GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (Lond, Engl). 2020;395(10225):709–33. https://doi.org/10.1016/S0140-6736(20)30045-3.
Article
Google Scholar
Ruiz-Ortega M, Rayego-Mateos S, Lamas S, Ortiz A, Rodrigues-Diez RR. Targeting the progression of chronic kidney disease. Nat Rev Nephrol. 2020;16(5):269–88. https://doi.org/10.1038/s41581-019-0248-y.
Article
PubMed
Google Scholar
Nastase MV, Zeng-Brouwers J, Wygrecka M, Schaefer L. Targeting renal fibrosis: mechanisms and drug delivery systems. Adv Drug Deliv Rev. 2018;129:295–307. https://doi.org/10.1016/j.addr.2017.12.019.
Article
CAS
PubMed
Google Scholar
Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7(12):684–96. https://doi.org/10.1038/nrneph.2011.149.
Article
CAS
PubMed
PubMed Central
Google Scholar
Djudjaj S, Boor P. Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med. 2019;65:16–36. https://doi.org/10.1016/j.mam.2018.06.002.
Article
CAS
PubMed
Google Scholar
Andrade-Oliveira V, Foresto-Neto O, Watanabe I, Zatz R, Câmara N. Inflammation in renal diseases: new and old players. Front Pharmacol. 2019;10:1192. https://doi.org/10.3389/fphar.2019.01192.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lv W, Booz GW, Wang Y, Fan F, Roman RJ. Inflammation and renal fibrosis: recent developments on key signaling molecules as potential therapeutic targets. Eur J Pharmacol. 2018;820:65–76. https://doi.org/10.1016/j.ejphar.2017.12.016.
Article
CAS
PubMed
Google Scholar
LeBleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG, Woda C, et al. Origin and function of myofibroblasts in kidney fibrosis. Nat Med. 2013;19(8):1047–53. https://doi.org/10.1038/nm.3218.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mack M, Yanagita M. Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int. 2015;87(2):297–307. https://doi.org/10.1038/ki.2014.287.
Article
PubMed
Google Scholar
Yuan Q, Tan RJ, Liu Y. Myofibroblast in kidney fibrosis: origin, activation, and regulation. Adv Exp Med Biol. 2019;1165:253–83. https://doi.org/10.1007/978-981-13-8871-2_12.
Article
CAS
PubMed
Google Scholar
Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12(6):325–38. https://doi.org/10.1038/nrneph.2016.48.
Article
CAS
PubMed
Google Scholar
Edeling M, Ragi G, Huang S, Pavenstädt H, Susztak K. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol. 2016;12(7):426–39. https://doi.org/10.1038/nrneph.2016.54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu HH, Cao G, Wu XQ, Vaziri ND, Zhao YY. Wnt signaling pathway in aging-related tissue fibrosis and therapies. Ageing Res Rev. 2020;60:101063. https://doi.org/10.1016/j.arr.2020.101063.
Article
CAS
PubMed
Google Scholar
Zhou D, Tan RJ, Liu Y. Sonic hedgehog signaling in kidney fibrosis: a master communicator. Sci China Life Sci. 2016;59(9):920–9. https://doi.org/10.1007/s11427-016-0020-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun YB, Qu X, Caruana G, Li J. The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis. Differentiation. 2016;92(3):102–7. https://doi.org/10.1016/j.diff.2016.05.008.
Article
CAS
PubMed
Google Scholar
Bülow RD, Boor P. Extracellular matrix in kidney fibrosis: more than just a scaffold. J Histochem Cytochem. 2019;67(9):643–61. https://doi.org/10.1369/0022155419849388.
Article
CAS
PubMed
PubMed Central
Google Scholar
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4–27. https://doi.org/10.1016/j.addr.2015.11.001.
Article
CAS
PubMed
Google Scholar
Szeto SG, Narimatsu M, Lu M, He X, Sidiqi AM, Tolosa MF, et al. YAP/TAZ are mechanoregulators of TGF-β-Smad signaling and renal fibrogenesis. J Am Soc Nephrol. 2016;27(10):3117–28. https://doi.org/10.1681/ASN.2015050499.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang PM, Nikolic-Paterson DJ, Lan HY. Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 2019;15(3):144–58. https://doi.org/10.1038/s41581-019-0110-2.
Article
PubMed
Google Scholar
Duni A, Liakopoulos V, Roumeliotis S, Peschos D, Dounousi E. Oxidative stress in the pathogenesis and evolution of Chronic Kidney Disease: untangling Ariadne’s thread. Int J Mol Sci. 2019;20(15):3711. https://doi.org/10.3390/ijms20153711.
Article
CAS
PubMed Central
Google Scholar
Tang C, Livingston MJ, Liu Z, Dong Z. Autophagy in kidney homeostasis and disease. Nat Rev Nephrol. 2020;16(9):489–508. https://doi.org/10.1038/s41581-020-0309-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770–803. https://doi.org/10.1021/acs.jnatprod.9b01285.
Article
CAS
PubMed
Google Scholar
Zhang L, Song J, Kong L, Yuan T, Li W, Zhang W, et al. The strategies and techniques of drug discovery from natural products. Pharmacol Ther. 2020;216:107686. https://doi.org/10.1016/j.pharmthera.2020.107686.
Article
CAS
PubMed
Google Scholar
Chen DQ, Hu HH, Wang YN, Feng YL, Cao G, Zhao YY. Natural products for the prevention and treatment of kidney disease. Phytomedicine. 2018;50:50–60. https://doi.org/10.1016/j.phymed.2018.09.182.
Article
CAS
PubMed
Google Scholar
Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as anticancer agents. Nutrients. 2020;12(2):457. https://doi.org/10.3390/nu12020457.
Article
CAS
PubMed Central
Google Scholar
Lu H, Wu L, Liu L, Ruan Q, Zhang X, Hong W, et al. Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization. Biochem Pharmacol. 2018;154:203–12. https://doi.org/10.1016/j.bcp.2018.05.007.
Article
CAS
PubMed
Google Scholar
Liu X, Sun N, Mo N, Lu S, Song E, Ren C, et al. Quercetin inhibits kidney fibrosis and the epithelial to mesenchymal transition of the renal tubular system involving suppression of the Sonic Hedgehog signaling pathway. Food Funct. 2019;10(6):3782–97. https://doi.org/10.1039/c9fo00373h.
Article
CAS
PubMed
Google Scholar
Liu T, Yang Q, Zhang X, Qin R, Shan W, Zhang H, et al. Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis. Life Sci. 2020;257:118116. https://doi.org/10.1016/j.lfs.2020.118116.
Article
CAS
PubMed
Google Scholar
Zhou X, Bai C, Sun X, Gong X, Yang Y, Chen C, et al. Puerarin attenuates renal fibrosis by reducing oxidative stress induced-epithelial cell apoptosis via MAPK signal pathways in vivo and in vitro. Ren Fail. 2017;39(1):423–31. https://doi.org/10.1080/0886022X.2017.1305409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Ge S, Wang Y, Liu Y, Qiu L, Li J, et al. Puerarin alleviates UUO-induced inflammation and fibrosis by regulating the NF-κB P65/STAT3 and TGFβ1/Smads signaling pathways. Drug Des Dev Ther. 2021;15:3697–708. https://doi.org/10.2147/DDDT.S321879.
Article
Google Scholar
Liu Y, Bi X, Xiong J, Han W, Xiao T, Xu X, et al. MicroRNA-34a promotes renal fibrosis by downregulation of klotho in tubular epithelial cells. Mol Ther. 2019;27(5):1051–65. https://doi.org/10.1016/j.ymthe.2019.02.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong C, Wu G, Li H, Qiao Y, Gao S. Ampelopsin inhibits high glucose-induced extracellular matrix accumulation and oxidative stress in mesangial cells through activating the Nrf2/HO-1 pathway. Phytother Res. 2020;34(8):2044–52. https://doi.org/10.1002/ptr.6668.
Article
CAS
PubMed
Google Scholar
Elsherbiny NM, Said E, Atef H, Zaitone SA. Renoprotective effect of calycosin in high fat diet-fed/STZ injected rats: effect on IL-33/ST2 signaling, oxidative stress and fibrosis suppression. Chem Biol Interact. 2020;315:108897. https://doi.org/10.1016/j.cbi.2019.108897.
Article
CAS
PubMed
Google Scholar
Liao Y, Tan RZ, Li JC, Liu TT, Zhong X, Yan Y, et al. Isoliquiritigenin Attenuates UUO-induced renal inflammation and fibrosis by inhibiting Mincle/Syk/NF-Kappa B signaling pathway. Drug Des Dev Ther. 2020;14:1455–68. https://doi.org/10.2147/DDDT.S243420.
Article
CAS
Google Scholar
Huang X, Shi Y, Chen H, Le R, Gong X, Xu K, et al. Isoliquiritigenin prevents hyperglycemia-induced renal injuries by inhibiting inflammation and oxidative stress via SIRT1-dependent mechanism. Cell Death Dis. 2020;11(12):1040. https://doi.org/10.1038/s41419-020-03260-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Jiang S, Zhang Q, Jin B, Lv D, Li W, et al. Integrin β3 induction promotes tubular cell senescence and kidney fibrosis. Front Cell Dev Biol. 2021;9:733831. https://doi.org/10.3389/fcell.2021.733831.
Article
PubMed
PubMed Central
Google Scholar
Miao H, Cao G, Wu XQ, Chen YY, Chen DQ, Chen L, et al. Identification of endogenous 1-aminopyrene as a novel mediator of progressive chronic kidney disease via aryl hydrocarbon receptor activation. Br J Pharmacol. 2020;177(15):3415–35. https://doi.org/10.1111/bph.15062.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miao H, Wu XQ, Wang YN, Chen DQ, Chen L, Vaziri ND, et al. 1-Hydroxypyrene mediates renal fibrosis through aryl hydrocarbon receptor signalling pathway. Br J Pharmacol. 2022;179(1):103–24. https://doi.org/10.1111/bph.15705.
Article
CAS
PubMed
Google Scholar
Silva AS, Reboredo-Rodríguez P, Süntar I, Sureda A, Belwal T, Loizzo MR, et al. Evaluation of the status quo of polyphenols analysis: part I-phytochemistry, bioactivity, interactions, and industrial uses. Compr Rev Food Sci Food Saf. 2020;19(6):3191–218. https://doi.org/10.1111/1541-4337.12629.
Article
CAS
PubMed
Google Scholar
Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. 2018;10(11):1618. https://doi.org/10.3390/nu10111618.
Article
CAS
PubMed Central
Google Scholar
Luca SV, Macovei I, Bujor A, Miron A, Skalicka-Woźniak K, Aprotosoaie AC, et al. Bioactivity of dietary polyphenols: the role of metabolites. Crit Rev Food Sci Nutr. 2020;60(4):626–59. https://doi.org/10.1080/10408398.2018.1546669.
Article
CAS
PubMed
Google Scholar
Lu M, Li H, Liu W, Zhang X, Li L, Zhou H. Curcumin attenuates renal interstitial fibrosis by regulating autophagy and retaining mitochondrial function in unilateral ureteral obstruction rats. Basic Clin Pharmacol Toxicol. 2021;128(4):594–604. https://doi.org/10.1111/bcpt.13550.
Article
CAS
PubMed
Google Scholar
Zhou J, Yao M, Zhu M, Li M, Ke Q, Wu B, et al. Curcumin blunts IL-6 dependent endothelial-to-mesenchymal transition to alleviate renal allograft fibrosis through autophagy activation. Front Immunol. 2021;12:656242. https://doi.org/10.3389/fimmu.2021.656242.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trujillo J, Molina-Jijón E, Medina-Campos ON, Rodríguez-Muñoz R, Reyes JL, Loredo ML, et al. Curcumin prevents cisplatin-induced decrease in the tight and adherens junctions: relation to oxidative stress. Food Funct. 2016;7(1):279–93. https://doi.org/10.1039/c5fo00624d.
Article
CAS
PubMed
Google Scholar
Zhang X, Lu H, Xie S, Wu C, Guo Y, Xiao Y, et al. Resveratrol suppresses the myofibroblastic phenotype and fibrosis formation in kidneys via proliferation-related signalling pathways. Br J Pharmacol. 2019;176(24):4745–59. https://doi.org/10.1111/bph.14842.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jang IA, Kim EN, Lim JH, Kim MY, Ban TH, Yoon HE, et al. Effects of resveratrol on the renin-angiotensin system in the aging kidney. Nutrients. 2018;10(11):1741. https://doi.org/10.3390/nu10111741.
Article
CAS
PubMed Central
Google Scholar
Chen CC, Chang ZY, Tsai FJ, Chen SY. Resveratrol pretreatment ameliorates concanavalin A-induced advanced renal glomerulosclerosis in aged mice through upregulation of Sirtuin 1-mediated Klotho expression. Int J Mol Sci. 2020;21(18):6766. https://doi.org/10.3390/ijms21186766.
Article
CAS
PubMed Central
Google Scholar
Chen J, Du L, Li J, Song H. Epigallocatechin-3-gallate attenuates cadmium-induced chronic renal injury and fibrosis. Food Chem Toxicol. 2016;96:70–8. https://doi.org/10.1016/j.fct.2016.07.030.
Article
CAS
PubMed
Google Scholar
Luo D, Xu J, Chen X, Zhu X, Liu S, Li J, et al. (-)-Epigallocatechin-3-gallate (EGCG) attenuates salt-induced hypertension and renal injury in Dahl salt-sensitive rats. Sci Rep. 2020;10(1):4783. https://doi.org/10.1038/s41598-020-61794-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu QQ, Yang XY, Zhang XJ, Yu CJ, Pang QQ, Huang YW, et al. EGCG targeting Notch to attenuate renal fibrosis via inhibition of TGFβ/Smad3 signaling pathway activation in streptozotocin-induced diabetic mice. Food Funct. 2020;11(11):9686–95. https://doi.org/10.1039/d0fo01542c.
Article
CAS
PubMed
Google Scholar
Zhang HF, Wang YL, Gao C, Gu YT, Huang J, Wang JH, et al. Salvianolic acid A attenuates kidney injury and inflammation by inhibiting NF-κB and p38 MAPK signaling pathways in 5/6 nephrectomized rats. Acta Pharmacol Sin. 2018;39(12):1855–64. https://doi.org/10.1038/s41401-018-0026-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao G, Li S, Shi H, Yin P, Chen J, Li H, et al. Schisandrin B attenuates renal fibrosis via miR-30e-mediated inhibition of EMT. Toxicol Appl Pharmacol. 2019;385:114769. https://doi.org/10.1016/j.taap.2019.114769.
Article
CAS
PubMed
Google Scholar
Hortelano S, González-Cofrade L, Cuadrado I, de Las Heras B. Current status of terpenoids as inflammasome inhibitors. Biochem Pharmacol. 2020;172:113739. https://doi.org/10.1016/j.bcp.2019.113739.
Article
CAS
PubMed
Google Scholar
Masood N, Dubey V, Luqman S. Activation of Caspase-3 by terpenoids and flavonoids in different types of cancer cells. Curr Top Med Chem. 2020;20(21):1876–87. https://doi.org/10.2174/1568026620666200710101859.
Article
CAS
PubMed
Google Scholar
Ma X, Jiang Y, Wen J, Zhao Y, Zeng J, Guo Y. A comprehensive review of natural products to fight liver fibrosis: alkaloids, terpenoids, glycosides, coumarins and other compounds. Eur J Pharmacol. 2020;888:173578. https://doi.org/10.1016/j.ejphar.2020.173578.
Article
CAS
PubMed
Google Scholar
Chen DQ, Wu XQ, Chen L, Hu HH, Wang YN, Zhao YY. Poricoic acid A as a modulator of TPH-1 expression inhibits renal fibrosis via modulating protein stability of β-catenin and β-catenin-mediated transcription. Ther Adv Chronic Dis. 2020;11:2040622320962648. https://doi.org/10.1177/2040622320962648.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen DQ, Wang YN, Vaziri ND, Chen L, Hu HH, Zhao YY. Poricoic acid A activates AMPK to attenuate fibroblast activation and abnormal extracellular matrix remodelling in renal fibrosis. Phytomedicine. 2020;72:153232. https://doi.org/10.1016/j.phymed.2020.153232.
Article
CAS
PubMed
Google Scholar
Wang M, Chen DQ, Chen L, Cao G, Zhao H, Liu D, et al. Novel inhibitors of the cellular renin-angiotensin system components, poricoic acids, target Smad3 phosphorylation and Wnt/β-catenin pathway against renal fibrosis. Br J Pharmacol. 2018;175(13):2689–708. https://doi.org/10.1111/bph.14333.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang M, Chen DQ, Chen L, Liu D, Zhao H, Zhang ZH, et al. Novel RAS inhibitors poricoic acid ZG and poricoic acid ZH attenuate renal fibrosis via a Wnt/β-catenin pathway and targeted phosphorylation of smad3 signaling. J Agric Food Chem. 2018;66(8):1828–42. https://doi.org/10.1021/acs.jafc.8b00099.
Article
CAS
PubMed
Google Scholar
Chen L, Cao G, Wang M, Feng YL, Chen DQ, Vaziri ND, et al. The matrix metalloproteinase-13 inhibitor poricoic acid ZI ameliorates renal fibrosis by mitigating epithelial-mesenchymal transition. Mol Nutr Food Res. 2019. https://doi.org/10.1002/mnfr.201900132.
Article
PubMed
PubMed Central
Google Scholar
Wang M, Hu HH, Chen YY, Chen L, Wu XQ, Zhao YY. Novel poricoic acids attenuate renal fibrosis through regulating redox signalling and aryl hydrocarbon receptor activation. Phytomed Int J Phytother Phytopharmacol. 2020;79:153323. https://doi.org/10.1016/j.phymed.2020.153323.
Article
CAS
Google Scholar
Chen H, Wang MC, Chen YY, Chen L, Wang YN, Vaziri ND, et al. Alisol B 23-acetate attenuates CKD progression by regulating the renin-angiotensin system and gut-kidney axis. Ther Adv Chronic Dis. 2020;11:2040622320920025. https://doi.org/10.1177/2040622320920025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Hu Q, Li C, Liang K, Xiang Y, Hsiao H, et al. PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease. J Clin Invest. 2019;129(3):1129–51. https://doi.org/10.1172/JCI121987.
Article
PubMed
PubMed Central
Google Scholar
Li XY, Wang SS, Han Z, Han F, Chang YP, Yang Y, et al. Triptolide restores autophagy to alleviate diabetic renal fibrosis through the miR-141-3p/PTEN/Akt/mTOR pathway. Mol Ther Nucleic Acids. 2017;9:48–56. https://doi.org/10.1016/j.omtn.2017.08.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Yang S, Wang K, Bao X, Liu Y, Zhou S, et al. Alkaloids from Traditional Chinese Medicine against hepatocellular carcinoma. Biomed Pharmacother. 2019;120:109543. https://doi.org/10.1016/j.biopha.2019.109543.
Article
CAS
PubMed
Google Scholar
Alasvand M, Assadollahi V, Ambra R, Hedayati E, Kooti W, Peluso I. Antiangiogenic effect of alkaloids. Oxid Med Cell Longev. 2019;2019:9475908. https://doi.org/10.1155/2019/9475908.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan XP, Liu LS, Fu Q, Wang CX. Effects of ligustrazine on ureteral obstruction-induced renal tubulointerstitial fibrosis. Phytother Res. 2012;26(5):697–703. https://doi.org/10.1002/ptr.3630.
Article
CAS
PubMed
Google Scholar
Liu L, Wang Y, Yan R, Li S, Shi M, Xiao Y, et al. Oxymatrine inhibits renal tubular EMT induced by high glucose via upregulation of SnoN and inhibition of TGF-β1/Smad signaling pathway. PLoS ONE. 2016;11(3):e0151986. https://doi.org/10.1371/journal.pone.0151986.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao Y, Peng C, Xiao Y, Liang D, Yuan Z, Li Z, et al. Oxymatrine inhibits twist-mediated renal tubulointerstitial fibrosis by upregulating Id2 expression. Front Physiol. 2020;11:599. https://doi.org/10.3389/fphys.2020.00599.
Article
PubMed
PubMed Central
Google Scholar
Cheng H, Bo Y, Shen W, Tan J, Jia Z, Xu C, et al. Leonurine ameliorates kidney fibrosis via suppressing TGF-β and NF-κB signaling pathway in UUO mice. Int Immunopharmacol. 2015;25(2):406–15. https://doi.org/10.1016/j.intimp.2015.02.023.
Article
CAS
PubMed
Google Scholar
Zhang X, He H, Liang D, Jiang Y, Liang W, Chi ZH, et al. Protective effects of berberine on renal injury in Streptozotocin (STZ)-induced diabetic mice. Int J Mol Sci. 2016;17(8):1327. https://doi.org/10.3390/ijms17081327.
Article
CAS
PubMed Central
Google Scholar
Yang G, Zhao Z, Zhang X, Wu A, Huang Y, Miao Y, et al. Effect of berberine on the renal tubular epithelial-to-mesenchymal transition by inhibition of the Notch/snail pathway in diabetic nephropathy model KKAy mice. Drug Des Dev Ther. 2017;11:1065–79. https://doi.org/10.2147/DDDT.S124971.
Article
CAS
Google Scholar
Wu S, Pang Y, He Y, Zhang X, Peng L, Guo J, et al. A comprehensive review of natural products against atopic dermatitis: flavonoids, alkaloids, terpenes, glycosides and other compounds. Biomed Pharmacother. 2021;140:111741. https://doi.org/10.1016/j.biopha.2021.111741.
Article
CAS
PubMed
Google Scholar
Zhang Y, Tao C, Xuan C, Jiang J, Cao W. Transcriptomic analysis reveals the protection of Astragaloside IV against diabetic nephropathy by modulating inflammation. Oxid Med Cell Longev. 2020;2020:9542165. https://doi.org/10.1155/2020/9542165.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou X, Sun X, Gong X, Yang Y, Chen C, Shan G, et al. Astragaloside IV from Astragalus membranaceus ameliorates renal interstitial fibrosis by inhibiting inflammation via TLR4/NF-кB in vivo and in vitro. Int Immunopharmacol. 2017;42:18–24. https://doi.org/10.1016/j.intimp.2016.11.006.
Article
CAS
PubMed
Google Scholar
Chen X, Yang Y, Liu C, Chen Z, Wang D. Astragaloside IV ameliorates high glucose-induced renal tubular epithelial-mesenchymal transition by blocking mTORC1/p70S6K signaling in HK-2 cells. Int J Mol Med. 2019;43(2):709–16. https://doi.org/10.3892/ijmm.2018.3999.
Article
CAS
PubMed
Google Scholar
Gao P, Du X, Liu L, Xu H, Liu M, Guan X, et al. Astragaloside IV alleviates tacrolimus-induced chronic nephrotoxicity via p62-Keap1-Nrf2 pathway. Front Pharmacol. 2021;11:610102. https://doi.org/10.3389/fphar.2020.610102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li R, Guo Y, Zhang Y, Zhang X, Zhu L, Yan T. Salidroside ameliorates renal interstitial fibrosis by inhibiting the TLR4/NF-κB and MAPK signaling pathways. Int J Mol Sci. 2019;20(5):1103. https://doi.org/10.3390/ijms20051103.
Article
CAS
PubMed Central
Google Scholar
Xue H, Li P, Luo Y, Wu C, Liu Y, Qin X, et al. Salidroside stimulates the Sirt1/PGC-1α axis and ameliorates diabetic nephropathy in mice. Phytomedicine. 2019;54:240–7. https://doi.org/10.1016/j.phymed.2018.10.031.
Article
CAS
PubMed
Google Scholar
Huang X, Xue H, Ma J, Zhang Y, Zhang J, Liu Y, et al. Salidroside ameliorates Adriamycin nephropathy in mice by inhibiting β-catenin activity. J Cell Mol Med. 2019;23(6):4443–53. https://doi.org/10.1111/jcmm.14340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiao Y, Xu L, Tao X, Yin L, Qi Y, Xu Y, et al. Protective effects of dioscin against fructose-induced renal damage via adjusting Sirt3-mediated oxidative stress, fibrosis, lipid metabolism and inflammation. Toxicol Lett. 2018;284:37–45. https://doi.org/10.1016/j.toxlet.2017.11.031.
Article
CAS
PubMed
Google Scholar
Patel O, Beteck RM, Legoabe LJ. Antimalarial application of quinones: a recent update. Eur J Med Chem. 2021;210:113084. https://doi.org/10.1016/j.ejmech.2020.113084.
Article
CAS
PubMed
Google Scholar
Siegel D, Yan C, Ross D. NAD(P)H:quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochem Pharmacol. 2012;83(8):1033–40. https://doi.org/10.1016/j.bcp.2011.12.017.
Article
CAS
PubMed
Google Scholar
Wang DT, Huang RH, Cheng X, Zhang ZH, Yang YJ, Lin X. Tanshinone IIA attenuates renal fibrosis and inflammation via altering expression of TGF-β/Smad and NF-κB signaling pathway in 5/6 nephrectomized rats. Int Immunopharmacol. 2015;26(1):4–12. https://doi.org/10.1016/j.intimp.2015.02.027.
Article
CAS
PubMed
Google Scholar
Jiang C, Zhu W, Yan X, Shao Q, Xu B, Zhang M, et al. Rescue therapy with Tanshinone IIA hinders transition of acute kidney injury to chronic kidney disease via targeting GSK3β. Sci Rep. 2016;6:36698. https://doi.org/10.1038/srep36698.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu S, He L, Ding K, Zhang L, Xu X, Wang S, et al. Tanshinone IIA ameliorates streptozotocin-induced diabetic nephropathy, partly by attenuating PERK pathway-induced fibrosis. Drug Des Dev Ther. 2020;14:5773–82. https://doi.org/10.2147/DDDT.S257734.
Article
CAS
Google Scholar
Liu H, Wang Q, Shi G, Yang W, Zhang Y, Chen W, et al. Emodin ameliorates renal damage and podocyte injury in a rat model of diabetic nephropathy via regulating AMPK/mTOR-mediated autophagy signaling pathway. Diabetes Metab Syndr Obes. 2021;14:1253–66. https://doi.org/10.2147/DMSO.S299375.
Article
PubMed
PubMed Central
Google Scholar
Liu W, Gu R, Lou Y, He C, Zhang Q, Li D. Emodin-induced autophagic cell death hinders epithelial-mesenchymal transition via regulation of BMP-7/TGF-β1 in renal fibrosis. J Pharmacol Sci. 2021;146(4):216–25. https://doi.org/10.1016/j.jphs.2021.03.009.
Article
CAS
PubMed
Google Scholar
Xu L, Gao J, Huang D, Lin P, Yao D, Yang F, et al. Emodin ameliorates tubulointerstitial fibrosis in obstructed kidneys by inhibiting EZH2. Biochem Biophys Res Commun. 2021;534:279–85. https://doi.org/10.1016/j.bbrc.2020.11.094.
Article
CAS
PubMed
Google Scholar
Dou F, Ding Y, Wang C, Duan J, Wang W, Xu H, Zhao X, Wang J, Wen A. Chrysophanol ameliorates renal interstitial fibrosis by inhibiting the TGF-β/Smad signaling pathway. Biochem Pharmacol. 2020;180:114079. https://doi.org/10.1016/j.bcp.2020.114079.
Article
CAS
PubMed
Google Scholar
Huang J, Gong W, Chen Z, Huang J, Chen Q, Huang H, et al. Emodin self-emulsifying platform ameliorates the expression of FN, ICAM-1 and TGF-β1 in AGEs-induced glomerular mesangial cells by promoting absorption. Eur J Pharm Sci. 2017;99:128–36. https://doi.org/10.1016/j.ejps.2016.12.012.
Article
CAS
PubMed
Google Scholar