Skip to main content

Table 1 Synthetic methods of dicoumarols using different types of catalysts
figure a

From: Dicoumarol: from chemistry to antitumor benefits

Type of catalyst

Catalyst

Conditions

Dicoumarol derivatives R (yields)

Refs.

Lewis acids

I2

I2 (10 mol%), H2O, 100 °C, 1 atm, 20–34 h

Ph (97%), 2-HOC6H4 (98%)

3-O2NC6H4 (94%), 4-ClC6H4 (93%)

4-O2NC6H4 (95%), 4-HOC6H4 (98%)

4-MeOC6H4 (99%), –CH–CH–C6H4 (92%)

Furan-2-yl (93%), thiophen-2-yl (91%)

Indol-3-yl (95%), 3,4-piperonyl (96%)

[45]

MnCl2

MnCl2 (10 mol%), H2O, 100 °C, 20–40 min

MeCH=CH– (95%), Ph (99%)

2-HOC6H4 (93%), 4-ClC6H4 (99%)

4-HOC6H4 (95%), 4-MeOC6H4 (97%)

4-O2NC6H4 (99%), furan-2-yl (96%) thiophen-2-yl (95%), indol-2-yl (94%)

[46]

Zn(Proline)2

Zn(Proline)2 (5 mol%), H2O, reflux, 5–9 min

Ph (92%), 2-ClC6H4 (96%)

2-HOC6H4 (92%), 3-O2NC6H4 (93%)

4-ClC6H4 (94%), 4-HOC6H4 (96%)

3-MeO-4-HOC6H3 (91%)

thiophen-2-yl (93%)

5-Me-thiophen-2-yl (92%)

pyridin-4-yl (91%)

[47]

InCl3

InCl3 (10 mol%), H2O, MW, 110 °C, 15–20 min

Ph (92%), 4-ClC6H4 (91%), 4-FC6H4 (93%) 4-HOC6H4 (90%), 4-MeC6H4 (85%)

4-MeOC6H4 (87%), 4-O2NC6H4 (96%)

4-HO-3-MeOC6H3 (89%)

3,4-(HO)2C6H3 (85%)

4-HO-3,5-(MeO)2C6H2 (86%)

[48]

Lewis and Bronsted acids

Sulfated titaniaa (TiO2/SO42−)

(TiO2/SO42−) (15%), H2O, 80 ºC, 12–30 min

H (95%), Et (88%), Ph (92%), Pr (90%)

iPr (90%), Me-CH=CH– (92%)

2-HOC6H4 (95%), 2-MeOC6H4 (85%)

2-O2NC6H4 (90%), 3-BrC6H4 (91%)

3-ClC6H4 (92%), 3-HOC6H4 (84%)

3-MeOC6H4 (88%), 3-O2NC6H4 (90%)

4-BrC6H4 (94%), 4-ClC6H4 (96%)

4-HOC6H4 (96%), 4-MeC6H4 (89%)

4-MeOC6H4 (92%), 4-O2NC6H4 (88%)

4-OH-3-MeOC6H3 (89%)

3-OH-4-MeOC6H3 (85%)

3,4-(MeO)2C6H3 (90%)

3,4,5-(MeO)3C6H2 (94%)

4-BnO-3-MeOC6H2 (82%)

4-CNC6H4 (96%), 4-Me2NC6H4 (89%)

Ph-CH=CH– (86%), naphthalen-1-yl (85%)

Furan-2-yl (90%)

[49]

Inorganic acid salts

B(HSO4)3

B(HSO4)3 (0.3 equiv) (1:1, H2O–EtOH), 70 °C, 3–6 min

Ph (86%), 3-MeOC6H4 (81%)

3-O2NC6H4 (82%), 4-BrC6H4 (95%)

4-ClC6H4 (92%), 4-NCC6H4 (86%)

4-FC6H4 (88%), 4-MeC6H4 (87%)

4-MeOC6H4 (83%), 4-O2NC6H4 (98%)

4-Cl-3-O2NC6H3 (88%)

[50]

Transition metals salts

RuCl3·nH2O

RuCl3·nH2O (5 mol%), H2O, 80 °C, 25–35 min

Et (75%), Ph (84%), 4-ClC6H4 (85%)

4-NCC6H4 (95%), 4-MeOC6H4 (92%)

3-(PhO)-C6H4 (90%), 2-Cl-6-FC6H3 (92%)

3,4-(F2)C6H3 (90%)

2-HO-3-MeOC6H3 (84%)

3,4-(MeO)2C6H3 (84%), indol-3-yl (90%)

2-O2NC6H4CH=CH– (90%)

[51]

Ionic liquids

[bmim]BF4

[bmim]BF4 (4 equiv)

60–70 °C, 2–3 h

Ph (84%), 3-ClC6H4 (84%)

4-BrC6H4 (87%), 4-ClC6H4 (91%)

4-MeC6H4 (83%), 4-MeOC6H4 (87%)

4-O2NC6H4 (84%), Me2CH– (77%)

Ph-CH=CH– (82%), furan-2-yl (83%) pyridin-2-yl (81%)

[52]

SO3H-functionalized ILs based on benzimidazolium cation

[PSebim][OTf]b (10 mol%), 70 °C, 2–3 h

Ph (95%), 3-BrC6H4 (94%)

3-ClC6H4 (94%), 4-BrC6H4 (95%)

4-ClC6H4 (96%), 4-MeC6H4 (93%)

4-MeOC6H4 (93%), 4-O2NC6H4 (96%)

4-(H2C=CH2)C6H4 (92%)

[53]

[MIM(CH2)4SO3H][HSO4]

[MIM(CH2)4SO3H] [HSO4] (15 mol%), 80 °C, 18–30 min

Ph (92%), 2-ClC6H4 (88%)

2-O2NC6H4 (86%), 3-ClC6H4 (89%)

3-O2NC6H4 (89%), 4-ClC6H4 (93%)

4-MeC6H4 (90%), 4-MeOC6H4 (89%)

4-O2NC6H4 (96%)

[54]

Tetramethyl guanidium acetate ([TMG][Ac])

[TMG][Ac] (0.75 mmol), rt, 0.5–4.5 h

Ph (96%), 2-HOC6H4 (90%)

2-O2NC6H4 (92%), 3-O2NC6H4 (87%)

4-BrC6H4 (96%), 4-ClC6H4 (88%)

4-FC6H4 (93%), 4-F3CC6H4 (91%)

4-MeC6H4 (90%), 4-MeOC6H4 (86%)

4-O2NC6H4 (99%), pyridin-4-yl (87%)

3-MeO-4-HOC6H3 (84%), furan-2-yl (95%)

(98%)

[55]

Choline hydroxide

ChOH (40%)c, 50 °C, 1–3 h

H (quantitative), Ph (99%)

2-HOC6H4 (99%), 2-O2NC6H4 (75%)

3-O2NC6H4 (93%), 4-BrC6H4 (94%)

4-ClC6H4 (99%), 4-FC6H4 (99%)

4-F3CC6H4 (96%), 4-HOC6H4 (94%)

4-MeC6H4 (94%), 4-MeOC6H4 (95%)

4-HO-3-MeOC6H3 (93%), furan-2-yl (98%)

4-O2NC6H4 (89%), pyridin-4-yl (81%) (95%)

[56]

[P4VPy-BuSO3H]Cl-X(AlCl3)d

IL (0.07 mmol), toluene, 90 °C, 0.5–0.9 h

Ph (95%), 2-HOC6H4 (90%)

3-ClC6H4 (96%), 3-O2NC6H4 (96%)

4-ClC6H4 (93%), 4-MeC6H4 (94%)

4-MeOC6H4 (92%), 4-HOC6H4 (90%)

4-O2NC6H4 (96%), furan-2-yl (91%)

Thiophen-2-yl (91%), pyridin-2-yl (91%) Ph–CH2–CH2 (92%), CH3CH2CH2– (92%) Ph-CH=CH– (93%)

[57]

[Dabco-H][AcO]

[Dabco-H][AcO] (10 mol%), H2O, 80 °C, 2–15 min

n-Pr (99%), Ph (98%), 2-BrC6H4 (98%)

3-BrC6H4 (98%), 4-BrC6H4 (99%)

4-ClC6H4 (99%), 4-MeC6H4 (96%)

4-MeOC6H4 (98%), 4-O2NC6H4 (99%)

2,4-Cl2C6H3 (96%), naphthalen-2-yl (99%) thiophen-2-yl (98%), furan-2-yl (98%)

[58]

Hnmp/ZnCl3

(Hnmp/ZnCl3) (20 mg), 100 °C, 30–50 min

Ph (97%), 3-ClC6H4 (86%)

3-MeOC6H4 (90%), 3-O2NC6H4 (81%)

4-ClC6H4 (90%), 4-HOC6H4 (81%)

4-MeC6H4 (88%), 4-MeOC6H4 (93%)

4-O2NC6H4 (86%), 2,4-(MeO)2C6H3 (78%) pyridin-4-yl (90%)

[59]

Heteropoly acids (HPAs)

Phosphotungstic acid

HPA (15 mmol%), H2O, 80 °C, 14–25 min

Ph (93%), 2-ClC6H4 (95%)

2-HOC6H4 (98%), 2-O2NC6H4 (96%)

3-O2NC6H4 (94%), 4-ClC6H4 (93%)

4-FC6H5 (98%), 4-HOC6H4 (98%)

4-MeOC6H4 (99%), 4-O2NC6H4 (95%)

2,4-Cl2C6H3 (92%), 2,6-Cl2C6H3 (98%)

–CH=CH–C6H4 (98%), 3,4-piperonyl (96%)

Indol-3-yl (95%), thiophen-2-yl (91%)

Furan-2-yl (93%), 4-F3CC6H4 (98%)

4-Me2C6H3 (90%), 3,4-(MeO)2C6H3 (90%)

[60]

Phase transfer catalysts and surfactants

Tetrabutyl ammonium bromide (TBAB)e,f

TBAB (10 mol%), H2O, 100 °C

Ph (92%), 3-ClC6H4 (87%)

4-BrC6H4 (88%), 4-ClC6H4 (95%)

4-MeC6H4 (92%), 4-MeOC6H4 (84%)

4-O2NC6H4 (91%), Ph–CH=CH– (82%)

3,4-(MeO)2C6H3 (87%), Me2CH– (82%)

3,4,5-(MeO)3C6H2 (84%), piperonyl (88%) furan-2-yl (88%), pyridin-2-yl (90%)

4-(Me)2CHC6H4 (91%)

[61]

Sodium dodecyl sulfate (SDS)

SDS (20 mol%), H2O, 60 °C, 2.30–3.0 h

Ph (90%), 2-MeC6H4 (84%)

3-ClC6H4 (92%), 3-O2NC6H4 (95%)

4-BrC6H4 (91%), 4-ClC6H4 (93%)

4-FC6H4 (94%), 4-MeC6H4 (97%)

4-(Me)2NC6H4 (94%), 4-MeOC6H4 (97%) 4-O2NC6H4 (98%), 3,4-(MeO)2C6H3 (98%)

[62]

Modified glycerols

Propane-1,2,3-triyl tris(hydrogen sulfate) (PTTH)

PTTH (0.03 mol%), 80 °C, H2O, 7–10 ming or solvent-free, 5–8 min

H (80%), Ph (90%), 2-ClC6H4 (85%)

3-O2NC6H4 (95%), 4-ClC6H4 (90%)

4-HOC6H4 (85%), 4-MeC6H4 (90%)

4-MeOC6H4 (85%), 4-O2NC6H4 (95%)

3,4-(MeO)2C6H3 (85%), Ph-CH=CH– (85%) furan-2-yl (80%)

[63]

  1. aThe catalyst possesses as many Lewis acid sites as Bronsted acid sites. The superacidity is due to the Bronsted acidic hydroxy groups attached to Ti atom, being generated by interaction with water. The acidity is enhanced by the generation of Lewis acid sites due to—I effect exerted by attached SO42− ions to Ti atoms. These factors promote the overall reaction by activating the aldehydes and the Michael acceptor
  2. b[PSebim][OTf]=1-ethyl-3-(3-sulfopropyl)-benzimidazolium trifluoromethanesulfonate
  3. cAmount of catalyst is 1.5 equiv. relative to the aldehyde
  4. d[P4VPy-BuSO3H]Cl-X(AlCl3) is poly(4-vinylpyridine-co-1-sulfonic acid butyl-4-vinylpyridinium)chloroaluminate, a supported ionic liquid with both Lewis and Brønsted acid sites
  5. eThis catalyst was also used in the synthesis of dicoumarol derivatives under solvent-free conditions. The reaction times were slightly shortened in neat conditions, and the yields were also slightly lower
  6. fTBAF was found to be equally effective as catalyst
  7. gYields for the reaction in water indicated in the table