Li M, Fang Q, Li J, et al. The effect of chinese traditional exercise-baduanjin on physical and psychological well-being of college students: a randomized controlled trial. PLoS ONE. 2015;10(7):e0130544.
Article
Google Scholar
Liye Z, Eidi SJ, Huiru W, et al. A systematic review and meta-analysis of Baduanjin Qigong for health benefits: randomized controlled trials. Evi Based Complement Altern Med. 2017;2017:1–17.
Google Scholar
Zou L, Pan Z, Yeung A, et al. A review study on the beneficial effects of Baduanjin. J Altern Complement Med. 2018;24(4):324.
Article
Google Scholar
Zheng G, Zheng Y, Xiong Z, et al. Effect of Baduanjin exercise on cognitive function in patients with post-stroke cognitive impairment: study protocol for a randomised controlled trial. BMJ Open. 2018;8(6):e020954.
Article
Google Scholar
Liu SJ, Ren Z, Wang L, et al. Mind body (Baduanjin) exercise prescription for chronic obstructive pulmonary disease: a systematic review with meta-analysis. Int J Environ Res Public Health. 2018;15(9):1830.
Article
Google Scholar
Chan JS, Li A, Ng SM, et al. Adiponectin potentially contributes to the antidepressive effects of Baduanjin Qigong exercise in women with chronic fatigue syndrome-like illness. Cell Transplant. 2017;26(3):493–501.
Article
Google Scholar
Chan JS, Ho RT, Chung KF, et al. Qigong exercise alleviates fatigue, anxiety, and depressive symptoms, improves sleep quality, and shortens sleep latency in persons with chronic fatigue syndrome-like illness. Evid Based Complement Altern Med. 2014, (2014-12-24), 2014, 2014:106048.
Zou L, Yeung A, Quan X, Boyden SD, Wang H. A systematic review and meta-analysis of mindfulness-based (Baduanjin) exercise for alleviating musculoskeletal pain and improving sleep quality in people with chronic diseases. Int J Environ Res Public Health. 2018;15:206.
Article
Google Scholar
Ma Y, Li X, Zhao D, et al. Association between cognitive vulnerability to depression—dysfunctional attitudes and glycaemic control among in-patients with type 2 diabetes in a hospital in Beijing: a multivariate regression analysis. Psychol Health Med. 2017;23:189–97.
Article
Google Scholar
Roy T, Lloyd CE. Epidemiology of depression and diabetes: a systematic review. J Affect Disord. 2012;142(Suppl):S8.
Article
Google Scholar
Moulton CD, Pickup JC, Ismail K. The link between depression and diabetes: the search for shared mechanisms. Lancet Diabetes Endocrinol. 2015;3(6):461–71.
Article
Google Scholar
Associations between psychological factors and health-related quality of life and global quality of life in patients with ALS: a systematic review. Health and Quality of Life Outcomes. 2016; 14: 107.
Chen Y, Li C, Tan C, et al. Circular RNAs: a new frontier in the study of human diseases. J Med Genet. 2016;53(6):359.
Article
CAS
Google Scholar
Cui X, Niu W, Kong L, et al. hsa_circRNA_103636: potential novel diagnostic and therapeutic biomarker in major depressive disorder. Biomark Med. 2016;10(9):943–52.
Article
CAS
Google Scholar
Huang X, Luo YL, Mao YS, et al. The link between long noncoding RNAs and depression. Prog Neuropsychopharmacol Biol Psychiatry. 2016;73:73.
Article
Google Scholar
Jiang G, Ma Y, An T, et al. Relationships of circular RNA with diabetes and depression. Sci Rep. 2017;7(1):7285.
Article
Google Scholar
Xiao X, Zheng F, Chang H, et al. The Gene encoding protocadherin 9 (PCDH9), a novel risk factor for major depressive disorder. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology, 2017.
An T, Zhang T, Teng F, et al. Long non-coding RNAs could act as vectors for paternal heredity of high fat diet-induced obesity. Oncotarget. 2017;8(29):47876–89.
Article
Google Scholar
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.
Article
CAS
Google Scholar
Ørom UA, Derrien T, Beringer M, et al. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010;27(4):359.
Google Scholar
Liye Z, Albert Y, Xinfeng Q, et al. Mindfulness-based Baduanjin exercise for depression and anxiety in people with physical or mental illnesses: a systematic review and meta-analysis. Int J Environ Res Public Health. 2018;15(2):321.
Article
Google Scholar
Lin Z, Li X, Zhan X, et al. Construction of competitive endogenous RNA network reveals regulatory role of long non-coding RNAs in type 2 diabetes mellitus. J Cell Mol Med. 2017;21:3204–13.
Article
CAS
Google Scholar
Blüthgen N, Bentum MV, Merz B, et al. Profiling the MAPK/ERK dependent and independent activity regulated transcriptional programs in the murine hippocampus in vivo. Sci Rep. 2017;7:45101.
Article
Google Scholar
Barry G, Briggs JA, Hwang DW, et al. The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states. Sci Rep. 2017;7:40127.
Article
CAS
Google Scholar
Riva P, Ratti A, Venturin M. The long non-coding RNAs in neurodegenerative diseases: novel mechanisms of pathogenesis. Curr Alzheimer Res. 2016;13(11):1219–31.
Article
CAS
Google Scholar
Yan W, Chen ZY, Chen JQ, et al. LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson’s disease through stabilizing PINK1 protein. Biochem Biophys Res Commun. 2017;496:1019–24.
Article
Google Scholar
Mathias SR, Knowles EEM, Kent JW, et al. Recurrent major depression and right hippocampal volume: a bivariate linkage and association study. Hum Brain Mapp. 2016;37(1):191–202.
Article
Google Scholar
Rasmussen AH, Rasmussen HB, Silahtaroglu A. The DLGAP family: neuronal expression, function and role in brain disorders. Mol Brain. 2017;10(1):43.
Article
Google Scholar
Leighton SP, Nerurkar L, Krishnadas R, et al. Chemokines in depression in health and in inflammatory illness: a systematic review and meta-analysis. Mol Psychiatry. 2017;23:48–58.
Article
Google Scholar
Eyre HA, Air T, Pradhan A, et al. A meta-analysis of chemokines in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2016;68:1–8.
Article
CAS
Google Scholar
Trojan E, Ślusarczyk J, Chamera K, et al. The modulatory properties of chronic antidepressant drugs treatment on the brain chemokine—chemokine receptor network: a molecular study in an animal model of depression. Front Pharmacol. 2017;8:779.
Article
Google Scholar
Grabowska P, Targowski T, Rozyńska R, et al. Alexithymia and depression: relationship to cigarette smoking, nicotine dependence and motivation to quit smoking. Przegla̧d Lekarski. 2005;62(10):1004.
PubMed
Google Scholar
Rodríguez-Morales A J, Mejia-Bernal Y V, Meneses-Quintero O M, et al. Chronic depression and post-chikungunya rheumatological diseases: is the IL-8/CXCL8 another associated mediator? Travel Medicine & Infectious Disease, 2017: article in press.
Ruano D, Macedo A, Dourado A, et al. NR4A2 and schizophrenia: lack of association in a Portuguese/Brazilian study. Am J Med Genet B Neuropsychiatr Genet. 2004;128B(1):41.
Article
Google Scholar
Beurel E, Lowell JA. Th17 cells in depression. Brain Behav Immunity. 2017;69:28–34.
Article
Google Scholar
Wang Y, Jiang H, Meng H, et al. Antidepressant mechanism research of acupuncture: insights from a genome-wide transcriptome analysis of frontal cortex in rats with chronic restraint stress. Evid Based Complement Alternat Med. 2017;2017(1):1676808.
PubMed
PubMed Central
Google Scholar
Strober BE, Langley RGB, Menter A, et al. No elevated risk for depression, anxiety, or suicidality with secukinumab in a pooled analysis of data from 10 clinical studies in moderate to severe plaque psoriasis. Br J Dermatol. 2017;178:e105–7.
Article
Google Scholar
Lebwohl MG, Papp KA, Marangell LB, et al. Psychiatric adverse events during treatment with brodalumab: analysis of psoriasis clinical trials. J Am Acad Dermatol. 2017;78:81–9.
Article
Google Scholar
Guloksuz S, Rutten BP, Arts B, et al. The immune system and electroconvulsive therapy for depression. J Ect. 2014;30(2):132–7.
Article
CAS
Google Scholar