Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.
Article
PubMed
Google Scholar
Ghiringhelli F, Apetoh L. Enhancing the anticancer effects of 5-fluorouracil: current challenges and future perspectives. Biomed J. 2015;38(2):111–6. https://doi.org/10.4103/2319-4170.130923.
Article
PubMed
Google Scholar
Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3(5):330–8. https://doi.org/10.1038/nrc1074.
Article
CAS
PubMed
Google Scholar
Hamouda N, Sano T, Oikawa Y, Ozaki T, Shimakawa M, Matsumoto K, Amagase K, Higuchi K, Kato S. Apoptosis, dysbiosis and expression of inflammatory cytokines are sequential events in the development of 5-fluorouracil-induced intestinal muco-sitis in mice. Basic Clin Pharmacol Toxicol. 2017;121(3):159–68. https://doi.org/10.1111/bcpt.12793.
Article
CAS
PubMed
Google Scholar
Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M, Bekele BN, Raber-Durlacher J, Donnelly JP, Rubenstein EB. Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer. 2004;100(S9):1995–2025. https://doi.org/10.1002/cncr.20162.
Article
PubMed
Google Scholar
Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136(1):65–80. https://doi.org/10.1053/j.gastro.2008.10.080.
Article
PubMed
Google Scholar
Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol. 2005;3(5):431–8. https://doi.org/10.1038/nrmicro1152.
Article
CAS
PubMed
Google Scholar
Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM. Gut mi-crobiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 2017;14(6):356–65. https://doi.org/10.1038/nrgastro.2017.20.
Article
CAS
PubMed
Google Scholar
Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971–6. https://doi.org/10.1126/science.1240537.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342(6161):967–70. https://doi.org/10.1126/science.1240527.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84. https://doi.org/10.1126/science.aad1329.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Man Lei Y, Jabri B, Alegre M-L. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science. 2015;350(6264):1084–9. https://doi.org/10.1126/science.aac4255.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and cl-inical applications. Nat Rev Gastroenterol Hepatol. 2019;16(11):690–704. https://doi.org/10.1038/s41575-019-0209-8.
Article
CAS
PubMed
Google Scholar
Brennan CA, Garrett WS. Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol. 2016;70:395–411. https://doi.org/10.1146/annurev-micro-102215-095513.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu J, Gan Y, Li M, Chen L, Liang J, Zhuo J, Luo H, Xu N, Wu X, Wu Q. Patcho-uli alcohol attenuates 5-fluorouracil-induced intestinal mucositis via TLR2/MyD88/NF-kB pathway and regulation of microbiota. Biomed Pharmacother. 2020;124: 109883. https://doi.org/10.1016/j.biopha.2020.109883.
Article
CAS
PubMed
Google Scholar
Li H-L, Lu L, Wang X-S, Qin L-Y, Wang P, Qiu S-P, Wu H, Huang F, Zhang B-B, Shi H-L. Alteration of gut microbiota and inflammatory cytokine/chemokine profil-es in 5-fluorouracil induced intestinal mucositis. Front Cell Infect Microbiol. 2017;7:455. https://doi.org/10.3389/fcimb.2017.00455.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan L, Zhang S, Li H, Yang F, Mushtaq N, Ullah S, Shi Y, An C, Xu J. The influence of gut microbiota dysbiosis to the efficacy of 5-Fluorouracil treatment on colorectal cancer. Biomed Pharmacother. 2018;108:184–93. https://doi.org/10.1016/j.biopha.2018.08.165.
Article
CAS
PubMed
Google Scholar
Sougiannis A, VanderVeen B, Enos R, Velazquez K, Bader J, Carson M, Chatzist-amou I, Walla M, Pena M, Kubinak J. Impact of 5 fluorouracil chemotherapy on gut inflammation, functional parameters, and gut microbiota. Brain, behavior, and im-munity. 2019;80:44–55. https://doi.org/10.1016/j.bbi.2019.02.020.
Article
CAS
Google Scholar
Justino PF, Melo LF, Nogueira AF, Costa JV, Silva LM, Santos CM, Mendes WO, Costa MR, Franco AX, Lima AA. Treatment with Saccharomyces boulardii reduces the inflammation and dysfunction of the gastrointestinal tract in 5-fluorouracil-induced intestinal mucositis in mice. Br J Nutr. 2014;111(9):1611–21. https://doi.org/10.1017/S0007114513004248.
Article
CAS
PubMed
Google Scholar
Wu T, Munro AJ, Guanjian L, Liu GJ. Chinese medical herbs for chemotherapy side effects in colorectal cancer patients. Cochrane Database Syst Rev. 2005. https://doi.org/10.1002/14651858.CD004540.pub2.
Article
PubMed
PubMed Central
Google Scholar
Chen K-J, Huang Y-L, Kuo L-M, Chen Y-T, Hung C-F, Hsieh P-W. Protective role of casuarinin from Melastoma malabathricum against a mouse model of 5-fluorouracil–induced intestinal mucositis: Impact on inflammation and gut microbiota dys-biosis. Phytomedicine. 2022;101: 154092. https://doi.org/10.1016/j.phymed.2022.154092.
Article
CAS
PubMed
Google Scholar
Huang G, Khan I, Li X, Chen L, Leong W, Ho LT, Hsiao WLW. Ginsenosides Rb3 and Rd reduce polyps formation while reinstate the dysbiotic gut microbiota and the intestinal microenvironment in ApcMin/+ mice. Sci Rep. 2017;7(1):12552. https://doi.org/10.1038/s41598-017-12644-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan I, Huang G, Li X, Leong W, Xia W, Hsiao WLW. Mushroom polysaccharides from Ganoderma lucidum and Poria cocos reveal prebiotic functions. J Funct Foods. 2018;41:191–201. https://doi.org/10.1016/j.jff.2017.12.046.
Article
CAS
Google Scholar
Khan I, Huang G, Li X, Liao W, Leong WK, Xia W, Bian X, Wu J, Hsiao WLW. Mushroom polysaccharides and jiaogulan saponins exert cancer preventive effects by shaping the gut microbiota and microenvironment in ApcMin/+ mice. Pharmacolo-gical Res. 2019;148: 104448. https://doi.org/10.1016/j.phrs.2019.104448.
Article
CAS
Google Scholar
Xia W, Li X, Khan I, Yin L, Su L, Leong WK, Bian X, Su J, Hsiao W, Huang G. Lycium Berry polysaccharides strengthen gut microenvironment and modulate gut microbiota of the mice. Evid Based Complement Alternat Med. 2020. https://doi.org/10.1155/2020/8097021.
Article
PubMed
PubMed Central
Google Scholar
Sun S-S, Wang K, Ma K, Bao L, Liu H-W. An insoluble polysaccharide from the sclerotium of Poria cocos improves hyperglycemia, hyperlipidemia and hepatic steatosis in ob/ob mice via modulation of gut microbiota. Chin J Nat Med. 2019;17(1):3–14. https://doi.org/10.1016/s1875-5364(19)30003-2.
Article
CAS
PubMed
Google Scholar
Jiang Y, Fan L. The effect of Poria cocos ethanol extract on the intestinal barrier function and intestinal microbiota in mice with breast cancer. J Ethnopharmacol. 2021;266: 113456. https://doi.org/10.1016/j.jep.2020.113456.
Article
CAS
PubMed
Google Scholar
Wang N, Liu D, Guo J, Sun Y, Guo T, Zhu X. Molecular mechanism of Poria cocos combined with oxaliplatin on the inhibition of epithelial-mesenchymal transition in gastric cancer cells. Biomed Pharmacother. 2018;102:865–73. https://doi.org/10.1016/j.biopha.2018.03.134.
Article
CAS
PubMed
Google Scholar
Wang J, Zheng D, Huang F, Zhao A, Kuang J, Ren Z, Chen T, Lei J, Lin J, Wang X, Jia W, Xie G, Zheng X. Theabrownin and Poria cocos polysaccharide improve lipid metabolism via modulation of bile acid and fatty acid metabolism. Front Pharmacol. 2022;13: 875549. https://doi.org/10.3389/fphar.2022.875549.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai Y, Yu H, Deng H, Fang Q, Lei H, Liu L, Wu N, Guo X, Song C. Three main metabolites from Wolfiporia cocos (F. A. Wolf) Ryvarden & Gilb regulate the gut microbiota in mice: a comparative study using microbiome-metabolomics. Front Pharmacol. 2022. https://doi.org/10.3389/fphar.2022.911140.
Article
PubMed
PubMed Central
Google Scholar
Sun S, Wang K, Sun L, Cheng B, Qiao S, Dai H, Shi W, Ma J, Liu H. Therapeutic manipulation of gut microbiota by polysaccharides of Wolfiporia cocos reveals the contribution of the gut fungi-induced PGE2 to alcoholic hepatic steatosis. Gut Microbes. 2020;12(1):1830693. https://doi.org/10.1080/19490976.2020.1830693.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Brar MS, Leung FC, Hsiao WW. Triterpenoid herbal saponins enhance beneficial bacteria, decrease sulfate-reducing bacteria, modulate inflammatory intestinal microenvironment and exert cancer preventive effects in ApcMin/+ mice. Oncotarget. 2016;7(21):31226. https://doi.org/10.1080/19490976.2020.
Article
PubMed
PubMed Central
Google Scholar
Dowd SE, Sun Y, Wolcott RD, Domingo A, Carroll JA. Bacterial tag–encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathog Dis. 2008;5(4):459–72. https://doi.org/10.1089/fpd.2008.0107.
Article
CAS
PubMed
Google Scholar
Li X, Khan I, Xia W, Huang G, Liu L, Law BYK, Yin L, Liao W, Leong W, Han R. Icariin enhances youth-like features by attenuating the declined gut microbiota in the aged mice. Pharmacol Res. 2021;168: 105587. https://doi.org/10.1016/j.phrs.2021.105587.
Article
CAS
PubMed
Google Scholar
Liao W, Khan I, Huang G, Chen S, Liu L, Leong WK, Li XA, Wu J, Wendy Hsiao WL. Bifidobacterium animalis: the missing link for the cancer-preventive effect of Gynostemma pentaphyllum. Gut Microbes. 2021;13(1):1847629. https://doi.org/10.1080/19490976.2020.1847629.
Article
CAS
PubMed
Google Scholar
Puppa MJ, White JP, Sato S, Cairns M, Baynes JW, Carson JA. Gut barrier dysfunction in the ApcMin/+ mouse model of colon cancer cachexia. Biochim Biophys Acta. 2011;1812(12):1601–6. https://doi.org/10.1016/j.bbadis.2011.08.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allen-Vercoe E, Jobin C. Fusobacterium and Enterobacteriaceae: important players for CRC? Immunol Lett. 2014;162(2):54–61. https://doi.org/10.1016/j.imlet.2014.05.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loh C-Y, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP, Looi CY. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells. 2019;8(10):1118. https://doi.org/10.3390/cells8101118.
Article
CAS
PubMed Central
Google Scholar
Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Investig. 2012;122(3):787–95. https://doi.org/10.1172/JCI59643.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perillo F, Amoroso C, Strati F, Giuffrè MR, Díaz-Basabe A, Lattanzi G, Facciotti F. Gut microbiota manipulation as a tool for colorectal cancer management: recent advances in its use for therapeutic purposes. Int J Mol Sci. 2020;21(15):5389. https://doi.org/10.3390/ijms21155389.
Article
CAS
PubMed Central
Google Scholar
Osman MA, Neoh H-M, Ab Mutalib N-S, Chin S-F, Mazlan L, Raja Ali RA, Zakaria AD, Ngiu CS, Ang MY, Jamal R. Parvimonas micra, Peptostreptococcus stomatis, Fusobacterium nucleatum and Akkermansia muciniphila as a four-bacteria biomarker panel of colorectal cancer. Sci Rep. 2021;11(1):1–12. https://doi.org/10.1038/s41598-021-82465-0.
Article
CAS
Google Scholar
Selvanantham T, Lin Q, Guo CX, Surendra A, Fieve S, Escalante NK, Guttman DS, Streutker CJ, Robertson SJ, Philpott DJ. NKT cell–deficient mice harbor an altered microbiota that fuels intestinal inflammation during chemically induced colitis. J Immunol. 2016;197(11):4464–72. https://doi.org/10.4049/jimmunol.1601410.
Article
CAS
PubMed
Google Scholar
Shah AM, Ma J, Wang Z, Hu R, Wang X, Peng Q, Amevor FK, Goswami N. Production of hydrogen sulfide by fermentation in rumen and its impact on health and production of animals. Processes. 2020;8(9):1169. https://doi.org/10.3390/pr8091169.
Article
CAS
Google Scholar
Attene-Ramos MS, Nava GM, Muellner MG, Wagner ED, Plewa MJ, Gaskins HR. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environ Mol Mutagen. 2010;51(4):304–14. https://doi.org/10.1002/em.20546.
Article
CAS
PubMed
Google Scholar
Hullar MA, Burnett-Hartman AN, Lampe JW. Gut microbes, diet, and cancer. In: Zappia Vincenzo, Panico Salvatore, Russo Gian Luigi, Budillon Alfredo, Ragione Fulvio Della, editors. Advances in nutrition and cancer. Heidelberg: Springer; 2014.
Google Scholar
Dekker JP, Frank KM. Salmonella, Shigella, and yersinia. Clin Lab Med. 2015;35(2):225–46. https://doi.org/10.1016/j.cll.2015.02.002.
Article
PubMed
PubMed Central
Google Scholar
Parker BJ, Wearsch PA, Veloo A, Rodriguez-Palacios A. The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol. 2020;11:906. https://doi.org/10.3389/fimmu.2020.00906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibson DL, Ma C, Rosenberger CM, Bergstrom KS, Valdez Y, Huang JT, Khan MA, Vallance BA. Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Cell Microbiol. 2008;10(2):388–403. https://doi.org/10.1111/j.1462-5822.2007.01052.x.
Article
CAS
PubMed
Google Scholar
Luperchio SA, Schauer DB. Molecular pathogenesis of Citrobacter rodentium and transmissible murine colonic hyperplasia. Microbes Infect. 2001;3(4):333–40. https://doi.org/10.1016/S1286-4579(01)01387-9.
Article
CAS
PubMed
Google Scholar
Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40. https://doi.org/10.1194/jlr.R036012.
Article
CAS
Google Scholar
Chen H, Zhang F, Li R, Liu Y, Wang X, Zhang X, Xu C, Li Y, Guo Y, Yao Q. Berberine regulates fecal metabolites to ameliorate 5-fluorouracil induced intestinal mucositis through modulating gut microbiota. Biomed Pharmacother. 2020;124: 109829. https://doi.org/10.1016/j.biopha.2020.109829.
Article
CAS
PubMed
Google Scholar
Wang C, Yang S, Gao L, Wang L, Cao L. Carboxymethyl pachyman (CMP) reduces intestinal mucositis and regulates the intestinal microflora in 5-fluorouracil-treated CT26 tumour-bearing mice. Food Funct. 2018;9(5):2695–704. https://doi.org/10.1039/c7fo01886j.
Article
CAS
PubMed
Google Scholar
Liu P, Wang Y, Yang G, Zhang Q, Meng L, Xin Y, Jiang X. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol Res. 2021;165: 105420. https://doi.org/10.1016/j.phrs.2021.105420.
Article
CAS
PubMed
Google Scholar
Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200. https://doi.org/10.1080/19490976.2015.1134082.
Article
PubMed
PubMed Central
Google Scholar
Parada Venegas D, De la Fuente MK, Landskron G, Gonzalez MJ, Quera R, Dijks-tra G, Harmsen HJM, Faber KN, Hermoso MA. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol. 2019;10:277. https://doi.org/10.3389/fimmu.2019.00277.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fonseca W, Lucey K, Jang S, Fujimura KE, Rasky A, Ting HA, Petersen J, Johnson CC, Boushey HA, Zoratti E, Ownby DR, Levine AM, Bobbit KR, Lynch SV, Lukacs NW. Lactobacillus johnsonii supplementation attenuates respiratory viral infection via metabolic reprogramming and immune cell modulation. Mucosal Immunol. 2017;10(6):1569–80. https://doi.org/10.1038/mi.2017.13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamamoto ML, Maier I, Dang AT, Berry D, Liu J, Ruegger PM, Yang JI, Soto PA, Presley LL, Reliene R, Westbrook AM, Wei B, Loy A, Chang C, Braun J, Borneman J, Schiestl RH. Intestinal bacteria modify lymphoma incidence and latency by affecting systemic inflammatory state, oxidative stress, and leukocyte genotoxicity. Cancer Res. 2013;73(14):4222–32. https://doi.org/10.1158/0008-5472.CAN-13-0022.
Article
CAS
PubMed
PubMed Central
Google Scholar