Borges F, Roleira F, Milhazes N, Santana L, Uriarte E. Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr Med Chem. 2005;12:887–916. https://doi.org/10.2174/0929867053507315.
Article
CAS
Google Scholar
Hussain MI, Syed QA, Khattak MNK, Hafez B, Reigosa MJ, El-Keblawy A. Natural product coumarins: biological and pharmacological perspectives. Biologia. 2019;74:863–88. https://doi.org/10.2478/s11756-019-00242-x.
Article
Google Scholar
Al-Majedy Y, Al-Amiery A, Kadhum AA, BakarMohamad A. Antioxidant activity of coumarins. Syst Rev Pharm. 2016;8:24–30. https://doi.org/10.5530/srp.2017.1.6.
Article
CAS
Google Scholar
Kostova I, Bhatia S, Grigorov P, Balkansky S, Parmar VS, Prasad AK, Saso L. Coumarins as antioxidants. Curr Med Chem. 2011;18:3929–51. https://doi.org/10.2174/092986711803414395.
Article
CAS
Google Scholar
Grover J, Jachak SM. Coumarins as privileged scaffold for anti-inflammatory drug development. RSC Adv. 2015;5:38892–905. https://doi.org/10.1039/C5RA05643H.
Article
CAS
Google Scholar
Wei W, Wu X-W, Deng G-G, Yang X-W. Anti-inflammatory coumarins with short- and long-chain hydrophobic groups from roots of Angelica dahurica Cv. Hangbaizhi. Phytochemistry. 2016;123:58–68. https://doi.org/10.1016/j.phytochem.2016.01.006.
Article
CAS
Google Scholar
Thakur A, Singla R, Jaitak V. Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur J Med Chem. 2015;101:476–95. https://doi.org/10.1016/j.ejmech.2015.07.010.
Article
CAS
Google Scholar
Bhattarai N, Kumbhar AA, Pokharel YR, Yadav PN. Anticancer potential of coumarin and its derivatives. Mini-Rev Med Chem. 2021;21:2996–3029. https://doi.org/10.2174/1389557521666210405160323.
Article
CAS
Google Scholar
Vilar S, Quezada E, Santana L, Uriarte E, Yánez M, Fraiz N, Alcaide C, Cano E, Orallo F. Design, synthesis, and vasorelaxant and platelet antiaggregatory activities of coumarin-resveratrol hybrids. Bioorg Med Chem Lett. 2006;16:257–61. https://doi.org/10.1016/j.bmcl.2005.10.013.
Article
CAS
Google Scholar
Najmanova I, Dosedel M, Hrdina R, Anzenbacher P, Filipsky T, Riha M, Mladenka P. Cardiovascular effects of coumarins besides their antioxidant activity. Curr Top Med Chem. 2015;15:830–49. https://doi.org/10.2174/1568026615666150220112437.
Article
CAS
Google Scholar
Al-Majedy YK, Kadhum AAH, Al-Amiery AA, Mohamad AB. Coumarins: the antimicrobial agents. Syst Rev Pharm. 2017;8:62–70. https://doi.org/10.5530/srp.2017.1.11.
Article
CAS
Google Scholar
Joao Matos M, Vazquez-Rodriguez S, Santana L, Uriarte E, Fuentes-Edfuf C, Santos Y, Munoz-Crego A. Looking for new targets: simple coumarins as antibacterial agents. Med Chem. 2012;8:1140–5. https://doi.org/10.2174/1573406411208061140.
Article
Google Scholar
Yang L, Ding W, Xu Y, Wu D, Li S, Chen J, Guo B. New insights into the antibacterial activity of hydroxycoumarins against Ralstonia solanacearum. Molecules. 2016;21:468. https://doi.org/10.3390/molecules21040468.
Article
CAS
Google Scholar
Matos MJ, Viña D, Janeiro P, Borges F, Santana L, Uriarte E. New halogenated 3-phenylcoumarins as potent and selective MAO-B inhibitors. Bioorg Med Chem Lett. 2010;20:5157–60. https://doi.org/10.1016/j.bmcl.2010.07.013.
Article
CAS
Google Scholar
Matos MJ, Viña D, Picciau C, Orallo F, Santana L, Uriarte E. Synthesis and evaluation of 6-methyl-3-phenylcoumarins as potent and selective MAO-B inhibitors. Bioorg Med Chem Lett. 2009;19:5053–5. https://doi.org/10.1016/j.bmcl.2009.07.039.
Article
CAS
Google Scholar
Matos MJ, Terán C, Pérez-Castillo Y, Uriarte E, Santana L, Viña D. Synthesis and study of a series of 3-arylcoumarins as potent and selective monoamine oxidase B inhibitors. J Med Chem. 2011;54:7127–37. https://doi.org/10.1021/jm200716y.
Article
CAS
Google Scholar
Delogu G, Picciau C, Ferino G, Quezada E, Podda G, Uriarte E, Viña D. Synthesis, human monoamine oxidase inhibitory activity and molecular docking studies of 3-heteroarylcoumarin derivatives. Eur J Med Chem. 2011;46:1147–52. https://doi.org/10.1016/j.ejmech.2011.01.033.
Article
CAS
Google Scholar
Asghar H, Asghar H, Asghar T. A review on anti-urease potential of coumarins. Curr Drug Targets. 2021;22:1926–43. https://doi.org/10.2174/1389450122666210222091412.
Article
CAS
Google Scholar
Borges MFM, Roleira FMF, Milhazes NJSP, Villare EU. Simple coumarins: privileged scaffolds in medicinal chemistry. In: Frontiers in medicinal chemistry, vol. 4. Sharjah: Bentham Science Publishers; 2012. p. 23–85.
Google Scholar
Garg SS, Gupta J, Sharma S, Sahu D. An insight into the therapeutic applications of coumarin compounds and their mechanisms of action. Eur J Pharm Sci. 2020;152: 105424. https://doi.org/10.1016/j.ejps.2020.105424.
Article
CAS
Google Scholar
Sun C, Zhao W, Wang X, Sun Y, Chen X. A pharmacological review of dicoumarol: an old natural anticoagulant agent. Pharmacol Res. 2020;160: 105193.
Article
CAS
Google Scholar
Ilhan M, Ali Z, Khan IA, KüpeliAkkol E. A new isoflavane-4-ol derivative from Melilotus officinalis (L.) Pall. Nat Prod Res. 2019;33:1856–61. https://doi.org/10.1080/14786419.2018.1477152.
Article
CAS
Google Scholar
Chorepsima S, Tentolouris K, Dimitroulis D, Tentolouris N. Melilotus: contribution to wound healing in the diabetic foot. J Herb Med. 2013;3:81–6.
Article
Google Scholar
Zaki Rashed KN. Biological evidences of dicoumarol: a review. Plantae Scientia. 2021;4:121–4. https://doi.org/10.32439/ps.v4i2.121-124.
Article
Google Scholar
Arndt F, Loewe L, Ün R, Ayça E. Cumarindiol und Cumarin-Chromon-Tautomerie. Chem Ber. 1951;84:319–29. https://doi.org/10.1002/cber.19510840312.
Article
CAS
Google Scholar
Farmer VC. Spectra and structure of 4-hydroxycoumarins. Spectrochim Acta. 1959;15:870–82. https://doi.org/10.1016/S0371-1951(59)80384-2.
Article
Google Scholar
Hamdi N, Puerta MC, Valerga P. Synthesis, structure, antimicrobial and antioxidant investigations of dicoumarol and related compounds. Eur J Med Chem. 2008;43:2541–8. https://doi.org/10.1016/j.ejmech.2008.03.038.
Article
CAS
Google Scholar
Bellis D, Spring M, Stoker J. The biosynthesis of dicoumarol. Biochem J. 1967;103:202–6. https://doi.org/10.1042/bj1030202.
Article
CAS
Google Scholar
Sanjeeva Reddy C, Raghu M. Synthesis of novel 6,6′-methylene-bis-[3-(2-anilinoacetyl)-4-hydroxycoumarin] derivatives. Chem Pharm Bull. 2008;56:1732–4. https://doi.org/10.1248/cpb.56.1732.
Article
Google Scholar
Hagiwara H, Fujimoto N, Suzuki T, Ando M. Synthesis of methylenebis(4-hydroxy-2-pyrone) or methylenebis(4-hydroxycoumarin) derivatives by organic solid state reaction. Heterocycles. 2000;53:549. https://doi.org/10.3987/COM-99-8817.
Article
CAS
Google Scholar
Elgamal MHA, Shalaby NMM, Shaban MA, Duddeck H, Mikhova B, Simon A, Toth G. Synthesis and spectroscopic investigation of some dimeric coumarin and furanocoumarin models. Monatshefte für Chemie/Chem Mon. 1997;128:701–12. https://doi.org/10.1007/BF00807602.
Article
CAS
Google Scholar
Qadir S, Dar AA, Khan KZ. Synthesis of biscoumarins from 4-hydroxycoumarin and aromatic aldehydes—a comparative assessment of percentage yield under thermal and microwave-assisted conditions. Synth Commun. 2008;38:3490–9. https://doi.org/10.1080/00397910802162942.
Article
CAS
Google Scholar
Zhao H, Neamati N, Hong H, Mazumder A, Wang S, Sunder S, Milne GWA, Pommier Y, Burke TR. Coumarin-based inhibitors of HIV integrase. J Med Chem. 1997;40:242–9. https://doi.org/10.1021/jm960450v.
Article
CAS
Google Scholar
Manolov I, Maichle-Moessmer C, Danchev N. Synthesis, structure, toxicological and pharmacological investigations of 4-hydroxycoumarin derivatives. Eur J Med Chem. 2006;41:882–90. https://doi.org/10.1016/j.ejmech.2006.03.007.
Article
CAS
Google Scholar
Jung J-C, Park O-S. Synthetic approaches and biological activities of 4-hydroxycoumarin derivatives. Molecules. 2009;14:4790–803. https://doi.org/10.3390/molecules14114790.
Article
CAS
Google Scholar
Hagiwara H, Miya S, Suzuki T, Ando M, Yamamoto I, Kato M. Et2AlCl promoted coupling reactions of 4-hydroxy-2-pyrone or 4-hydroxycoumarine with aldehydes: synthesis of methylenebis-(4-hydroxy-2-pyrone) or methylenebis-(4-hydroxycoumarine) derivatives. Heterocycles. 1999;51:493. https://doi.org/10.3987/COM-98-8429.
Article
CAS
Google Scholar
Khan KM, Iqbal S, Lodhi MA, Maharvi GM, Ullah Z, Choudhary MI, Rahman A, Perveen S. Biscoumarin: new class of urease inhibitors; economical synthesis and activity. Bioorg Med Chem. 2004;12:1963–8. https://doi.org/10.1016/j.bmc.2004.01.010.
Article
CAS
Google Scholar
Kumar A, Gupta MK, Kumar M. An efficient non-ionic surfactant catalyzed multicomponent synthesis of novel benzylamino coumarin derivative via Mannich type reaction in aqueous media. Tetrahedron Lett. 2011;52:4521–5. https://doi.org/10.1016/j.tetlet.2011.06.040.
Article
CAS
Google Scholar
Imani M, NorooziPesyan N, Aalinejad M, Şahin E. Study of chemical behaviors of 4-hydroxycumarin in alkali media: dicumarols or dihydro-4H-furo[3,2-c]chromenes? J Iran Chem Soc. 2022;19:3397–405. https://doi.org/10.1007/s13738-022-02533-8.
Article
CAS
Google Scholar
Shaterian HR, Honarmand M. Uncatalyzed, one-pot synthesis of 3,3′-(benzylene)-bis(4-hydroxy-2H-chromen-2-one) derivatives under thermal solvent-free conditions. Chin J Chem. 2009;27:1795–800. https://doi.org/10.1002/cjoc.200990302.
Article
CAS
Google Scholar
Das Gupta A, Samanta S, Mondal R, Mallik AK. A rapid, efficient and green method for synthesis of 3,3′-arylmethylene-bis-4-hydroxycoumarins without use of any solvent, catalyst or solid surface. Chem Sci Trans. 2013;2:524–8. https://doi.org/10.7598/cst2013.388.
Article
CAS
Google Scholar
Al-Kadasi AMA, Nazeruddin GM. Ultrasound assisted catalyst-free one-pot synthesis of bis-coumarins in neat water. Int J Chem Sci. 2012;10:324–30.
CAS
Google Scholar
Elinson M, Vereshchagin AN, Sokolova OO. Fast highly efficient “on-solvent” non catalytic cascade transformation of benzaldehydes and 4-hydroxycoumarin into bis(4-hydroxycoumarinyl)arylmethanes. ARKIVOC. 2017;2017:121–9. https://doi.org/10.24820/ark.5550190.p010.023.
Article
Google Scholar
Das Gupta A, Samanta S, Mondal R, Mallik AKA. Convenient, eco-friendly, and efficient method for synthesis of 3,3′-arylmethylene-bis-4-hydroxycoumarins “on-water.” Bull Korean Chem Soc. 2012;33:4239–42. https://doi.org/10.5012/bkcs.2012.33.12.4239.
Article
CAS
Google Scholar
Kidwai M, Bansal V, Mothsra P, Saxena S, Somvanshi RK, Dey S, Singh TP. Molecular iodine: a versatile catalyst for the synthesis of bis(4-hydroxycoumarin) methanes in water. J Mol Catal A Chem. 2007;268:76–81. https://doi.org/10.1016/j.molcata.2006.11.054.
Article
CAS
Google Scholar
Sangshetti JN, Kokare ND, Shinde DB. Water mediated efficient one-pot synthesis of bis-(4-hydroxycoumarin)methanes. Green Chem Lett Rev. 2009;2:233–5. https://doi.org/10.1080/17518250903393874.
Article
CAS
Google Scholar
Siddiqui ZN, Farooq F. Zn(Proline)2: a novel catalyst for the synthesis of dicoumarols. Catal Sci Technol. 2011;1:810. https://doi.org/10.1039/c1cy00110h.
Article
CAS
Google Scholar
Simijonović D, Vlachou E-E, Petrović ZD, Hadjipavlou-Litina DJ, Litinas ΚE, Stanković N, Mihović N, Mladenović MP. Dicoumarol derivatives: green synthesis and molecular modelling studies of their anti-LOX activity. Bioorg Chem. 2018;80:741–52. https://doi.org/10.1016/j.bioorg.2018.07.021.
Article
CAS
Google Scholar
Karmakar B, Nayak A, Banerji J. Sulfated titania catalyzed water mediated efficient synthesis of dicoumarols—a green approach. Tetrahedron Lett. 2012;53:4343–6. https://doi.org/10.1016/j.tetlet.2012.06.024.
Article
CAS
Google Scholar
Karimi-Jaberi Z, Nazarifar MR, Pooladian B. Tris(hydrogensulfato) boron as a solid heterogeneous catalyst for the rapid synthesis of α, Α′-benzylidene bis(4-hydroxycoumarin) derivatives. Chin Chem Lett. 2012;23:781–4. https://doi.org/10.1016/j.cclet.2012.05.003.
Article
CAS
Google Scholar
Tabatabaeian K, Heidari H, Khorshidi A, Mamaghani M, Mahmoodi N. Synthesis of biscoumarin derivatives by the reaction of aldehydes and 4-hydroxycoumarin using ruthenium (III) chloride hydrate as a versatile homogeneous catalyst. J Serb Chem Soc. 2012;77:407–13. https://doi.org/10.2298/JSC110427189T.
Article
CAS
Google Scholar
Khurana JM, Kumar S. Ionic liquid: an efficient and recyclable medium for the synthesis of octahydroquinazolinone and biscoumarin derivatives. Monatshefte für Chemie/Chem Mon. 2010;141:561–4. https://doi.org/10.1007/s00706-010-0306-4.
Article
CAS
Google Scholar
Li W, Wang Y, Wang Z, Dai L, Wang Y. Novel SO3H-functionalized ionic liquids based on benzimidazolium cation: efficient and recyclable catalysts for one-pot synthesis of biscoumarin derivatives. Catal Lett. 2011;141:1651–8. https://doi.org/10.1007/s10562-011-0689-9.
Article
CAS
Google Scholar
Tavakoli-Hoseini N, Heravi MM, Bamoharram FF, Davoodnia A, Ghassemzadeh M. An unexpected tetracyclic product isolated during the synthesis of biscoumarins catalyzed by [MIM(CH2)4SO3H][HSO4]: characterization and X-ray crystal structure of 7-(2-hydroxy-4-oxo-4H-chromen-3-yl)-6H,7H-chromeno[4,3-b]chromen-6-one. J Mol Liq. 2011;163:122–7. https://doi.org/10.1016/j.molliq.2011.08.007.
Article
CAS
Google Scholar
Zhu A, Wang M, Li L, Wang J. Tetramethylguanidium-based ionic liquids as efficient and reusable catalysts for the synthesis of biscoumarin at room temperature. RSC Adv. 2015;5:73974–9. https://doi.org/10.1039/C5RA14247D.
Article
CAS
Google Scholar
Zhu A, Bai S, Li L, Wang M, Wang J. Choline hydroxide: an efficient and biocompatible basic catalyst for the synthesis of biscoumarins under mild conditions. Catal Lett. 2015;145:1089–93. https://doi.org/10.1007/s10562-015-1487-6.
Article
CAS
Google Scholar
ParvanakBoroujeni K, Ghasemi P. Synthesis and application of a novel strong and stable supported ionic liquid catalyst with both Lewis and Brønsted acid sites. Catal Commun. 2013;37:50–4. https://doi.org/10.1016/j.catcom.2013.03.025.
Article
CAS
Google Scholar
Yang C, Su W-Q, Xu D-Z. Ionic liquid [Dabco-H][AcO] as a highly efficient and recyclable catalyst for the synthesis of various bisenol derivatives via domino Knoevenagel–Michael reaction in aqueous media. RSC Adv. 2016;6:99656–63. https://doi.org/10.1039/C6RA23018K.
Article
CAS
Google Scholar
Abbasi F, Azizi N, Abdoli-Senejani M. Highly efficient synthesis of dicoumarols and xanthene derivatives in presence of Brønsted–Lewis acidic ionic liquids catalyst. J Iran Chem Soc. 2017;14:2097–103. https://doi.org/10.1007/s13738-017-1146-5.
Article
CAS
Google Scholar
Singh P, Kumar P, Katyal A, Kalra R, Dass SK, Prakash S, Chandra R. Phosphotungstic acid: an efficient catalyst for the aqueous phase synthesis of bis-(4-hydroxycoumarin-3-yl)methanes. Catal Lett. 2010;134:303–8. https://doi.org/10.1007/s10562-009-0239-x.
Article
CAS
Google Scholar
Khurana JM, Kumar S. Tetrabutylammonium bromide (TBAB): a neutral and efficient catalyst for the synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives in water and solvent-free conditions. Tetrahedron Lett. 2009;50:4125–7. https://doi.org/10.1016/j.tetlet.2009.04.125.
Article
CAS
Google Scholar
Mehrabi H, Abusaidi H. Synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives catalysed by sodium dodecyl sulfate (SDS) in neat water. J Iran Chem Soc. 2010;7:890–4. https://doi.org/10.1007/BF03246084.
Article
CAS
Google Scholar
Rezaei R, Moezzi F, Doroodmand MM. Propane-1,2,3-triyl tris(hydrogen sulfate): a mild and efficient recyclable catalyst for the synthesis of biscoumarin derivatives in water and solvent-free conditions. Chin Chem Lett. 2014;25:183–6. https://doi.org/10.1016/j.cclet.2013.10.033.
Article
CAS
Google Scholar
Davoodnia A. A highly efficient and fast method for the synthesis of biscoumarins using tetrabutylammonium hexatungstate [TBA]2 [W6O19] as green and reusable heterogeneous catalyst. Bull Korean Chem Soc. 2011;32:4286–90. https://doi.org/10.5012/bkcs.2011.32.12.4286.
Article
CAS
Google Scholar
Ghosh S, Mondal P, Das D, Tuhina K, Islam SKM. Use of PS-Zn-anthra complex as an efficient heterogeneous recyclable catalyst for carbon dioxide fixation reaction at atmospheric pressure and synthesis of dicoumarols under greener pathway. J Organomet Chem. 2018;866:1–12. https://doi.org/10.1016/j.jorganchem.2018.03.039.
Article
CAS
Google Scholar
Heravi MM, Nahavandi F, Sadjadi S, Oskooie HA, Bamoharram FF. Efficient synthesis of bis-coumarins using silica-supported preyssler nanoparticles. Synth Commun. 2010;40:498–503. https://doi.org/10.1080/00397910902985556.
Article
CAS
Google Scholar
Niknam K, Jamali A. Silica-bonded N-propylpiperazine sodium n-propionate as recyclable basic catalyst for synthesis of 3,4-dihydropyrano[c]chromene derivatives and biscoumarins. Chin J Catal. 2012;33:1840–9. https://doi.org/10.1016/S1872-2067(11)60457-9.
Article
CAS
Google Scholar
Sadeghi B, Ziya T. A fast, highly efficient, and green protocol for synthesis of biscoumarins catalyzed by silica sulfuric acid nanoparticles as a reusable catalyst. J Chem. 2013;2013:1–5. https://doi.org/10.1155/2013/179013.
Article
CAS
Google Scholar
Karimian R, Piri F, Safari AA, Davarpanah SJ. One-pot and chemoselective synthesis of bis(4-hydroxycoumarin) derivatives catalyzed by nano silica chloride. J Nanostruct Chem. 2013;3:52. https://doi.org/10.1186/2193-8865-3-52.
Article
Google Scholar
Ziarani GM, Badiei A, Azizi M, Lashgari N. Efficient one-pot synthesis of bis(4-hydroxycoumarin)methanes in the presence of sulfonic acid functionalized nanoporous silica (SBA-Pr-SO3H). J Chin Chem Soc. 2013;60:499–502. https://doi.org/10.1002/jccs.201200530.
Article
CAS
Google Scholar
Padalkar V, Phatangare K, Takale S, Pisal R, Chaskar A. Silica supported sodium hydrogen sulfate and indion 190 resin: an efficient and heterogeneous catalysts for facile synthesis of bis-(4-hydroxycoumarin-3-yl) methanes. J Saudi Chem Soc. 2015;19:42–5. https://doi.org/10.1016/j.jscs.2011.12.015.
Article
Google Scholar
Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–2. https://doi.org/10.1038/359710a0.
Article
CAS
Google Scholar
Heravi MM, Daraie M. Mn(Pbdo)2Cl2/MCM-41 as a green catalyst in multi-component syntheses of some heterocycles. Res Chem Intermed. 2016;42:2979–88. https://doi.org/10.1007/s11164-015-2191-2.
Article
CAS
Google Scholar
Safaei-Ghomi J, Eshteghal F, Ghasemzadeh MA. Solvent-free synthesis of dihydropyrano[3,2-c]chromene and biscoumarin derivatives using magnesium oxide nanoparticles as a recyclable catalyst. Acta Chim Slov. 2014;61:703–8.
CAS
Google Scholar
Shirini F, Fallah-Shojaei A, Samavi L, Abedini M. A clean synthesis of bis(indolyl)methane and biscoumarin derivatives using P4 VPy–CuO nanoparticles as a new, efficient and heterogeneous polymeric catalyst. RSC Adv. 2016;6:48469–78. https://doi.org/10.1039/C6RA04893E.
Article
CAS
Google Scholar
Shirini F, Lati MP. BiVO4-NPs: an efficient nano-catalyst for the synthesis of biscoumarins, bis(indolyl)methanes and 3,4-dihydropyrimidin-2(1H)-ones (thiones) derivatives. J Iran Chem Soc. 2017;14:75–87. https://doi.org/10.1007/s13738-016-0959-y.
Article
CAS
Google Scholar
Khodabakhshi S, Karami B, Eskandari K, Hoseini SJ, Nasrabadi H. Convenient on water synthesis of novel derivatives of dicoumarol as functional vitamin K depleter by Fe3O4 magnetic nanoparticles. Arab J Chem. 2017;10:S3907–12. https://doi.org/10.1016/j.arabjc.2014.05.030.
Article
CAS
Google Scholar
Hassanloie N, NorooziPesyan N, Sheykhaghaei G. Anchored Ni-dimethylglyoxime complex on Fe3O4@SiO2 core/shell nanoparticles for the clean catalytical synthesis of dicoumarols. Appl Organomet Chem. 2020. https://doi.org/10.1002/aoc.5242.
Article
Google Scholar
Khaskel A, Barman P, Jana U. Tyrosine loaded nanoparticles: an efficient catalyst for the synthesis of dicoumarols and hantzsch 1,4-dihydropyridines. RSC Adv. 2015;5:13366–73. https://doi.org/10.1039/C4RA16627B.
Article
CAS
Google Scholar
Fu Y, Lu Z, Fang K, He X, Huang H, Hu Y. Promiscuous enzyme-catalyzed cascade reaction in water: synthesis of dicoumarol derivatives. Bioorg Med Chem Lett. 2019;29:1236–40. https://doi.org/10.1016/j.bmcl.2019.03.007.
Article
CAS
Google Scholar
Timson D. Dicoumarol: a drug which hits at least two very different targets in vitamin K metabolism. Curr Drug Targets. 2017;18:500–10. https://doi.org/10.2174/1389450116666150722141906.
Article
CAS
Google Scholar
Harvison PJ. Dicumarol. In: xPharm: the comprehensive pharmacology reference. Amsterdam: Elsevier; 2007. p. 1–4.
Google Scholar
2—Principles of herbal pharmacology. In: Bone K, Mills S, editors. Principles and practice of phytotherapy, 2nd edition. Churchill Livingstone: Saint Louis; 2013. p. 17–82. ISBN 978-0-443-06992-5.
Liu YT, Gong PH, Xiao FQ, Shao S, Zhao DQ, Yan MM, Yang XW. Chemical constituents and antioxidant, anti-inflammatory and anti-tumor activities of Melilotus officinalis (Linn.) Pall. Molecules. 2018. https://doi.org/10.3390/molecules23020271.
Article
Google Scholar
Keller C, Matzdorff A, Kemkes-Matthes B. Pharmacology of warfarin and clinical implications. Semin Thromb Hemost. 1999;25:13–6. https://doi.org/10.1055/s-2007-996418.
Article
CAS
Google Scholar
Dholariya HR, Patel KS, Patel JC, Patel KD. Dicoumarol complexes of Cu(II) based on 1,10-phenanthroline: synthesis, X-ray diffraction studies, thermal behavior and biological evaluation. Spectrochim Acta A Mol Biomol Spectrosc. 2013;108:319–28. https://doi.org/10.1016/j.saa.2012.09.096.
Article
CAS
Google Scholar
Han X, Chen C, Yan Q, Jia L, Taj A, Ma Y. Action of dicumarol on glucosamine-1-phosphate acetyltransferase of GLMU and Mycobacterium tuberculosis. Front Microbiol. 2019. https://doi.org/10.3389/fmicb.2019.01799.
Article
Google Scholar
Lata S, Ali A, Sood V, Raja R, Banerjea AC. HIV-1 rev downregulates tat expression and viral replication via modulation of NAD(P)H: quinine oxidoreductase 1 (NQO1). Nat Commun. 2015;6:7244. https://doi.org/10.1038/ncomms8244.
Article
CAS
Google Scholar
Kammari K, Devaraya K, Bommakanti A, Kondapi AK. Development of pyridine dicoumarols as potent anti HIV-1 leads, targeting HIV-1 associated topoisomeraseIIβ kinase. Future Med Chem. 2017;9:1597–609. https://doi.org/10.4155/fmc-2017-0091.
Article
CAS
Google Scholar
Li J, Hou Z, Chen G-H, Li F, Zhou Y, Xue X-Y, Li Z-P, Jia M, Zhang Z-D, Li M-K, et al. Synthesis, antibacterial activities, and theoretical studies of dicoumarols. Org Biomol Chem. 2014;12:5528–35. https://doi.org/10.1039/C4OB00772G.
Article
CAS
Google Scholar
González-Aragón D, Ariza J, Villalba JM. Dicoumarol impairs mitochondrial electron transport and pyrimidine biosynthesis in human myeloid leukemia HL-60 cells. Biochem Pharmacol. 2007;73:427–39. https://doi.org/10.1016/j.bcp.2006.10.016.
Article
CAS
Google Scholar
Bello RI, Gómez-Díaz C, López-Lluch G, Forthoffer N, Córdoba-Pedregosa MC, Navas P, Villalba JM. Dicoumarol relieves serum withdrawal-induced G0/1 blockade in HL-60 cells through a superoxide-dependent mechanism. Biochem Pharmacol. 2005;69:1613–25. https://doi.org/10.1016/j.bcp.2005.03.012.
Article
CAS
Google Scholar
Du J, Daniels DH, Asbury C, Venkataraman S, Liu J, Spitz DR, Oberley LW, Cullen JJ. Mitochondrial production of reactive oxygen species mediate dicumarol-induced cytotoxicity in cancer cells. J Biol Chem. 2006;281:37416–26. https://doi.org/10.1074/jbc.M605063200.
Article
CAS
Google Scholar
Nolan KA, Zhao H, Faulder PF, Frenkel AD, Timson DJ, Siegel D, Ross D, Burke TR, Stratford IJ, Bryce RA. Coumarin-based inhibitors of human NAD(P)H: quinone oxidoreductase-1. identification, structure-activity, off-target effects and in vitro human pancreatic cancer toxicity. J Med Chem. 2007;50:6316–25. https://doi.org/10.1021/jm070472p.
Article
CAS
Google Scholar
Rehman S, Ikram M, Khan A, Min S, Azad E, Hofer TS, Mok KH, Baker RJ, Blake AJ, Rehman SU. New dicoumarol sodium compound: crystal structure, theoretical study and tumoricidal activity against osteoblast cancer cells. Chem Cent J. 2013;7:110. https://doi.org/10.1186/1752-153X-7-110.
Article
CAS
Google Scholar
Zhao XZ, Wu X-H. A small compound spindlactone A sensitizes human endometrial cancer cells to TRAIL-induced apoptosis via the inhibition of NAD(P)H dehydrogenase quinone I. Onco Targets Ther. 2018;11:3609–17. https://doi.org/10.2147/OTT.S165723.
Article
Google Scholar
Lewis A, Ough M, Li L, Hinkhouse MM, Ritchie JM, Spitz DR, Cullen JJ. Treatment of pancreatic cancer cells with dicumarol induces cytotoxicity and oxidative stress. Clin Cancer Res. 2004;10:4550–8. https://doi.org/10.1158/1078-0432.CCR-03-0667.
Article
CAS
Google Scholar
Wang L, Hu T, Shen J, Zhang L, Li L, Chan RL-Y, Li M, Wu WK-K, Cho C-H. Miltirone induced mitochondrial dysfunction and ROS-dependent apoptosis in colon cancer cells. Life Sci. 2016;151:224–34. https://doi.org/10.1016/j.lfs.2016.02.083.
Article
CAS
Google Scholar
Watanabe J, Nishiyama H, Matsui Y, Ito M, Kawanishi H, Kamoto T, Ogawa O. Dicoumarol potentiates cisplatin-induced apoptosis mediated by c-Jun N-terminal kinase in P53 wild-type urogenital cancer cell lines. Oncogene. 2006;25:2500–8. https://doi.org/10.1038/sj.onc.1209162.
Article
CAS
Google Scholar
Matsui Y, Watanabe J, Ding S, Nishizawa K, Kajita Y, Ichioka K, Saito R, Kobayashi T, Ogawa O, Nishiyama H. Dicoumarol enhances doxorubicin-induced cytotoxicity in P53 wild-type urothelial cancer cells through P38 activation. BJU Int. 2010;105:558–64. https://doi.org/10.1111/j.1464-410X.2009.08732.x.
Article
CAS
Google Scholar
He D, Gu F, Wu J, Gu X-T, Lu C-X, Mao A, Zhang G, Ding Z, Wang J, Hao J, et al. Targeting PSG1 to enhance chemotherapeutic efficacy: new application for anti-coagulant the dicumarol. Clin Sci. 2016;130:2267–76. https://doi.org/10.1042/CS20160536.
Article
CAS
Google Scholar
Park EJ, Min K, Choi KS, Kwon TK. Dicoumarol sensitizes renal cell carcinoma Caki cells to TRAIL-induced apoptosis through down-regulation of Bcl-2, Mcl-1 and c-FLIP in a NQO1-independent manner. Exp Cell Res. 2014;323:144–54. https://doi.org/10.1016/j.yexcr.2014.01.009.
Article
CAS
Google Scholar
Zhang W, Su J, Xu H, Yu S, Liu Y, Zhang Y, Sun L, Yue Y, Zhou X. Dicumarol inhibits PDK1 and targets multiple malignant behaviors of ovarian cancer cells. PLoS ONE. 2017;12: e0179672. https://doi.org/10.1371/journal.pone.0179672.
Article
CAS
Google Scholar
Cullen JJ, Hinkhouse MM, Grady M, Gaut AW, Liu J, Zhang YP, Weydert CJD, Domann FE, Oberley LW. Dicumarol inhibition of NADPH: quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism. Cancer Res. 2003;63:5513–20.
CAS
Google Scholar
Soldani C, Scovassi AI. Poly (ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis. 2002;7:321–8. https://doi.org/10.1023/A:1016119328968.
Article
CAS
Google Scholar
Buranrat B, Prawan A, Kukongviriyapan U, Kongpetch S, Kukongviriyapan V. Dicoumarol enhances gemcitabine-induced cytotoxicity in high NQO1-expressing cholangiocarcinoma cells. World J Gastroenterol. 2010;16:2362–70. https://doi.org/10.3748/wjg.v16.i19.2362.
Article
CAS
Google Scholar
Hernández A, López-Lluch G, Bernal JA, Navas P, Pintor-Toro JA. Dicoumarol down-regulates human PTTG1/securin MRNA expression through inhibition of Hsp90. Mol Cancer Ther. 2008;7:474–82. https://doi.org/10.1158/1535-7163.MCT-07-0457.
Article
CAS
Google Scholar
Jones W, Bianchi K. Aerobic glycolysis: beyond proliferation. Front Immunol. 2015;6:227. https://doi.org/10.3389/fimmu.2015.00227.
Article
CAS
Google Scholar