196/20193.
Article
PubMed
PubMed Central
Google Scholar
Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71:762–8. https://doi.org/10.1093/cid/ciaa248.
Article
CAS
PubMed
Google Scholar
Kiselevskiy M, Shubina I, Chikileva I, et al. Immune pathogenesis of COVID-19 intoxication: storm or silence? Pharmaceuticals (Basel). 2020;13:166. https://doi.org/10.3390/ph13080166.
Article
CAS
Google Scholar
Tang Y, Liu J, Zhang D, et al. Cytokine storm in COVID-19: the current evidence and treatment strategies. Front Immunol. 2020;11:1708. https://doi.org/10.3389/fimmu.2020.01708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wan SX, Yi QJ, Fan SB, et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Brit J Haematol. 2020;189:428–37. https://doi.org/10.1111/bjh.16659.
Article
CAS
Google Scholar
Xu B, Fan CY, Wang AL, et al. Suppressed T cell-mediated immunity in patients with COVID-19: A clinical retrospective study in Wuhan. China J Infection. 2020;81:E51–60. https://doi.org/10.1016/j.jinf.2020.04.012.
Article
CAS
Google Scholar
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420–2. https://doi.org/10.1016/S2213-2600(20)30076-X.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong Y, Liu Y, Cao L, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect. 2020;9:761–70. https://doi.org/10.1080/22221751.2020.1747363.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130:2620–9. https://doi.org/10.1172/Jci137244.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang ZF, Zhang AL, Wan YM, et al. Early hypercytokinemia is associated with interferon-induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection. P Natl Acad Sci USA. 2014;111:769–74. https://doi.org/10.1073/pnas.1321748111.
Article
CAS
Google Scholar
Li C, Yang P, Zhang Y, et al. Corticosteroid treatment ameliorates acute lung injury induced by 2009 swine origin influenza A (H1N1) virus in mice. PLoS ONE. 2012;7: e44110. https://doi.org/10.1371/journal.pone.0044110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Younan P, Iampietro M, Nishida A, et al. Ebola virus binding to Tim-1 on T lymphocytes induces a cytokine storm. MBio. 2017;8:e00845-e917. https://doi.org/10.1128/mBio.00845-17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Military Med Res. 2020;7:4. https://doi.org/10.1186/s40779-020-0233-6.
Article
CAS
Google Scholar
Calabrese LH. Cytokine storm and the prospects for immunotherapy with COVID-19. Cleve Clin J Med. 2020;87:389–93. https://doi.org/10.3949/ccjm.87a.ccc008.
Article
PubMed
Google Scholar
Zhou W, Liu Y, Tian D, et al. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia. Signal Transduct Target Ther. 2020. https://doi.org/10.1038/s41392-020-0127-9.
Article
PubMed
PubMed Central
Google Scholar
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–13. https://doi.org/10.1016/S0140-6736(20)30211-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Z, Liu J, Zhou Y, et al. The effect of corticosteroid treatment on patients with coronavirus infection: a systematic review and meta-analysis. J Infect. 2020;81:e13–20. https://doi.org/10.1016/j.jinf.2020.03.062.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahmud-Al-Rafat A, Majumder A, Rahman KMT, et al. Decoding the enigma of antiviral crisis: does one target molecule regulate all? Cytokine. 2019;115:13–23. https://doi.org/10.1016/j.cyto.2018.12.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395:473–5. https://doi.org/10.1016/s0140-6736(20)30317-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20:400–2. https://doi.org/10.1016/S1473-3099(20)30132-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395:E30–1. https://doi.org/10.1016/S0140-6736(20)30304-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Favalli EG, Biggioggero M, Maioli G, et al. Baricitinib for COVID-19: a suitable treatment? Lancet Infect Dis. 2020;20:1012–3. https://doi.org/10.1016/S1473-3099(20)30262-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gendelman O, Amital H, Bragazzi NL, et al. Continuous hydroxychloroquine or colchicine therapy does not prevent infection with SARS-CoV-2: Insights from a large healthcare database analysis. Autoimmun Rev. 2020;19: 102566. https://doi.org/10.1016/j.autrev.2020.102566.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cumhur Cure M, Kucuk A, Cure E. Colchicine may not be effective in COVID-19 infection; it may even be harmful? Clin Rheumatol. 2020;39:2101–2. https://doi.org/10.1007/s10067-020-05144-x.
Article
PubMed
PubMed Central
Google Scholar
Zheng F, Liao C, Fan QH, et al. Clinical characteristics of children with coronavirus disease 2019 in Hubei, China. Curr Med Sci. 2020;40:275–80. https://doi.org/10.1007/s11596-020-2172-6.
Article
CAS
PubMed
Google Scholar
Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020;117:10970–5. https://doi.org/10.1073/pnas.2005615117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noris M, Remuzzi G. Overview of complement activation and regulation. Semin Nephrol. 2013;33:479–92. https://doi.org/10.1016/j.semnephrol.2013.08.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noris M, Benigni A, Remuzzi G. The case of complement activation in COVID-19 multiorgan impact. Kidney Int. 2020;98:314–22. https://doi.org/10.1016/j.kint.2020.05.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mastellos DC, Ricklin D, Lambris JD. Clinical promise of next-generation complement therapeutics. Nat Rev Drug Discov. 2019;18:707–29. https://doi.org/10.1038/s41573-019-0031-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spear GT, Hart M, Olinger GG, et al. The role of the complement system in virus infections. Curr Top Microbiol Immunol. 2001;260:229–45. https://doi.org/10.1007/978-3-662-05783-4_12.
Article
CAS
PubMed
Google Scholar
Guo RF, Ward PA. Role of C5A in inflammatory responses. Annu Rev Immunol. 2005;23:821–52. https://doi.org/10.1146/annurev.immunol.23.021704.115835.
Article
CAS
PubMed
Google Scholar
Huang JL, Huang J, Duan ZH, et al. Th2 predominance and CD8+ memory T cell depletion in patients with severe acute respiratory syndrome. Microbes Infect. 2005;7:427–36. https://doi.org/10.1016/j.micinf.2004.11.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao T, Hu M, Zhang X, et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. MedRxiv. 2020. https://doi.org/10.1101/2020.03.29.20041962.
Article
PubMed
PubMed Central
Google Scholar
Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020;220:1–13. https://doi.org/10.1016/j.trsl.2020.04.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaturvedi S, Braunstein EM, Yuan X, et al. Complement activity and complement regulatory gene mutations are associated with thrombosis in APS and CAPS. Blood. 2020;135:239–51. https://doi.org/10.1182/blood.2019003863.
Article
PubMed
PubMed Central
Google Scholar
Xiong Y, Liu Y, Cao L, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infec. 2020;9:761–70. https://doi.org/10.1080/22221751.2020.1747363.
Article
CAS
Google Scholar
Zhang XH, Kimura Y, Fang CY, et al. Regulation of Toll-like receptor-mediated inflammatory response by complement in vivo. Blood. 2007;110:228–36. https://doi.org/10.1182/blood-2006-12-063636.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hawlisch H, Belkaid Y, Baelder R, et al. C5a negatively regulates toll-like receptor 4-induced immune responses. Immunity. 2005;22:415–26. https://doi.org/10.1016/j.immuni.2005.02.006.
Article
CAS
PubMed
Google Scholar
Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20:269–70. https://doi.org/10.1038/s41577-020-0308-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwan WH, van der Touw W, Paz-Artal E, et al. Signaling through C5a receptor and C3a receptor diminishes function of murine natural regulatory T cells. J Exp Med. 2013;210:257–68. https://doi.org/10.1084/jem.20121525.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim AHJ, Dimitriou ID, Holland MCH, et al. Complement C5a receptor is essential for the optimal generation of antiviral CD8(+) T cell responses. J Immunol. 2004;173:2524–9. https://doi.org/10.4049/jimmunol.173.4.2524.
Article
CAS
PubMed
Google Scholar
Yousefi S, Mihalache C, Kozlowski E, et al. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 2009;16:1438–44. https://doi.org/10.1038/cdd.2009.96.
Article
CAS
PubMed
Google Scholar
Cole DS, Morgan BP. Beyond lysis: how complement influences cell fate. Clin Sci. 2003;104:455–66. https://doi.org/10.1042/cs20020362.
Article
CAS
Google Scholar
Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20:34–50. https://doi.org/10.1038/cr.2009.139.
Article
CAS
PubMed
Google Scholar
Twaddell SH, Baines KJ, Grainge C, et al. The emerging role of neutrophil extracellular traps in respiratory disease. Chest. 2019;156:774–82. https://doi.org/10.1016/j.chest.2019.06.012.
Article
PubMed
Google Scholar
Narasaraju T, Yang E, Samy RP, et al. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol. 2011;179:199–210. https://doi.org/10.1016/j.ajpath.2011.03.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Porto BN, Stein RT. Neutrophil extracellular traps in pulmonary diseases: too much of a good thing? Front Immunol. 2016;7:311. https://doi.org/10.3389/fimmu.2016.00311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomar B, Anders HJ, Desai J, et al. Neutrophils and neutrophil extracellular traps drive necroinflammation in COVID-19. Cells-Basel. 2020;9:1383. https://doi.org/10.3390/cells9061383.
Article
CAS
Google Scholar
Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23:279–87. https://doi.org/10.1038/nm.4294.
Article
CAS
PubMed
Google Scholar
Kessenbrock K, Krumbholz M, Schonermarck U, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009;15:623–5. https://doi.org/10.1038/nm.1959.
Article
CAS
PubMed
PubMed Central
Google Scholar
Papayannopoulos V, Metzler KD, Hakkim A, et al. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191:677–91. https://doi.org/10.1083/jcb.201006052.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ritis K, Doumas M, Mastellos D, et al. A novel c5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J Immunol. 2006;177:4794–802. https://doi.org/10.4049/jimmunol.177.7.4794.
Article
CAS
PubMed
Google Scholar
Chauhan AJ, Wiffen LJ, Brown TP. COVID-19: A collision of complement, coagulation and inflammatory pathways. J Thromb Haemost. 2020;18:2110–7. https://doi.org/10.1111/jth.14981.
Article
CAS
PubMed
Google Scholar
Beltrame MH, Catarino SJ, Goeldner I, et al. The lectin pathway of complement and rheumatic heart disease. Front Pediatr. 2014;2:148. https://doi.org/10.3389/fped.2014.00148.
Article
PubMed
Google Scholar
Krarup A, Wallis R, Presanis JS, et al. Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS ONE. 2007;2: e623. https://doi.org/10.1371/journal.pone.0000623.
Article
CAS
PubMed
PubMed Central
Google Scholar
Magro CM, Momtahen S, Mulvey JJ, et al. Role of the skin biopsy in the diagnosis of atypical hemolytic uremic syndrome. Am J Dermatopathol. 2015;37:349–56. https://doi.org/10.1097/DAD.0000000000000234 (quiz 357-9).
Article
PubMed
PubMed Central
Google Scholar
Wang RX, Xiao H, Guo RF, et al. The role of C5a in acute lung injury induced by highly pathogenic viral infections. Emerg Microbes Infec. 2015;4: e28. https://doi.org/10.1038/emi.2015.28.
Article
CAS
Google Scholar
Ward PA. New strategies for treatment of humans with acute lung injury/acute respiratory distress syndrome. Clin Infect Dis. 2015;60:596–7. https://doi.org/10.1093/cid/ciu892.
Article
PubMed
Google Scholar
Gralinski LE, Sheahan TP, Morrison TE, et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio. 2018;9:e01753-e1818. https://doi.org/10.1128/mBio.01753-18.
Article
PubMed
PubMed Central
Google Scholar
Risitano AM, Mastellos DC, Huber-Lang M, et al. Complement as a target in COVID-19? Nat Rev Immunol. 2020;20:343–4. https://doi.org/10.1038/s41577-020-0320-7.
Article
CAS
PubMed
Google Scholar
Soy M, Keser G, Atagunduz P, et al. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol. 2020;39:2085–94. https://doi.org/10.1007/s10067-020-05190-5.
Article
PubMed
PubMed Central
Google Scholar
Jiang YT, Zhao GY, Song NP, et al. Blockade of the C5a–C5aR axis alleviates lung damage in hDPP4-transgenic mice infected with MERS-CoV. Emerg Microbes Infect. 2018;7:77. https://doi.org/10.1038/s41426-018-0063-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mastaglio S, Ruggeri A, Risitano AM, et al. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin Immunol. 2020;215: 108450. https://doi.org/10.1016/j.clim.2020.108450.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelly RJ, Hill A, Arnold LM, et al. Long-term treatment with eculizumab in paroxysmal nocturnal hemoglobinuria: sustained efficacy and improved survival. Blood. 2011;117:6786–92. https://doi.org/10.1182/blood-2011-02-333997.
Article
CAS
PubMed
Google Scholar
Pittock SJ, Berthele A, Fujihara K, et al. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. New Engl J Med. 2019;381:614–25. https://doi.org/10.1056/NEJMoa1900866.
Article
CAS
PubMed
Google Scholar
Diurno F, Numis FG, Porta G, et al. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience. Eur Rev Med Pharmaco. 2020;24:4040–7. https://doi.org/10.26355/eurrev_202004_20875.
Article
CAS
Google Scholar
Ormsby R, Jokiranta T, Duthy T, et al. Localization of the third heparin-binding site in the human complement regulator factor. Mol Immunol. 2006;H1(43):1624–32. https://doi.org/10.1016/j.molimm.2005.09.012.
Article
CAS
Google Scholar
Fan H, Liu F, Bligh SW, et al. Structure of a homofructosan from Saussurea costus and anti-complementary activity of its sulfated derivatives. Carbohydr Polym. 2014;105:152–60. https://doi.org/10.1016/j.carbpol.2014.01.084.
Article
CAS
PubMed
Google Scholar
Wang H, Wang H, Shi S, et al. Structural characterization of a homogalacturonan from Capparis spinosa L. fruits and anti-complement activity of its sulfated derivative. Glycoconj J. 2012;29:379–87. https://doi.org/10.1007/s10719-012-9418-x.
Article
CAS
PubMed
Google Scholar
Fu ZL, Xia L, De J, et al. Beneficial effects on H1N1-induced acute lung injury and structure characterization of anti-complementary acidic polysaccharides from Juniperus pingii var. wilsonii. Int J Biol Macromol. 2019;129:246–53. https://doi.org/10.1016/j.ijbiomac.2019.01.163.
Article
CAS
PubMed
Google Scholar
Xu YY, Zhang YY, Ou YY, et al. Houttuynia cordata Thunb. polysaccharides ameliorates lipopolysaccharide-induced acute lung injury in mice. J Ethnopharmacol. 2015;173:81–90. https://doi.org/10.1016/j.jep.2015.07.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu Y, Jiang Y, Ling LJ, et al. Beneficial effects of Houttuynia cordata polysaccharides on “two-hit” acute lung injury and endotoxic fever in rats associated with anti-complementary activities. Acta Pharm Sin B. 2018;8:218–27. https://doi.org/10.1016/j.apsb.2017.11.003.
Article
PubMed
Google Scholar
Cheng XQ, Song LJ, Li H, et al. Beneficial effect of the polysaccharides from Bupleurum smithii var. parvifolium on “two-hit” acute lung injury in rats. Inflammation. 2012;35:1715–22. https://doi.org/10.1007/s10753-012-9489-7.
Article
CAS
PubMed
Google Scholar
Xie JY, Di HY, Li H, et al. Bupleurum chinense DC polysaccharides attenuates lipopolysaccharide-induced acute lung injury in mice. Phytomedicine. 2012;19:130–7. https://doi.org/10.1016/j.phymed.2011.08.057.
Article
CAS
PubMed
Google Scholar
Zhi HJ, Zhu HY, Zhang YY, et al. In vivo effect of quantified flavonoids-enriched extract of Scutellaria baicalensis root on acute lung injury induced by influenza A virus. Phytomedicine. 2019;57:105–16. https://doi.org/10.1016/j.phymed.2018.12.009.
Article
CAS
PubMed
Google Scholar
Zhang Q, Li CS, Wang S, et al. Effects of Chinese medicine shen-fu injection on the expression of inflammatory cytokines and complements during post-resuscitation immune dysfunction in a porcine model. Chin J Integr Med. 2016;22:101–9. https://doi.org/10.1007/s11655-014-1857-8.
Article
PubMed
Google Scholar
Ren W, Liang P, Ma Y, et al. Research progress of traditional Chinese medicine against COVID-19. Biomed Pharmacother. 2021;137: 111310. https://doi.org/10.1016/j.biopha.2021.111310.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang BL, Wang YY. Basic research on key scientific problems of Chinese medicine prescriptions–development of modern Chinese medicine by compatibility of components. Chin J Nat Med. 2005;3:258–61.
Google Scholar
Xiao XH, Yan D, Yuan HL, et al. A model for identification and quality control of active components of traditional Chinese medicine based on component knock-out/knock-in. Chin Tradit Herbal Drugs. 2009;40:1345–8.
Google Scholar
Huang X, Kong L, Li X, et al. Strategy for analysis and screening of bioactive compounds in traditional Chinese medicines. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;812:71–84. https://doi.org/10.1016/j.jchromb.2004.06.046.
Article
CAS
PubMed
Google Scholar
Zhang AH, Sun H, Yan GL, et al. Chinmedomics: a powerful approach integrating metabolomics with serum pharmacochemistry to evaluate the efficacy of traditional Chinese medicine. Engineering-Prc. 2019;5:60–8. https://doi.org/10.1016/j.eng.2018.11.008.
Article
CAS
Google Scholar
Chen C, Yang FQ, Zuo HL, et al. Applications of biochromatography in the screening of bioactive natural products. J Chromatogr Sci. 2013;51:780–90. https://doi.org/10.1093/chromsci/bmt002.
Article
CAS
PubMed
Google Scholar
Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013;11:110–20. https://doi.org/10.1016/S1875-5364(13)60037-0.
Article
PubMed
Google Scholar
Xue X, Jiao Q, Jin R, et al. The combination of UHPLC-HRMS and molecular networking improving discovery efficiency of chemical components in Chinese Classical Formula. Chin Med. 2021;16:50. https://doi.org/10.1186/s13020-021-00459-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li ZX, Zhao GD, Xiong W, et al. Correction to: Immunomodulatory effects of a new whole ingredients extract from Astragalus: a combined evaluation on chemistry and pharmacology. Chin Med. 2021;16:38. https://doi.org/10.1186/s13020-021-00440-3.
Article
PubMed
PubMed Central
Google Scholar
Ou YY, Jiang Y, Li H, et al. Polysaccharides from Arnebia euchroma ameliorated endotoxic fever and acute lung injury in rats through inhibiting complement system. Inflammation. 2017;40:275–84. https://doi.org/10.1007/s10753-016-0478-0.
Article
CAS
PubMed
Google Scholar
Zhi HW, Zhang YY, Zhang JW, et al. Isolation and characterization of an anti-complementary protein-bound polysaccharide from the stem barks of Eucommia ulmoides. Int Immunopharmacol. 2008;8:1222–30. https://doi.org/10.1016/j.intimp.2008.04.012.
Article
CAS
Google Scholar
Xia L, Li BB, Lu Y, et al. Structural characterization and anticomplement activity of an acidic polysaccharide containing 3-O-methyl galactose from Juniperus tibetica. Int J Biol Macromol. 2019;132:1244–51. https://doi.org/10.1016/j.ijbiomac.2019.04.029.
Article
CAS
PubMed
Google Scholar
Xia L, Zhu MX, et al. Juniperus pingii var. wilsonii acidic polysaccharide: extraction, characterization and anticomplement activity. Carbohyd Polym. 2020;231:115728. https://doi.org/10.1016/j.carbpol.2019.115728.
Article
CAS
Google Scholar
Zhu T, Wang DX, Zhang W, et al. Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-kappaB. PLoS ONE. 2013;8: e56407. https://doi.org/10.1371/journal.pone.0056407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coon JT, Ernst E. Andrographis paniculata in the treatment of upper respiratory tract infections: a systematic review of safety and efficacy. Planta Med. 2004;70:293–8. https://doi.org/10.1055/s-2004-818938.
Article
CAS
PubMed
Google Scholar
Wen Q, Jin X, Lu Y, et al. Anticomplement ent-labdane diterpenoids from the aerial parts of Andrographis paniculata. Fitoterapia. 2020;142: 104528. https://doi.org/10.1016/j.fitote.2020.104528.
Article
CAS
PubMed
Google Scholar