Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amor S, Puentes F, Baker D, Van Der Valk P. Inflammation in neurodegenerative diseases. Immunology. 2010;129(2):154–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, et al. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev. 2009;8(1):18–30.
Article
CAS
PubMed
Google Scholar
Wright HL, Moots RJ, Bucknall RC, Edwards SW. Neutrophil function in inflammation and inflammatory diseases. Rheumatology. 2010;49(9):1618–31.
Article
CAS
PubMed
Google Scholar
Danesh J, Whincup P, Walker M, Lennon L, Thomson A, Appleby P, et al. Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. BMJ. 2000;321(7255):199–204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Candore G, Caruso C, Jirillo E, Magrone T, Vasto S. Low grade inflammation as a common pathogenetic denominator in age-related diseases: novel drug targets for anti-ageing strategies and successful ageing achievement. Curr Pharm Des. 2010;16(6):584–96.
Article
CAS
PubMed
Google Scholar
Lin LG, Jee JH, Buras ED, Yu KJ, Wang RT, Smith CW, et al. Ghrelin receptor regulates adipose tissue inflammation in aging. Aging. 2016;8(1):178–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raghavendra V, Tanga FY, DeLeo JA. Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur J Neurosci. 2004;20(2):467–73.
Article
PubMed
Google Scholar
Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest. 2003;112:1785–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hotamisligil GS, Shargill NS, Speigelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.
Article
CAS
PubMed
Google Scholar
Ruddle NH. Tumor necrosis factor (TNF-α) and lymphotoxin (TNF-β). Curr Opin Immunol. 1992;4(3):327–32.
Article
CAS
PubMed
Google Scholar
Defer N, Azroyan A, Pecker F, Pavoine C. TNFR1 and TNFR2 signaling interplay in cardiac myocytes. J Biol Chem. 2007;282(49):35564–73.
Article
CAS
PubMed
Google Scholar
Lukens JR, Gross JM, Kanneganti TD. IL-1 family cytokines trigger sterile inflammatory disease. Front Immunol. 2012;3:315.
Article
PubMed
PubMed Central
Google Scholar
Banerjee M, Saxena M. Interleukin-1 (IL-1) family of cytokines: role in type 2 diabetes. Clin Chim Acta. 2012;413(15–16):1163–70.
Article
CAS
PubMed
Google Scholar
Jones LL, Vignali DA. Molecular interactions within the IL-6/IL-12 cytokine/receptor superfamily. Immunol Res. 2011;51(1):5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fiorentino DF, Zlotnik A, Mosmann T, Howard M, O’garra A. IL-10 inhibits cytokine production by activated macrophages. J Immunol. 1991;147(11):3815‒22.
Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. J Immunol. 2008;180(9):5771–7.
Article
CAS
PubMed
Google Scholar
Faist E, Mewes A, Baker C, Strasser T, Alkan S, Rieber P, et al. Prostaglandin E2 (PGE2)-dependent suppression of interleukin alpha (IL-2) production in patients with major trauma. J Trauma. 1987;27(8):837–48.
Article
CAS
PubMed
Google Scholar
Sang N, Zhang J, Marcheselli V, Bazan NG, Chen C. Postsynaptically synthesized prostaglandin E2 (PGE2) modulates hippocampal synaptic transmission via a presynaptic PGE2 EP2 receptor. J Neurosci. 2005;25(43):9858–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nussler AK, Billiar TR. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol. 1993;54(2):171–8.
Article
CAS
PubMed
Google Scholar
Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2(10):907–16.
Article
CAS
PubMed
Google Scholar
Nozaki Y, Fujita K, Wada K, Yoneda M, Kessoku T, Shinohara Y, et al. Deficiency of iNOS-derived NO accelerates lipid accumulation-independent liver fibrosis in non-alcoholic steatohepatitis mouse model. BMC Gastroenterol. 2015;15(1):42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li D, Liu QY, Sun W, Chen XP, Wang Y, Sun YX, et al. 1,3,6,7-Tetrahydroxy-8-prenylxanthone ameliorates inflammatory responses resulting from the paracrine interactoin of adipocyts and macrophages. Br J Pharmacol. 2018;175:1590–606.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23–35.
Article
CAS
PubMed
Google Scholar
Zhang T, Fang ZJ, Linghu KG, Liu JX, Gan LS. Small molecule-driven SIRT3-autophagy-mediated NLRP3 inflammasome inhibition ameliorates inflammatory crosstalk between macrophages and adipocytes. Br J Pharmacol. 2020;177:4645–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li D, Liu QY, Lu XQ, Li ZQ, Wang CM, Leung CH, et al. α-Mangostin remodels visceral adipose tissue inflammation to ameliorate age-related metabolic disorders in mice. Aging. 2019;11(23):11084–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages. Nat Immunol. 2013;14(10):986.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng XQ, Li K, Wei YD, Tie HT, Yi XY, Huang W. Nonsteroidal anti-inflammatory drugs versus corticosteroid for treatment of shoulder pain: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2014;95(10):1824–31.
Article
PubMed
Google Scholar
Wolfensberger T, Herbort C. Treatment of cystoid macular edema with non-steroidal anti-inflammatory drugs and corticosteroids. In Macular Edema, Springer:2000;pp177‒82.
Rodríguez LAG, Hernández-Díaz S. The risk of upper gastrointestinal complications associated with nonsteroidal anti-inflammatory drugs, glucocorticoids, acetaminophen, and combinations of these agents. Arthrit Res Ther. 2001;3(2):98.
Article
Google Scholar
Azab A, Nassar A, Azab AN. Anti-inflammatory activity of natural products. Molecules. 2016;21(10):1321.
Article
PubMed Central
CAS
Google Scholar
Aswad M, Rayan M, Abu-Lafi S, Falah M, Raiyn J, Abdallah Z, et al. Nature is the best sourse of anti-inflammatory drugs: indexing natural products for their anti-inflammatory bioactivity. Inflamm Res. 2018;67:67–75.
Article
CAS
PubMed
Google Scholar
Li R, Morris-Natschke SL, Lee KH. Clerodane diterpenes: sources, structures, and biological activities. Nat Prod Rep. 2016;33(10):1166–226.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siebert DJ. Salvia divinorum and salvinorin A: new pharmacologic findings. J Ethnopharmacol. 1994;43(1):53–6.
Article
CAS
PubMed
Google Scholar
Maqueda AE, Valle M, Addy PH, Antonijoan RM, Puntes M, Coimbra J, et al. Naltrexone but not ketanserin antagonizes the subjective, cardiovascular, and neuroendocrine effects of salvinorin-A in humans. Int J Neuropsychopharmacol. 2016;19(7):pyw016.
Addy PH. Acute and post-acute behavioral and psychological effects of salvinorin A in humans. Psychopharmacology. 2012;220(1):195–204.
Article
CAS
PubMed
Google Scholar
Mendelson JE, Coyle JR, Lopez JC, Baggott MJ, Flower K, Everhart ET, et al. Lack of effect of sublingual salvinorin A, a naturally occurring kappa opioid, in humans: a placebo-controlled trial. Psychopharmacology. 2011;214(4):933–9.
Article
CAS
PubMed
Google Scholar
MacLean KA, Johnson MW, Reissig CJ, Prisinzano TE, Griffiths RR. Dose-related effects of salvinorin A in humans: dissociative, hallucinogenic, and memory effects. Psychopharmacology. 2013;226(2):381–92.
Article
CAS
PubMed
Google Scholar
Ranganathan M, Schnakenberg A, Skosnik PD, Cohen BM, Pittman B, Sewell RA, et al. Dose-related behavioral, subjective, endocrine, and psychophysiological effects of the κ opioid agonist Salvinorin A in humans. Biol Psychiatry. 2012;72(10):871–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson MW, MacLean KA, Reissig CJ, Prisinzano TE, Griffiths RR. Human psychopharmacology and dose-effects of salvinorin A, a kappa opioid agonist hallucinogen present in the plant Salvia divinorum. Drug Alcohol Depend. 2011;115(1–2):150–5.
Article
CAS
PubMed
Google Scholar
Lynn WA, Golenbock DT. Lipopolysaccharide antagonists. Immunol Today. 1992;13(7):271–6.
Article
CAS
PubMed
Google Scholar
Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71(1):635–700.
Article
CAS
PubMed
Google Scholar
Wang P, Liu F, Yang X, Liang Y, Li S, Su G, et al. Clerodane diterpenoids from Scutellaria formosana with inhibitory effects on NO production and interactions with iNOS protein. Phytochemistry. 2017;144:141–50.
Article
CAS
PubMed
Google Scholar
Lee SR, Kim MS, Kim S, Hwang KW, Park SY. Constituents from Scutellaria barbata inhibiting nitric oxide production in LPSstimulated microglial cells. Chem Biodivers. 2017;14(11):e1700231.
Article
CAS
Google Scholar
Sun Z, Li Y, Jin DQ, Guo P, Xu J, Guo Y, et al. Structure elucidation and inhibitory effects on NO production of clerodane diterpenes from Ajuga decumbens. Planta Med. 2012;78(14):1579–93.
Article
CAS
PubMed
Google Scholar
Sun Z, Li Y, Jin DQ, Guo P, Song H, Xu J, et al. neo-Clerodane diterpenes from Ajuga decumbens and their inhibitory activities on LPS-induced NO production. Fitoterapia. 2012;83(8):1409–14.
Article
CAS
PubMed
Google Scholar
Dong B, Yang X, Liu W, An L, Zhang X, Tuerhong M, et al. Anti-inflammatory neo-clerodane diterpenoids from Ajuga pantantha. J Nat Prod. 2020;83(4):894–904.
Article
CAS
PubMed
Google Scholar
Fang ZJ, Zhang T, Chen SX, Wang YL, Zhou CX, Mo JX, et al. Cycloartane triterpenoids from Actaea vaginata with anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages. Phytochemistry. 2019;160:1–10.
Article
CAS
PubMed
Google Scholar
Liu QY, Li D, Wang AQ, Dong Z, Yin S, Zhang QW, et al. Nitric oxide inhibitory xanthones from the pericarps of Garcinia mangostana. Phytochemistry. 2016;131:115–23.
Article
CAS
PubMed
Google Scholar
Wang Y, Lin J, Wang Q, Shang K, Pu DB, Zhang RH, et al. Clerodane diterpenoids with potential anti-inflammatory activity from the leaves and twigs of Callicarpa cathayana. Chin J Nat Med. 2019;17(12):953–62.
PubMed
Google Scholar
Li F, Zhang DB, Li JT, He FJ, Zhu HL, Li N, et al. Bioactive terpenoids from Croton laui. Nat Prod Res. 2019. https://doi.org/10.1080/14786419.2019.1675062.
Article
PubMed
Google Scholar
Lv HW, Luo JG, Meng DZ, Shan SM, Kong LY. Teucvisins A-E, five new neo-clerodane diterpenes from Teucrium viscidum. Chem Pharm Bull. 2014;62(5):472–6.
Article
CAS
Google Scholar
Yeon ET, Lee JW, Lee C, Jin Q, Jang H, Lee D, et al. neo-Clerodane diterpenoids from Scutellaria barbata and their inhibitory effects on LPS-induced nitric oxide production. J Nat Prod. 2015;78(9):2292–6.
Article
CAS
PubMed
Google Scholar
Somteds A, Tantapakul C, Kanokmedhakul K, Laphookhieo S, Phukhatmuen P, Kanokmedhakul S. Inhibition of nitric oxide production by clerodane diterpenoids from leaves and stems of Croton poomae Esser. Nat Prod Res. 2019. https://doi.org/10.1080/14786419.2019.1667350.
Article
PubMed
Google Scholar
Lv H, Lu J, Kong LY. A new neo-clerodane diterpene from Ajuga decumbens. Nat Prod Res. 2014;28(3):196–200.
Article
CAS
PubMed
Google Scholar
Lv HW, Luo JG, Zhu MD, Zhao HJ, Kong LY. neo-Clerodane diterpenoids from the aerial parts of Teucrium fruticans cultivated in China. Phytochemistry. 2015;119:26–31.
Article
CAS
PubMed
Google Scholar
Wu TH, Cheng YY, Chen CJ, Ng LT, Chou LC, Huang LJ, et al. Three new clerodane diterpenes from Polyalthia longifolia var pendula. Molecules. 2014;19(2):2049–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang PZ, Zhang YM, Lin Y, Wang F, Zhang GL. Three new diterpenes from Dysoxylum lukii and their NO production inhibitory activity. J Asian Nat Prod Res. 2020;22(6):531–6.
Article
PubMed
Google Scholar
Li Y, Zhu R, Zhang J, Wu X, Shen T, Zhou J, et al. Clerodane diterpenoids from the Chinese liverwort Jamesoniella autumnalis and their anti-inflammatory activity. Phytochemistry. 2018;154:85–93.
Article
CAS
PubMed
Google Scholar
Sadik CD, Kim ND, Luster AD. Neutrophils cascading their way to inflammation. Trends Immunol. 2011;32(10):452–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giuliani S, Santicioli P, Tramontana M, Geppetti P, Maggi CA. Peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP) activates capsaicin-sensitive primary afferent nerves in guinea-pig atria and urinary bladder. Br J Pharmacol. 1991;102(3):730.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klebanoff SJ. In antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes. Semin Hematol. 1975;pp117‒42.
Jaillon S, Galdiero MR, Del Prete D, Cassatella MA,Garlanda C, Mantovani A. In Neutrophils in innate and adaptive immunity. Semin Immunopathol. 2013; Springer: pp377‒94.
Chang FR, Hwang TL, Yang YL, Li CE, Wu CC, Issa HH, et al. Anti-inflammatory and cytotoxic diterpenes from Polyalthia longifolia var. pendula. Planta Med. 2006;72(14):1344‒7.
Lee CL, Yen MH, Hwang TL, Yang JC, Peng CY, Chen CJ, et al. Anti-inflammatory and cytotoxic components from Dichrocephala integrifolia. Phytochemistry Lett. 2015;12:237–42.
Article
CAS
Google Scholar
Chang HL, Chang FR, Chen JS, Wang HP, Wu YH, Wang CC, et al. Inhibitory effects of 16-hydroxycleroda-3, 13 (14) E-dien-15-oic acid on superoxide anion and elastase release in human neutrophils through multiple mechanisms. Eur J Pharmacol. 2008;586(1–3):332–9.
Article
CAS
PubMed
Google Scholar
Jang M, Pezzuto JM. Effects of resveratrol on 12-O-tetradecanoylphorbol-13-acetate-induced oxidative events and gene expression in mouse skin. Cancer Lett. 1998;134(1):81–9.
Article
CAS
PubMed
Google Scholar
Khan AQ, Khan R, Qamar W, Lateef A, Rehman MU, Tahir M, et al. Geraniol attenuates 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative stress and inflammation in mouse skin: possible role of p38 MAP Kinase and NF-κB. Exp Mol Pathol. 2013;94(3):419–29.
Article
CAS
PubMed
Google Scholar
Rao TS, Currie JL, Shaffer AF, Isakson PC. Comparative evaluation of arachidonic acid (AA)-and tetradecanoylphorbol acetate (TPA)-induced dermal inflammation. Inflammation. 1993;17(6):723–41.
Article
CAS
PubMed
Google Scholar
Simpson BS, Claudie DJ, Gerber JP, Pyke SM, Wang J, McKinnon RA, et al. In vivo activity of benzoyl ester clerodane diterpenoid derivatives from Dodonaea polyandra. J Nat Prod. 2011;74(4):650–7.
Article
CAS
PubMed
Google Scholar
Salinas-Sánchez DO, Herrera-Ruiz M, Pérez S, Jiménez-Ferrer E, Zamilpa A. Anti-inflammatory activity of hautriwaic acid isolated from Dodonaea viscosa leaves. Molecules. 2012;17(4):4292–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bautista E, Maldonado E, Ortega A. Neo-clerodane diterpenes from Salvia herbacea. J Nat Prod. 2012;75(5):951–8.
Article
CAS
PubMed
Google Scholar
González-Chávez MM, Alonso-Castro AJ, Zapata-Morales JR, Arana-Argáez V, Torres-Romero JC, Medina-Rivera YE, et al. Anti-inflammatory and antinociceptive effects of tilifodiolide, isolated from Salvia tiliifolia Vahl (Lamiaceae). Drug Dev Res. 2018;79(4):165–72.
Article
PubMed
CAS
Google Scholar
Necas J, Bartosikova L. Carrageenan: a review. Vet Med. 2013;58(4):187–205.
Article
CAS
Google Scholar
Morris CJ. Carrageenan-induced paw edema in the rat and mouse. In Inflammation protocols. Springer: 2003;pp115‒21.
Pierri EG, Castro RC, Vizioli EO, Ferreira CM, Cavalheiro AJ, Tininis AG, et al. Anti-inflammatory action of ethanolic extract and clerodane diterpenes from Casearia sylvestris. Rev Bras Farmacogn. 2017;27(4):495–501.
Article
CAS
Google Scholar
Carvalho JCT, Silva MFC, Maciel MAM, da Cunha Pinto A, Nunes DS, Lima RM, et al. Investigation of anti-inflammatory and antinociceptive activities of trans-dehydrocrotonin, a 19-nor-clerodane diterpene from Croton cajucara. Part 1. Planta Med. 1996;62(5):402–4.
Article
CAS
PubMed
Google Scholar
ur Rehman T, Khan AU, Abbas A, Hussain J, Khan FU, Stieglitz K, et al. Investigation of nepetolide as a novel lead compound: Antioxidant, antimicrobial, cytotoxic, anticancer, anti-inflammatory, analgesic activities and molecular docking evaluation. Saudi Pharm J. 2018;26(3):422‒9.
Rossi A, Pace S, Tedesco F, Pagano E, Guerra G, Troisi F, et al. The hallucinogenic diterpene salvinorin A inhibits leukotriene synthesis in experimental models of inflammation. Pharmacol Res. 2016;106:64–71.
Article
CAS
PubMed
Google Scholar
Perazzo FF, Carvalho JCT, Rodrigues M, Morais EKL, Maciel MAM. Comparative anti-inflammatory and antinociceptive effects of terpenoids and an aqueous extract obtained from Croton cajucara Benth. Rev Bras Farmacogn. 2007;17(4):521–8.
Article
CAS
Google Scholar
Simpson BS, Luo X, Costabile M, Caughey GE, Wang J, Claudie DJ, et al. Polyandric acid A, a clerodane diterpenoid from the Australian medicinal plant Dodonaea polyandra, attenuates pro-inflammatory cytokine secretion in vitro and in vivo. J Nat Prod. 2014;77(1):85–91.
Article
CAS
PubMed
Google Scholar
Haenszel W, Kurihara M, Segi M, Lee RK. Stomach cancer among Japanese in Hawaii. J Natl Cancer Inst. 1972;49(4):969–88.
CAS
PubMed
Google Scholar
Antonisamy P, Dhanasekaran M, Ignacimuthu S, Duraipandiyan V, Balthazar JD, Agastian P, et al. Gastroprotective effect of epoxy clerodane diterpene isolated from Tinospora cordifolia Miers (Guduchi) on indomethacin-induced gastric ulcer in rats. Phytomedicine. 2014;21(7):966–9.
Article
CAS
PubMed
Google Scholar
Monsen U, Broström O, Nordenvall B, Sörstad J, Hellers G. Prevalence of inflammatory bowel disease among relatives of patients with ulcerative colitis. Scand J Gastroenterol. 1987;22(2):214–8.
Article
CAS
PubMed
Google Scholar
Zheng JH, Lin SR, Tseng FJ, Tsai MJ, Lue SI, Chia YC, et al. Clerodane diterpene ameliorates inflammatory bowel disease and potentiates cell apoptosis of colorectal cancer. Biomolecules. 2019;9(12):762.
Article
CAS
PubMed Central
Google Scholar
Babu NP, Pandikumar P, Ignacimuthu S. Anti-inflammatory activity of Albizia lebbeck Benth., an ethnomedicinal plant, in acute and chronic animal models of inflammation. J Ethnopharmacol. 2009;125(2):356‒60.
Maintz L, Novak N. Histamine and histamine intolerance. Am J Clin Nutr. 2007;85(5):1185–96.
Article
CAS
PubMed
Google Scholar
Amann R, Schuligoi R, Lanz I, Donnerer J. Histamine-induced edema in the rat paw—effect of capsaicin denervation and a CGRP receptor antagonist. Eur J Pharmacol. 1995;279(2–3):227–31.
Article
CAS
PubMed
Google Scholar
Butterfield JH. Increased leukotriene E4 excretion in systemic mastocytosis. Prostag Oth Lipid M. 2010;92(1–4):73–6.
Article
CAS
Google Scholar
Shinomiya H, Nakano M. Calcium ionophore A23187 does not stimulate lipopolysaccharide nonresponsive C3H/HeJ peritoneal macrophages to produce interleukin 1. J Immunol. 1987;139(8):2730–6.
CAS
PubMed
Google Scholar
Zhang DB, Tang ZS, Xie P, Liang YN, Yu JG, Zhang Z, et al. A pair of new neo-clerodane diterpenoid epimers from the roots of Croton crassifolius and their anti-inflammatory. Nat Pro Res. 2019. https://doi.org/10.1080/14786419.2019.1601193.
Article
Google Scholar
Ichihara Y, Takeya K, Hitotsuyanagi Y, Morita H, Okuyama S, Suganuma M, et al. Cajucarinolide and isocajucarinolide: anti-inflammatory diterpenes from Croton cajucara. Planta Med. 1992;58(6):549–51.
Article
CAS
PubMed
Google Scholar
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.
Article
PubMed
PubMed Central
Google Scholar
Stinchcomb DM, Pranata J. Conformational and tautomeric equilibria of formohydroxamic acid in the gas phase and in aqueous solution. J Mol Struct. 1996;370(1):25–32.
Article
CAS
Google Scholar
Schröder A, Klein K, Winter S, Schwab M, Bonin M, Zell A, et al. Genomics of ADME gene expression: mapping expression quantitative trait loci relevant for absorption, distribution, metabolism and excretion of drugs in human liver. Pharmacogenomics J. 2013;13(1):12–20.
Article
PubMed
CAS
Google Scholar
Hughes LD, Palmer DS, Nigsch F, Mitchell JB. Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P. J Chem Inf Model. 2008;48(1):220–32.
Article
CAS
PubMed
Google Scholar
Ebeling H, Edge A, Böhringer H, Allen S, Crawford C, Fabian A, et al. The ROSAT Brightest Cluster Sample—I. The compilation of the sample and the cluster log N—log S distribution. Mon Not R Astron Soc. 1998;301(4):881–914.
Article
CAS
Google Scholar
McCracken KG, Barger CP, Sorenson MD. Phylogenetic and structural analysis of the HbA (αA/βA) and HbD (αD/βA) hemoglobin genes in two high-altitude waterfowl from the Himalayas and the Andes: bar-headed goose (Anser indicus) and Andean goose (Chloephaga melanoptera). Mol Phylogen Evol. 2010;56(2):649–58.
Article
CAS
Google Scholar
Bade R, Chan HF, Reynisson J. Characteristics of known drug space. Natural products, their derivatives and synthetic drugs. Eur J Med Chem. 2010;45(12):5646–52.
Article
CAS
PubMed
Google Scholar
Feng ZL, Lu XQ, Gan LS, Zhang QW, Lin LG. Xanthones, a promising anti-inflammatory scaffold: structure, activity, and drug likeness analysis. Molecules. 2020;25(3):598.
Article
CAS
PubMed Central
Google Scholar
Camp D, Garavelas A, Campitelli M. Analysis of physicochemical properties for drugs of natural origin. J Nat Prod. 2015;78(6):1370–82.
Article
CAS
PubMed
Google Scholar
Meade EA, Smith WL, Dewitt DL. Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem. 1993;268(9):6610–4.
CAS
PubMed
Google Scholar
Ertl P, Rohde B, Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Eur J Med Chem. 2000;43(20):3714–7.
Article
CAS
Google Scholar
Prasanna S, Doerksen R. Topological polar surface area: a useful descriptor in 2D-QSAR. Curr Med Chem. 2009;16(1):21–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamlet MJ, Doherty RM, Abraham MH, Marcus Y, Taft RW. Linear solvation energy relationship: an improved equation for correlation and prediction of octanol/water partition coefficients of organic nonelectrolytes (including strong hydrogen bond donor solutes). J Phys Chem A. 1988;92(18):5244–55.
Article
CAS
Google Scholar
Tarko L. Using the bond order calculated by quantum mechanics to identify the rotatable bonds. Rev Chim. 2011;62:135–8.
CAS
Google Scholar
Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. Eur J Med Chem. 2002;45(12):2615–23.
Article
CAS
Google Scholar
Meanwell NA. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem Res Toxicol. 2011;24(9):1420–56.
Article
CAS
PubMed
Google Scholar
Daina A, Michielin O, Zoete V. iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J Chem Inf Model. 2014;54(12):3284–301.
Article
CAS
PubMed
Google Scholar
Box K, Comer J. Using measured pKa, LogP and solubility to investigate supersaturation and predict BCS class. Curr Drug Metab. 2008;9(9):869–78.
Article
CAS
PubMed
Google Scholar
Golumbic C, Orchin M. Partition studies. V. Partition coefficients and ionization constants of methyl-substituted pyridines and quinolines. J Am Chem Soc. 1950;72(9):4145‒7.
Jorgensen WL, Duffy EM. Prediction of drug solubility from structure. Adv Drug Del Rev. 2002;54(3):355–66.
Article
CAS
Google Scholar
Di L, Kerns EH. Solution stability-plasma, gastrointestinal, bioassay. Curr Drug Metab. 2008;9(9):860–8.
Article
CAS
PubMed
Google Scholar
Daina A, Zoete V. A boiledegg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 2016;11(11):1117–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bode H, Brendel E, Ahr G, Fuhr U, Harder S, Staib A. Investigation of nifedipine absorption in different regions of the human gastrointestinal (GI) tract after simultaneous administration of 13C-and 12C-nifedipine. Eur J Clin Pharmacol. 1996;50(3):195–201.
Article
CAS
PubMed
Google Scholar
Wilhelm I, Krizbai IA. In vitro models of the blood–brain barrier for the study of drug delivery to the brain. Mol Pharm. 2014;11(7):1949–63.
Article
CAS
PubMed
Google Scholar
Boulton DW, DeVane CL, Liston HL, Markowitz JS. In vitro P-glycoprotein affinity for atypical and conventional antipsychotics. Life Sci. 2002;71(2):163–9.
Article
CAS
PubMed
Google Scholar
Brewer CT, Chen T. Hepatotoxicity of herbal supplements mediated by modulation of cytochrome P450. Int J Mol Sci. 2017;18(11):2353.
Article
PubMed Central
CAS
Google Scholar