Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):288–300.
CAS
PubMed
Google Scholar
Bredin P, Walshe JM, Denduluri N. Systemic therapy for metastatic HER2-positive breast cancer. Semin Oncol. 2020;47(5):259–69.
CAS
PubMed
Google Scholar
Dieci MV, Miglietta F, Griguolo G, Guarneri V. Biomarkers for HER2-positive metastatic breast cancer: beyond hormone receptors. Cancer Treat Rev. 2020;88: 102064.
CAS
PubMed
Google Scholar
Ginzac A, Passildas J, Gadea E, Abrial C, Molnar I, Tresorier R, Duclos M, Thivat E, Durando X. Treatment-induced cardiotoxicity in breast cancer: a review of the interest of practicing a physical activity. Oncology. 2019;96(5):223–34.
CAS
PubMed
Google Scholar
Akbari V, Chou CP, Abedi D. New insights into affinity proteins for HER2-targeted therapy: beyond trastuzumab. Biochim Biophys Acta Rev Cancer. 2020;1874(2): 188448.
CAS
PubMed
Google Scholar
Chiec L, Shah AN. Risk-based approaches for optimizing treatment in HER2-positive early stage breast cancer. Semin Oncol. 2020;47(5):249–58.
CAS
PubMed
Google Scholar
Bartsch R. Trastuzumab-deruxtecan: an investigational agent for the treatment of HER2-positive breast cancer. Expert Opin Investig Drugs. 2020;29(9):901–10.
CAS
PubMed
Google Scholar
Bai J, Kwok WC, Thiery JP. Traditional Chinese Medicine and regulatory roles on epithelial-mesenchymal transitions. Chin Med. 2019;14:34.
PubMed
PubMed Central
Google Scholar
Zhai B, Zhang N, Han X, Li Q, Zhang M, Chen X, Li G, Zhang R, Chen P, Wang W, et al. Molecular targets of beta-elemene, a herbal extract used in traditional Chinese medicine, and its potential role in cancer therapy: a review. Biomed Pharmacother. 2019;114: 108812.
CAS
PubMed
Google Scholar
Jiang H, Li J, Wang L, Wang S, Nie X, Chen Y, Fu Q, Jiang M, Fu C, He Y. Total glucosides of paeony: a review of its phytochemistry, role in autoimmune diseases, and mechanisms of action. J Ethnopharmacol. 2020. https://doi.org/10.1016/j.jep.2020.112913.
Article
PubMed
Google Scholar
Jiang M, Sheng F, Zhang Z, Ma X, Gao T, Fu C, Li P. Andrographis paniculata (Burm.f.) Nees and its major constituent andrographolide as potential antiviral agents. J Ethnopharmacol. 2021;272: 113954.
CAS
PubMed
Google Scholar
Jiang M, Zhao S, Yang S, Lin X, He X, Wei X, Song Q, Li R, Fu C, Zhang J, et al. An “essential herbal medicine”—licorice: a review of phytochemicals and its effects in combination preparations. J Ethnopharmacol. 2020;249: 112439.
CAS
PubMed
Google Scholar
Zeng L, Yang K. Exploring the pharmacological mechanism of Yanghe Decoction on HER2-positive breast cancer by a network pharmacology approach. J Ethnopharmacol. 2017;199:68–85.
CAS
PubMed
Google Scholar
Dai Y, Qiang W, Yu X, Cai S, Lin K, Xie L, Lan X, Wang D. Guizhi Fuling Decoction inhibiting the PI3K and MAPK pathways in breast cancer cells revealed by HTS(2) technology and systems pharmacology. Comput Struct Biotechnol J. 2020;18:1121–36.
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Li PP. Shu-Gan-Liang-Xue Decoction, a Chinese herbal formula, down-regulates the expression of steroid sulfatase genes in human breast carcinoma MCF-7 cells. J Ethnopharmacol. 2010;127(3):620–4.
PubMed
Google Scholar
Chen X, Guo J, Bao J, Lu J, Wang Y. The anticancer properties of Salvia miltiorrhiza Bunge (Danshen): a systematic review. Med Res Rev. 2014;34(4):768–94.
CAS
PubMed
Google Scholar
Lu X, Li B. Exploration of the effect and mechanism of activating blood circulation and stasis-removing therapy on tumor metastasis. Chin J Integr Med. 2009;15(5):395–400.
CAS
PubMed
Google Scholar
Taixiang W, Munro AJ, Guanjian L. Chinese medical herbs for chemotherapy side effects in colorectal cancer patients. Cochrane Database Syst Rev. 2005. https://doi.org/10.1002/14651858.CD004540.pub2.
Article
PubMed
Google Scholar
Chen X, Yang K, Yang J, Li K. Meta-analysis of efficacy of Sijunzi Decoction combined with enteral nutrition for the treatment of gastric cancer. Nutr Cancer. 2020;72(5):723–33.
CAS
PubMed
Google Scholar
Ji HR, Park KS, Woo HL, Lee MJ, Yoon JG, Lee HJ, Hwang DS, Lee CH, Jang JB, Lee JM. Herbal medicine (Taohong Siwu Tang) for the treatment of primary dysmenorrhea: a systematic review and meta-analysis. Explore (NY). 2020;16(5):297–303.
Google Scholar
Xia W, Hu S, Wang M, Xu F, Han L, Peng D. Exploration of the potential mechanism of the Tao Hong Si Wu Decoction for the treatment of postpartum blood stasis based on network pharmacology and in vivo experimental verification. J Ethnopharmacol. 2021;268: 113641.
CAS
PubMed
Google Scholar
Zhang Y, Zuo C, Han L, Liu X, Chen W, Wang J, Gui S, Peng C, Peng D. Uterine metabolomics reveals protection of Taohong Siwu decoction against abnormal uterine bleeding. Front Pharmacol. 2020;11: 507113.
CAS
PubMed
PubMed Central
Google Scholar
Tan Z, Jiang X, Zhou W, Deng B, Cai M, Deng S, Xu Y, Ding W, Chen G, Chen R, et al. Taohong siwu decoction attenuates myocardial fibrosis by inhibiting fibrosis proliferation and collagen deposition via TGFBR1 signaling pathway. J Ethnopharmacol. 2021;270: 113838.
CAS
PubMed
Google Scholar
Tao T, He T, Mao H, Wu X, Liu X. Non-targeted metabolomic profiling of coronary heart disease patients With Taohong Siwu decoction treatment. Front Pharmacol. 2020. https://doi.org/10.3389/fphar.2020.00651.
Article
PubMed
PubMed Central
Google Scholar
Wang M, Liu Z, Hu S, Duan X, Zhang Y, Peng C, Peng D, Han L. Taohong Siwu Decoction ameliorates ischemic stroke injury via suppressing pyroptosis. Front Pharmacol. 2020;11: 590453.
CAS
PubMed
PubMed Central
Google Scholar
Duan X, Pan L, Bao Q, Peng D. UPLC-Q-TOF-MS study of the mechanism of THSWD for breast cancer treatment. Front Pharmacol. 2019;10:1625.
CAS
PubMed
Google Scholar
Zhang R, Zhu X, Bai H, Ning K. Network pharmacology databases for Traditional Chinese medicine: review and assessment. Front Pharmacol. 2019;10:123.
PubMed
PubMed Central
Google Scholar
Luo TT, Lu Y, Yan SK, Xiao X, Rong XL, Guo J. Network pharmacology in research of Chinese Medicine formula: methodology, application and prospective. Chin J Integr Med. 2020;26(1):72–80.
CAS
PubMed
Google Scholar
Wang L, Pu X, Nie X, Wang D, Jiang H, Chen Y, Pang L, Wang S, Wang X, Xu Z, et al. Integrated serum pharmacochemistry and network pharmacological analysis used to explore possible anti-rheumatoid arthritis mechanisms of the Shentong-Zhuyu decoction. J Ethnopharmacol. 2021;273: 113988.
CAS
PubMed
Google Scholar
Xia F, Liu C, Wan J-B. Characterization of the cold and hot natures of raw and processed Rehmanniae Radix by integrated metabolomics and network pharmacology. Phytomedicine. 2020. https://doi.org/10.1016/j.phymed.2019.153071.
Article
PubMed
PubMed Central
Google Scholar
Zhou Y, Wang S, Feng W, Zhang Z, Li H. Structural characterization and immunomodulatory activities of two polysaccharides from Rehmanniae Radix Praeparata. Int J Biol Macromol. 2021;186:385–95.
CAS
PubMed
Google Scholar
Liu C, Ma R, Wang L, Zhu R, Liu H, Guo Y, Zhao B, Zhao S, Tang J, Li Y, et al. Rehmanniae Radix in osteoporosis: a review of traditional Chinese medicinal uses, phytochemistry, pharmacokinetics and pharmacology. J Ethnopharmacol. 2017;198:351–62.
CAS
PubMed
Google Scholar
Xu R, Luo C, Ge Q, Ying J, Zhang P, Xia C, Fang L, Xu H, Yuan W, Xu T, et al. Radix Rehmanniae Praeparata promotes bone fracture healing through activation of TGF-beta signaling in mesenchymal progenitors. Biomed Pharmacother. 2020;130: 110581.
CAS
PubMed
Google Scholar
Gong PY, Tian YS, Guo YJ, Gu LF, Li JY, Qi J, Yu BY. Comparisons of antithrombosis, hematopoietic effects and chemical profiles of dried and rice wine-processed Rehmanniae Radix extracts. J Ethnopharmacol. 2019;231:394–402.
CAS
PubMed
Google Scholar
Yi L, Liang Y, Wu H, Yuan D. The analysis of Radix Angelicae Sinensis (Danggui). J Chromatogr A. 2009;1216(11):1991–2001.
CAS
PubMed
Google Scholar
Jin Y, Qu C, Tang Y, Pang H, Liu L, Zhu Z, Shang E, Huang S, Sun D, Duan JA. Herb pairs containing Angelicae Sinensis Radix (Danggui): A review of bio-active constituents and compatibility effects. J Ethnopharmacol. 2016;181:158–71.
CAS
PubMed
Google Scholar
Chen X-P, Li W, Xiao X-F, Zhang L-L, Liu C-X. Phytochemical and pharmacological studies on Radix Angelica sinensis. Chin J Nat Med. 2013;11(6):577–87.
CAS
PubMed
Google Scholar
Ghosh S, Basak P, Dutta S, Chowdhury S, Sil PC. New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem Toxicol. 2017;103:41–55.
CAS
PubMed
Google Scholar
Xie Q, Zhang L, Xie L, Zheng Y, Liu K, Tang H, Liao Y, Li X. Z-ligustilide: a review of its pharmacokinetics and pharmacology. Phytother Res. 2020;34(8):1966–91.
CAS
PubMed
Google Scholar
Yan B, Shen M, Fang J, Wei D, Qin L. Advancement in the chemical analysis of Paeoniae Radix (Shaoyao). J Pharm Biomed Anal. 2018;160:276–88.
CAS
PubMed
Google Scholar
Chen Z, Zhang C, Gao F, Fu Q, Fu C, He Y, Zhang J. A systematic review on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong). Food Chem Toxicol. 2018;119:309–25.
CAS
PubMed
Google Scholar
Liu C, Li X, Yang H, Mao X, Wang J, Gao W. Effect of natural beta-glucosidase inhibitors in reducing toxicity of amygdalin in Persicae Semen. Phytother Res. 2017;31(5):771–7.
CAS
PubMed
Google Scholar
Shi J, Chen Q, Xu M, Xia Q, Zheng T, Teng J, Li M, Fan L. Recent updates and future perspectives about amygdalin as a potential anticancer agent: a review. Cancer Med. 2019;8(6):3004–11.
PubMed
PubMed Central
Google Scholar
Zhang LL, Tian K, Tang ZH, Chen XJ, Bian ZX, Wang YT, Lu JJ. Phytochemistry and pharmacology of Carthamus tinctorius L. Am J Chin Med. 2016;44(2):197–226.
CAS
PubMed
Google Scholar
Bai X, Wang WX, Fu RJ, Yue SJ, Gao H, Chen YY, Tang YP. Therapeutic potential of hydroxysafflor yellow A on cardio-cerebrovascular diseases. Front Pharmacol. 2020;11:01265.
CAS
PubMed
PubMed Central
Google Scholar
Zhao F, Wang P, Jiao Y, Zhang X, Chen D, Xu H. Hydroxysafflor Yellow A: a systematical review on botanical resources, physicochemical properties, drug delivery system, pharmacokinetics, and pharmacological effects. Front Pharmacol. 2020;11: 579332.
CAS
PubMed
PubMed Central
Google Scholar
Chu AJ. Effect of Taohong Siwu Decoction on VEGF signal transduction pathway in breast cancer and its clinical observation. Thesis, Guangzhou University of Traditional Chinese Medicine; 2012.
Chu AJ, Yang HY, Tong CL, Xie D. Influence of Taohong Siwu Decoction on lymphangiogenesis of breast cancer. J Chin Med. 2013;41(2):38–40.
CAS
Google Scholar
Yang HY, Tong CL, Chu AJ, Xie D. The effect of Taohong Siwu Decoction on the angiogenesis of breast cancer. J Guangzhou Univ Tradit Chin Med. 2012;29:623–6.
Google Scholar
Yang HY, Tong CL, Huang M. Clinical study of Taohong Siwu Decoction combined with neoadjuvant chemotherapy in the treatment of breast cancer with blood stasis and internal resistance. Mod J Integr Tradit Chin West Med. 2007;16(10):1327–8.
Google Scholar
Wang YH. Effect of Taohong Siwu Decoction on the quality of life of breast cancer patients undergoing neoadjuvant chemotherapy. Thesis, Guangzhou University of Chinese Medicine; 2007.
Fu SY, He YP, Wang NB, Xie YH. The effect of Taohong Siwu Decoction on the expression of Bcl_ellipse_Bax and Ki_67 protein in invasive breast cancer. J Chin Med. 2018;46(4):89–92.
Google Scholar
Zhang J, Yu K, Han X, Zhen L, Liu M, Zhang X, Ren Y, Shi J. Paeoniflorin influences breast cancer cell proliferation and invasion via inhibition of the Notch1 signaling pathway. Mol Med Rep. 2018;17(1):1321–5.
CAS
PubMed
Google Scholar
Moradipoodeh B, Jamalan M, Zeinali M, Fereidoonnezhad M, Mohammadzadeh G. Specific targeting of HER2-positive human breast carcinoma SK-BR-3 cells by amygdaline-ZHER2 affibody conjugate. Mol Biol Rep. 2020;47(9):7139–51.
CAS
PubMed
Google Scholar
Liu C, Wu F, Liu Y, Meng C. Catalpol suppresses proliferation and facilitates apoptosis of MCF-7 breast cancer cells through upregulating microRNA-146a and downregulating matrix metalloproteinase-16 expression. Mol Med Rep. 2015;12(5):7609–14.
CAS
PubMed
Google Scholar
Su YJ, Huang SY, Ni YH, Liao KF, Chiu SC. Anti-tumor and radiosensitization effects of N-butylidenephthalide on human breast cancer cells. Molecules. 2018. https://doi.org/10.3390/molecules23020240.
Article
PubMed
PubMed Central
Google Scholar
Kiyga E, Sengelen A, Adiguzel Z, Onay Ucar E. Investigation of the role of quercetin as a heat shock protein inhibitor on apoptosis in human breast cancer cells. Mol Biol Rep. 2020;47(7):4957–67.
CAS
PubMed
Google Scholar
Jia L, Huang S, Yin X, Zan Y, Guo Y, Han L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci. 2018;208:123–30.
CAS
PubMed
Google Scholar
Li X, Zhou N, Wang J, Liu Z, Wang X, Zhang Q, Liu Q, Gao L, Wang R. Quercetin suppresses breast cancer stem cells (CD44(+)/CD24(-)) by inhibiting the PI3K/Akt/mTOR-signaling pathway. Life Sci. 2018;196:56–62.
CAS
PubMed
Google Scholar
Hu G, Liu H, Wang M, Peng W. IQ Motif containing GTPase-activating protein 3 (IQGAP3) inhibits kaempferol-induced apoptosis in breast cancer cells by extracellular signal-regulated kinases 1/2 (ERK1/2) signaling activation. Med Sci Monit. 2019;25:7666–74.
CAS
PubMed
PubMed Central
Google Scholar
Lee HM, Moon A. Amygdalin regulates apoptosis and adhesion in Hs578T triple-negative breast cancer cells. Biomol Ther (Seoul). 2016;24(1):62–6.
CAS
Google Scholar
Moradipoodeh B, Jamalan M, Zeinali M, Fereidoonnezhad M, Mohammadzadeh G. In vitro and in silico anticancer activity of amygdalin on the SK-BR-3 human breast cancer cell line. Mol Biol Rep. 2019;46(6):6361–70.
CAS
PubMed
Google Scholar
Zhou WJ, Wang S, Hu Z, Zhou ZY, Song CJ. Angelica sinensis polysaccharides promotes apoptosis in human breast cancer cells via CREB-regulated caspase-3 activation. Biochem Biophys Res Commun. 2015;467(3):562–9.
CAS
PubMed
Google Scholar
Zhang X, Lin D, Jiang R, Li H, Wan J, Li H. Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition. Oncol Rep. 2016;36(1):271–8.
PubMed
Google Scholar
Zhu L, Xue L. Kaempferol suppresses proliferation and induces cell cycle arrest, apoptosis, and DNA damage in breast cancer cells. Oncol Res. 2019;27(6):629–34.
PubMed
PubMed Central
Google Scholar
Zhou Z, Wang S, Song C, Hu Z. Paeoniflorin prevents hypoxia-induced epithelial-mesenchymal transition in human breast cancer cells. Onco Targets Ther. 2016;9:2511–8.
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Yuan Y, Cui J, Xiao T, Jiang D. Paeoniflorin inhibits proliferation and invasion of breast cancer cells through suppressing Notch-1 signaling pathway. Biomed Pharmacother. 2016;78:197–203.
CAS
PubMed
Google Scholar
Shen J, Zeng L, Pan L, Yuan S, Wu M, Kong X. Tetramethylpyrazine regulates breast cancer cell viability, migration, invasion and apoptosis by affecting the activity of Akt and caspase-3. Oncol Lett. 2018;15(4):4557–63.
PubMed
PubMed Central
Google Scholar
Wang R, Yang L, Li S, Ye D, Yang L, Liu Q, Zhao Z, Cai Q, Tan J, Li X. Quercetin inhibits breast cancer stem cells via downregulation of aldehyde dehydrogenase 1A1 (ALDH1A1), chemokine receptor type 4 (CXCR4), mucin 1 (MUC1), and epithelial cell adhesion molecule (EpCAM). Med Sci Monit. 2018;24:412–20.
CAS
PubMed
PubMed Central
Google Scholar
Li S, Yan T, Deng R, Jiang X, Xiong H, Wang Y, Yu Q, Wang X, Chen C, Zhu Y. Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1. Onco Targets Ther. 2017;10:4809–19.
PubMed
PubMed Central
Google Scholar
Peng F, Zhu H, Meng CW, Ren YR, Dai O, Xiong L. New Isoflavanes from Spatholobus suberectus and their cytotoxicity against human breast cancer cell lines. Molecules. 2019. https://doi.org/10.3390/molecules24183218.
Article
PubMed
PubMed Central
Google Scholar
He Y, Zheng X, Sit C, Loo WT, Wang Z, Xie T, Jia B, Ye Q, Tsui K, Chow LW, et al. Using association rules mining to explore pattern of Chinese medicinal formulae (prescription) in treating and preventing breast cancer recurrence and metastasis. J Transl Med. 2012;10(Suppl 1):S12.
PubMed
PubMed Central
Google Scholar
Fu H, Wu R, Li Y, Zhang L, Tang X, Tu J, Zhou W, Wang J, Shou Q. Safflower yellow prevents pulmonary metastasis of breast cancer by inhibiting tumor cell invadopodia. Am J Chin Med. 2016;44(7):1491–506.
CAS
PubMed
Google Scholar
Chen Z, Wang P. Clinical distribution and molecular basis of traditional Chinese medicine ZHENG in cancer. Evid Based Complement Alternat Med. 2012;2012:783923.
PubMed
PubMed Central
Google Scholar
Wei H, Guo C, Zhu R, Zhang C, Han N, Liu R, Hua B, Li Y, Lin H, Yu J. Shuangshen granules attenuate lung metastasis by modulating bone marrow differentiation through mTOR signalling inhibition. J Ethnopharmacol. 2020. https://doi.org/10.1016/j.jep.2020.113305.
Article
PubMed
Google Scholar
Zeng J, Xu H, Fan PZ, Xie J, He J, Yu J, Gu X, Zhang CJ. Kaempferol blocks neutrophil extracellular traps formation and reduces tumour metastasis by inhibiting ROS-PAD4 pathway. J Cell Mol Med. 2020;24(13):7590–9.
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Yang Y, An Y, Fang G. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer. Biomed Pharmacother. 2019;117:109086.
CAS
PubMed
Google Scholar
Lee GA, Choi KC, Hwang KA. Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells. Environ Toxicol Pharmacol. 2017;49:48–57.
CAS
PubMed
Google Scholar
Li S, Yuan S, Zhao Q, Wang B, Wang X, Li K. Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed Pharmacother. 2018;100:441–7.
CAS
PubMed
Google Scholar
Yang Z, Li G, Li J. Effect of Taohong Siwu Decoction on serum VEGF in patients with advanced breast cancer. Chin Tradit Chin Med Technol. 2012;019:102–3.
Google Scholar
Chu AJ, Yang HY, Tong CL, Xie D. Influence of Taohong Siwu Decoction on lymphangiogenesis of breast cancer. J Chin Med. 2013;41:38–40.
CAS
Google Scholar
Zhou J, Jiang YY, Wang XX, Wang HP, Chen H, Wu YC, Wang L, Pu X, Yue GZ, Zhang L. Tanshinone IIA suppresses ovarian cancer growth through inhibiting malignant properties and angiogenesis. Ann Transl Med. 2020;8(20):1295.
CAS
PubMed
PubMed Central
Google Scholar
Wang K, Chen Q, Shao Y, Yin S, Liu C, Liu Y, Wang R, Wang T, Qiu Y, Yu H. Anticancer activities of TCM and their active components against tumor metastasis. Biomed Pharmacother. 2021;133: 111044.
CAS
PubMed
Google Scholar
Verret B, Cortes J, Bachelot T, Andre F, Arnedos M. Efficacy of PI3K inhibitors in advanced breast cancer. Ann Oncol. 2019;30:x12–20.
CAS
PubMed
PubMed Central
Google Scholar
Hinz N, Jucker M. Distinct functions of AKT isoforms in breast cancer: a comprehensive review. Cell Commun Signal. 2019;17(1):154.
CAS
PubMed
PubMed Central
Google Scholar
Yang SX, Polley E, Lipkowitz S. New insights on PI3K/AKT pathway alterations and clinical outcomes in breast cancer. Cancer Treat Rev. 2016;45:87–96.
CAS
PubMed
PubMed Central
Google Scholar
Zagouri F, Sergentanis TN, Chrysikos D, Filipits M, Bartsch R. mTOR inhibitors in breast cancer: a systematic review. Gynecol Oncol. 2012;127(3):662–72.
CAS
PubMed
Google Scholar
Guerrero-Zotano A, Mayer IA, Arteaga CL. PI3K/AKT/mTOR: role in breast cancer progression, drug resistance, and treatment. Cancer Metastasis Rev. 2016;35(4):515–24.
CAS
PubMed
Google Scholar
Rahmani F, Ferns GA, Talebian S, Nourbakhsh M, Avan A, Shahidsales S. Role of regulatory miRNAs of the PI3K/AKT signaling pathway in the pathogenesis of breast cancer. Gene. 2020;737: 144459.
CAS
PubMed
Google Scholar
Hong BS, Ryu HS, Kim N, Kim J, Lee E, Moon H, Kim KH, Jin MS, Kwon NH, Kim S, et al. Tumor suppressor miRNA-204-5p regulates growth, metastasis, and immune microenvironment remodeling in breast cancer. Cancer Res. 2019;79(7):1520–34.
CAS
PubMed
Google Scholar
Lu X, Ma J, Chu J, Shao Q, Zhang Y, Lu G, Li J, Huang X, Li W, Li Y, et al. MiR-129-5p sensitizes the response of Her-2 Positive breast cancer to trastuzumab by reducing Rps6. Cell Physiol Biochem. 2017;44(6):2346–56.
CAS
PubMed
Google Scholar
You L, Wu W, Wang X, Fang L, Adam V, Nepovimova E, Wu Q, Kuca K. The role of hypoxia-inducible factor 1 in tumor immune evasion. Med Res Rev. 2020. https://doi.org/10.1002/med.21771.
Article
PubMed
Google Scholar
Haase VH. Oxygen regulates epithelial-to-mesenchymal transition: insights into molecular mechanisms and relevance to disease. Kidney Int. 2009;76(5):492–9.
CAS
PubMed
PubMed Central
Google Scholar
Gao T, Li JZ, Lu Y, Zhang CY, Li Q, Mao J, Li LH. The mechanism between epithelial mesenchymal transition in breast cancer and hypoxia microenvironment. Biomed Pharmacother. 2016;80:393–405.
CAS
PubMed
Google Scholar
Gervin E, Shin B, Opperman R, Cullen M, Feser R, Maiti S, Majumder M. Chemically induced hypoxia enhances miRNA functions in breast cancer. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12082008.
Article
Google Scholar
Xu H, Li W, Luo S, Yuan J, Hao L. Adipose derived stem cells promote tumor metastasis in breast cancer cells by stem cell factor inhibition of miR20b. Cell Signal. 2019;62: 109350.
CAS
PubMed
Google Scholar
Liang H, Xiao J, Zhou Z, Wu J, Ge F, Li Z, Zhang H, Sun J, Li F, Liu R, et al. Hypoxia induces miR-153 through the IRE1alpha-XBP1 pathway to fine tune the HIF1alpha/VEGFA axis in breast cancer angiogenesis. Oncogene. 2018;37(15):1961–75.
CAS
PubMed
PubMed Central
Google Scholar
Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, Dana N, Javan M. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1alpha/VEGF signaling axis in breast cancer cells. Cell Oncol (Dordr). 2017;40(5):457–70.
CAS
Google Scholar